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ABSTRACT 
This paper presents a reflective middleware architecture for 
simulation integration based on structural reflection and 
metamodel concepts. The proposed architecture extracts the 
simulator information as metamodels from the base-level 
simulators, determines the required features and modules using 
semantic constraints, and reflects the modified features to the 
base- level. It is shown that the reflective middleware architecture 
addresses various challenges in simulation integration. It also 
enables a design that is more adaptable, flexible and easier to 
extend.  We present a detailed case study from the emergency 
response domain, where simulations are critical, to illustrate the 
potential benefits of applying the proposed architecture.  

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures Patterns 
(Reflection) 

General Terms 
Design 

Keywords 
Reflective Middleware, Simulation Integration, Structural 
Reflection, Metamodel 

1. INTRODUCTION 
Modeling and simulation (M&S) are accepted problem solving 
methodologies for the solution of many real-world problems. 
There is a wide variety of methods for studying models of real-
world systems using software designed to imitate the system’s 
operations or characteristics, often over time. There are several 
advantages of using simulations instead of experimenting with the 
real system itself: simulation is cheaper, quicker, and enables 
what-if analyses for better system design [1, 12]. This is 
particularly true in domains such as emergency response where 
the need to simulate disasters, their impact and the efficacy of 
response methods are often validated via simulations. These 

simulations (e.g. earthquake simulators, fire simulators) are often 
developed by domain experts who have a clear understanding of 
the field and are often difficult to recreate.  

Building complex simulations to understand the joint effect of 
multiple phenomena (spread of hazardous material as a result of 
an earthquake, impact of earthquake on the cellular network in a 
region) is useful. Consider an existing simulator in the crisis 
management domain, HAZUS-MH, which estimates losses from 
potential hazards such as earthquake, wind, flood or release of 
hazardous material [18]. HAZUS-MH can be used in a scenario in 
which a hazardous material has been released as a consequence of 
an earthquake. In this scenario, authorities may wish to block 
traffic, the blocked roads may be captured within a transportation 
simulator, e.g. the INLET (Internet-based Loss Estimation Tool) 
transportation simulator [19].  Such integration is useful to 
understand various factors that can adversely delay evacuation 
times or increase exposure and consequently used to make 
decisions that can improve safety and emergency response time. 
In the example above, one can study the actual effect of blocked 
roads on the number of people affected by the hazmat release. 
Additionally, traffic loads in the blocked area are reduced 
enabling emergency response teams to reach the crisis sooner. 

One approach to studying joint impact is to build monolithic 
simulations; this is a cumbersome process; economic and 
organizational constraints make it infeasible to build these 
complex distributed simulations entirely from scratch. The second 
approach is to leverage existing simulators (developed by 
experts); since each simulator has its own models and entities, the 
integration is a big challenge. In this paper we focus on using 
reflective middleware solutions for integration and enhancement 
of simulations built by domain experts that are likely available.  
We design a reflective architecture for simulation integration in 
which interoperability of different simulators can be ultimately 
achieved via shared metadata. In Section 2, we discuss the related 
work in simulation integration and its limitations. In Section 3, we 
describe the reflective architecture, challenges, and our meta-
model. We illustrate the power of the reflective model using real 
world case studies in Section 4 and compare the reflective 
approach with a popular simulation integration framework (the 
High level architecture). Finally we conclude in section 5 with 
future research directions. 
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2. RELATED WORK  
To the best of our knowledge, simulation integration has been 
applied in two domains – (a) military command-and-control and 
(b) games. The U.S. Department of Defense (DoD) has promoted 
the development of distributed simulation standards to provide a 
common framework in which simulators can be integrated. These 
include standards such as SIMulator NETworking (SIMNET) [4], 
Distributed Interactive Simulation (DIS) [15], Aggregate Level 
Simulation Protocol (ALSP) [5], High Level Architecture (HLA) 
[6, 7]. These standards provide specific services for 
interoperability in niche applications, for example DIS for human-
in-the-loop simulators or ALSP for war games. The recent HLA 
effort has become the defacto standard technical architecture for 
military simulations in the United States – it aims to promote 
interoperability, scalability, and reusability between simulators. 
One of the central components of HLA is the Runtime 
Infrastructure (RTI); ORBs and CORBA services are candidate 
tools for implementing HLA RTIs. While HLA led to some new 
insights in simulation integration, its broader applicability for 
general simulation integration is questionable.  It is a complex 
standard designed specifically for the military domain and is not 
transparent enough – too much low level knowledge is needed 
from the practitioner. Additionally it requires the participants to 
agree on a common interpretation of data that is produced and 
exchanged between them. Recently simulation integration 
methods have been used in the game community [8, 9, 10, 11] 
primarily to support interoperability. As in the case with the HLA 
architecture, solutions here are prescriptive - they force the 
developers to provide a particular functionality or to conform to 
specific standards to participate in the integration process.  

In contrast to the above approaches where the participating 
simulators must conform to predefined standards, our goal is to 
leverage existing simulators, as is, while enabling data 
interchange between them.  Existing middleware frameworks such 
as CORBA, DCOM or RMI [2, 3], XML tools support data 
exchange between software applications; supporting semantic 

interoperability requires capabilities beyond what these 
frameworks can provide. Time synchronization across multiple 
simulations is one such challenge. Time synchronization services 
offered by traditional middleware frameworks typically need the 
participants to agree on a common interpretation of time and on 
common time advancement methods. Although existing 
simulators model time in disparate ways, it is difficult to achieve a 
joint integration without a clear understanding of how each 
simulator represents and advances time – this is essential for 
accurate simulation. 

3. A REFLECTIVE ARCHITECTURE FOR 
SIMULATION INTEGRATION 
There are several challenges that must be addressed to fully 
realize simulation integration. The first challenge in modeling 
complex scenarios using multiple simulators is the analysis of 
cause-effect relationships between those simulators. The second 
challenge arises from the fact that each simulator uses its own 
models and entities; these must now be integrated in the context 
of a single simulation.  The simulators need to exchange the data 
and have a correct interpretation of the data they send and receive. 
It is necessary to analyze the data types used internally by the 
simulators. Therefore, there are challenges in data transformation 
and data integration. Time synchronization is yet another 
challenge. When integrating simulators, there is a need for 
synchronization of time between the different models. The 
simulation clock that controls simulation time during execution of 
a simulation resides within each simulator itself. Time 
synchronization mechanisms are needed to ensure causal 
correctness for models that use different time advancement 
mechanisms. 

Given the potential black-box nature of simulators developed by 
experts in diverse domains (earthquake engineering and 
transportation systems in the introductory example), we believe 
that achieving a completely automated plug-and-play integration 
of simulators is a very difficult, if not infeasible challenge.  Our 
goals are more modest – we intend to develop enabling tools that 

 
Figure 1. Reflective Architecture for Simulation Integration 

 



 
Figure 3. The meta-model  

 

will simplify the task of simulation integration with a wide range 
of simulators that vary in the degree to which they expose their 
interfaces and implementations. Our solution does not require 
simulator developers to adhere to a strict programming interface 
or conform to particular design styles - the ability to flexibly 
interoperate with multiple simulators is our goal. 
We will use reflective middleware solutions to provide a 
principled, yet flexible approach to support the development of 
simulation integration platforms. There are two main forms of 
reflection in middleware platforms: structural and behavioral 
reflection [16]. In solutions for simulation integration, we are 
primarily interested in abstracting out the structural aspects of the 
underlying simulators. Structural reflection is concerned with the 
reification of the underlying structure of objects or components, 
e.g., in terms of the needs of the high level integration task.  The 
expected mode of operation is that the actual interactions between 
simulations are specified and altered by a specialist who 
understands the purpose of the different simulators (and the 
rationale for their integration) but not necessarily their details. 

3.1 Reflection for Simulation Integration 
In this section we present a two-level reflective architecture for 
simulation integration, as illustrated in Figure 1. In the proposed 
architecture, integration of different simulators can be ultimately 
achieved by using the meta-level for specifying/modeling the 
properties of the different simulators and reasoning about the 
interactions among the different simulators – i.e. what we intend 
to design and develop is a meta-simulator. The meta-level is built 
on base-level simulators; reification of base-level entities yield 
data structures at the meta-level, modified features of these 
structures that implement the integration are then reflected to the 
base-level. A closer look at the base-level simulators themselves 
reveals that the structural aspects of the simulation application are 
not merely in the simulator code - backend databases and models 
stored in domain-specific formats contain aspects of the 
simulators that may need to be explored as well -- in general, 
there can be many kinds of meta-level entities to cover various 
integration aspects.  By using the metamodeling capability the 
model elements that need to be integrated can be extracted.   

A major challenge toward the realization of reflective 
architectures for simulation integration is related to the 
complexity associated with reification. Many reflective systems 
[2, 3] provide access to their internal operations in terms of a 
composition graph, describing the dependencies between their 
components.  Such an approach requires the specification of all 
interfaces and objects involved. However, in using existing 
available simulators we may not have access to all details of the 
simulators including the specification of their interfaces and 
objects. In our approach, we formulate the metamodel that 
captures concepts of interest using a publish- subscribe 
mechanism for data exchange – here, subscribers (the simulation 
integration tasks) express interest in aspects that they want to 
observe (implemented by base-level simulators) – when changes 
in these monitored aspects occur at the base simulators, the meta-
level entities receive information or updates of interest via 
publishers.  A pre-existing set of ontology models assist in the 
matching process for the pub-sub implementation of the 
simulation integration task – these include domain ontologies that 
are representations of knowledge in a well-circumscribed domain.  
Interoperability of different simulators can be achieved by sharing 
and understanding the metamodels. Implementing the semantic 

constraints for simulation integration is a human in the loop 
process which results in the annotations that are invisible to base-
level computation and are provided to the meta-level. In the 
following section we propose our metamodel. 

3.2 Meta-model 
In this section we attempt to construct a metamodel that helps to 
reify the main features of the simulation platforms. Metamodels 
make the underlying simulators more understandable by 
abstracting out lower-level details of integration and 
interoperability.  The main challenge in deriving a metamodel is 
what features need to be present in the metamodel. Since our 
metamodel needs to take several domain expert simulators into 
account, the metamodel should be comprehensive, yet extensible. 
The careful examination of the features in various simulators of 
the different domains has allowed us to identify and categorize 
common features using key classes.  We describe the process and 
tools used in deriving key structural aspects of simulators to assist 
the integration process. 

Given a set of sample simulators, we used Creole as an Eclipse 
plug in to examine source code dependencies and to extract the 
simulator’s features. Since Creole did not help us with complex 
and large simulators, we implemented a parser using a tool for 
large scale code repositories search [17] to extract the entities and 
attributes from a Java simulator using the simulator’s source code, 
interfaces, and databases. Then we group extracted information 
into features to capture the structure of the simulator. The features 
are put into the same class if they are considered equivalent. The 
key classes in our metamodel will be: model elements, features 
which could be structural features or behavioral features, and 
constraints. Model elements are the main elements of a simulation 
and can be captured from the interfaces, the source code, or 
databases. Since we are interested in structural reflection, 
currently we only use structural features which include classes 
and attributes. We may also take behavioral features into account 
to represent operations and associations in future. Constraints are 
the number of limits for the simulation parameters in the 
simulation model.  

Figure 2 shows the key classes that comprise our metamodel. We 
construct our metamodel using UML (Unified Modeling 
Language). The reflective UML metamodel has several 
metamodel propositions including class diagrams for describing 
the main elements and the static relations among them. We used 
the Eclipse Modeling Framework (EMF) to define and customize 
our metamodel which also allows the automatic generation of 



tools (such as a repository). We will explain some examples of the 
key classes in our case study in next section. 

4. CASE STUDY 
In this section we develop a case study for simulation integration 
using two available existing simulators – the primary goal is to 
validate the proposed reflective architecture and understand issues 
in its realization. The two simulators are (a) a fire simulator that 
simulates the effects of fire and smoke inside a building and  (b) 
an activity simulator that model a response activity – evacuation. 

4.1 Fire Simulator: CFAST  
CFAST, the Consolidated Model of Fire and Smoke Transport, is 
a simulator that simulates the impact of fires and smoke in a 
specific building environment and calculates the evolving 
distribution of smoke, fire gases, and temperature [14].  CFAST 
have several interfaces to input the parameters that contain 
information about the building geometry (compartment sizes, 
materials of construction, and material properties), connections 
between compartments (horizontal flow openings such as doors, 
windows), fire properties (fire size and species production rates as 
a function of time), and specifications for detectors. The simulator 
produces outputs that contain information about temperatures, 
ignition times, gas concentrations such as CO and CO2, and etc.   

Figure 3-a shows the representation of CFAST using our 
metamodel. Since in CFAST we only have access to several 
interfaces and we do not have access to the source code and 
databases, the model elements are captured from the interfaces. In 
the figure the model that we try to capture is CFAST-fire. The 
model elements include time, fire, and geometry. Each element 

has its own structural features. We try to make our model general 
and easy to extend to be used for any other fire simulator. A major 
property associated with any simulation is time. CAFST is a time 
stepped simulator which has a simulation environment interface in 
which the simulation time duration and time intervals can be 
defined. Structural features of time are simulation start time, time 
interval, and current time. The second model element is the fire 
which has several structural features, such as location, fire type, 
time, temperature, etc. Finally, geometry is another model element 
in CFAST which includes information on the building geometry 
such as compartments and connections between compartments.  
CFAST has also some limitation on its parameters that can be 
specified in the metamodel using constraints. There are two 
significant properties of the metamodel that we want to briefly 
mention: flexibility and scalability. First our metamodel is flexible 
because it is easy to add other key classes to the metamodel using 
UML specifications. Second, we made our metamodel scalable by 
developing the meta-adaptors. When using another fire simulator 
we can adapt its metamodel to the CFAST metamodel using the 
adaptor. Detailed information about the meta-adaptors is beyond 
scope of this paper.  

4.2 Activity Simulator: Drillsim 
Drillsim is a simulation environment that plays out the activities 
of a crisis response (e.g., evacuation), which is a multi-agent 
system that simulates human behavior in a crisis [13]. Agents 
represent an evacuee, a building captain, etc. Every agent has a set 
of properties associated with it, such as physical and perceptual 
profile (e.g., range of sight, speed of walking) and the current 
health status of the agent (e.g. injured, unconscious).  At any 
given time, agents are associated with a given location in the 

 
Figure 3. (a) CFAST Metamodel, (b) Drillsim Metamodel 

 



 
Figure 4. Using the proposed architecture  

 

geographical space. Indoor space consists of floors, rooms, 
corridors, stairways, etc. Outdoor space is represented by a grid in 
Drillsim. Figure 3-b shows Drillsim using our metamodel key 
classes extracted from the source code and databases. 

4.3 Drillsim-CFAST integration 
In order to integrate Drillsim and CFAST using our reflective 
architecture we first need to extract semantic constraints by using 
the metadata to capture where we need to integrate the two 
simulators. The careful examination of the features in the 
metadata and the cause-effect analysis allow us to extract the 
following constraints. The main constraint is that fire from 
CFAST can affect an agent’s health in Drillsim. Therefore we 
need to extract the harmful condition caused by fire and smoke 
from CFAST and update agent health condition in Drillsim. The 
following are the examples on how the integration enables 
information interchanged between two simulators: 

• Harmful condition from CFAST can affect someone’s health 
in Drillsim. 

• Agents in Drillsim can talk about the fire and its location – 
this will prevent agents from entering  dangerous areas. 

• Smoke from CFAST can decrease someone’s visual distance 
in Drillsim. 

• Harmful conditions from CFAST can affect the evacuation 
process in Drillsim e.g.  increase walking speed. 

Since the harmful condition in CFAST is associated with the 
specific time and location, we need a time synchronizer and 
geometry transformer. Each simulator has its own internal time 
management mechanism. This implies that we need a time 
synchronization method to guarantee the logical correctness and 
causality during simulation. The two simulators also use different 
geometry representations – translators are required to translate  
specific locations in CFAST to corresponding locations in 
Drillsim. In the following sections we will describe each 
integration module in more detail. 

4.3.1 Data Issues 
We discussed one example of the semantic constraints between 
the two simulators. In our example harmful conditions extracted 
from CFAST can affect the health of agents in Drillsim. In the 
data management module we need to update an agent’s health 
level in Drillsim based on the harmful condition caused by fire 
and smoke in CFAST.  In general, the data management module 
provides data transfer that preserves the meaning and relationships 
of the data exchanged between two simulators. Since we are 
working with existing simulators, we cannot use the methods 
based on the common representation of data. Each simulator may 
have its own data representation which can not be easily modified. 
We used data translators that work based on the constraints. 
Clearly one of the most difficult portions is to extract these 
constraints. Finally if the data translators are implemented 
correctly, they can provide immediate conduits to publish or 
subscribe to information.   

4.3.2 Time Synchronizer 
Time synchronization can be implemented differently in 
simulators: clock synchronization and timescale transformation 
are two common techniques. In clock synchronization the 
simulators’ clocks have the same time at any given moment which 
is a costly approach and sometime impossible because the internal 
time advance manner of a simulator might not be accessible.  In 

timescale transformation we can transform the internal time of 
one simulation into the internal time of another simulation. When 
a message or update is sent to another simulator, it has a time 
stamp which is transformed to the timescale of receiver. For 
messages sent over multiple simulators the transformation is 
repeated. Time stamp transformation can be achieved by 
computing the difference from message creation and its arrival. 
Since CFAST and Drillsim are both time stepped simulators the 
timescale transformation can be performed by means of time 
calibration. 

4.3.3 Geometry Transformer 
Geometry translators have the responsibility of performing 
coordinate conversions between geographies that use different 
coordinate systems. To create this translator module we create a 
set of guide points in both geographies and determine a coordinate 
transform matrix. Figure 4 illustrates how to use the proposed 
architecture in our case study 1) it allows to extract the simulator 
design information as metamodels from the base-level simulators 
using their interfaces, source code, and databases. In CFAST we 
do not access to the simulator’s source code and databases but we 
can access several interfaces that contain simulation parameters. 
On the other hand, Drillsim does not provide us with powerful 
interfaces but we can access the source code and databases; 2) by 
using the metamodels capability the model elements that need to 
be integrated can be extracted. This step is a human-in-the-loop 
process and we use the semantic constraints for integration. In our 
case study, the fire and smoke from the fire simulator can affect 
someone’s health in the activity simulator; 3) using the main 
model elements involve in the integration we need:  (i) the data 
translator to transform the data on fire and smoke and to update 
agent’s health, (ii) the time synchronizer to synchronize the time 
of fire and smoke to the time in Drillsim, (iii) the geometry 
transformer to perform coordinate conversion between the two 
simulators. Finally; 4) by using reflection we reflect the modified 
features to the base-level that means we modify health conditions 
using the source code and databases in Drillsim. 

Comparing with HLA: Table 1 presents a brief comparison 
of the reflective architecture to HLA. Using HLA outside the 
defense domain such as our case study is very complex, if not 
impossible. In HLA low level knowledge needed from 
participants. Each simulator must use the common data format 
that leads to simulations that are very closely coupled to an 
underlying database. Since the HLA environment is a fully 
distributed simulation environment, the simulators must fully 
conform to the designated features of the HLA standard.  Note 
that transforming existing simulators to conform to the standard 
may not always be feasible. In our reflective architecture each 
simulator can have its own data representation, internal time 



management, and data management. Therefore, we do not force 
the simulators to change their internal properties. Another 
advantage of our reflective architecture is separation of concerns, 
that is, separate the concerns related to the simulation domain 
from those related to the integration mechanisms. Additionally it 
provides a design that is more adaptable, flexible and easier to 
extend. 

Table 1. Comparison between HLA and Reflective 
Architecture for simulation integration  

Criterion HLA Reflective Architecture 

Objective − Interoperability 
− Reusability 

− Semantic 
Interoperability 

− Reusability 
− Flexibility  

Domain − Defense − Flexible via use of  
domain ontologies 

Complexity 

− Low level 
knowledge 
needed 

− Lack of semantic 
interoperability 

 
− No need to conform 

the internal properties 
− Semantic constraints 

implemented at the 
meta-level 

Time 
Management 

− Optimistic and 
conservative 
methods 

− Allows Timescale 
transformation 

Separation 
of Concerns 

− Merges domain-
specific and 
integrated 
simulation 
aspects 

− Separate concerns 
related to simulation 
domain to those related 
to integration 
mechanisms 

.  

5. CONCLUSIONS AND FUTURE WORK 
In this paper we proposed a reflective middleware architecture for 
simulation integration that implements structural reflection to 
alleviate the flexibility issues in current simulation integration 
techniques. In this architecture, the meta-level is structured as a 
series of metamodels representing the various simulators. We 
have implemented a detailed case study using two available 
simulators and illustrated the utility of the reflective  architecture. 
In the near term, we intend to extend our approach to integrate 
more than two simulators. Future research will focus on 
addressing challenges in the complexity associated with 
reification, generalizing the metamodels for other evacuation and 
fire simulators, integrating simulators in other domains including 
earthquake and transportation simulators as well as supporting 
non-Java simulators.  

6. REFERENCES 
[1] Kheir, N.A., Dekker, M. 1995. Systems modeling and 

computer simulation, 2nd ed., Springer, New York, USA.  
[2] Buss, A., Jackson, L. 1998.  Distributed Simulation 

Modeling: A Comparison of HLA, CORBA and RMI, 
Proceedings of the Winter Simulation Conference, 818-825. 

[3] Verbraeck, A., Valentin, E., Saanen, Y.A. 2000. Simulation 
as a Real-time Logistic Control System: AGV Control with 
Simple++, The New Simulation in Production and Logistics 
Prospects, Views and Attitudes ed., Germany, 245-255.     

[4] Pope, A. 1989. The SIMNET Network and Protocols, 
Technical Report 7102, MA: BBN Systems and 
Technologies, Cambridge, Massachusetts. 

[5] Weatherly, R., Seidel, D., Weissman, J. 1991.  Aggregate 
Level Simulation Protocol, Summer Computer Simulation 
Conference, Baltimore, Maryland, 953-958. 

[6] Xiaoxia, S.. Quihai, Z. 2003. The introduction on High Level 
Architecture(HLA) and Run Time Infrastructure(RTI), SICE 
Annual Conference, Japan, 1136-1139. 

[7] Kuhl, F., Weatherly, R., Dahmann, J. 1999. Creating 
Computer Simulation Systems: An Introduction to the High 
Level Architecture, New Jersey, Prentice Hall. 

[8] Ling, Y., Zhang, M., Lu, X., Wang, W., Lao, S. 2006.  
Model Searching Algorithm Based on Response Order and 
Access Order in War-Game Simulation Grid, Edutainment, 
Springer-Verlag Berlin Heidelberg, 627-637. 

[9] Huang, H., Wu, W., Tang, X., Zhou, Z. 2006. Federate 
Migration in Grid-Based Virtual Wargame Collaborative 
Environment, 606-615 . 

[10] Rhalibi, A.E., Merabti, M., Shen, Y. 2006. Improving Game 
Processing in Multithreading and Multiprocessor 
Architecture, Edutainment, Springer-Verlag,669 – 679. 

[11] Jain, S., McLean, C.R., 2005, Integrated simulation and 
gaming architecture for incident management training, 
Simulation, Proceedings of the Winter Simulation 
Conference, 904-913. 

[12] Fujimoto, M.R., 2000. Parallel and Distributed Simulation 
Systems, John Wiley and Sons, Inc., New York. 

[13] Balasubramanian, V., Massaguer, D., Mehrotra, S., 
Venkatasubramanian, N., 2006. DrillSim: A Simulation 
Framework for Emergency Response Drills, Intelligent and 
Security Informatics (ISI), 237-248. 

[14] Peacock, R., Jones, W., Reneke, P., Forney, G. 2005.  
CFAST– Consolidated Model of Fire Growth and Smoke 
Transport (Version 6) User’s Guide, NIST Special 
Publication. 

[15]  Davis, P.K. 1995. Distributed Interactive Simulation (DIS) 
in the Evolution of DoD Warfare Modeling and Simulation, 
Proceedings of the IEEE 83(8), 1138-1155. 

[16] Kon, F., Costa, F., Blair, G., Campbell, R.H. 2002. The Case 
for Reflective Middleware, Communications of the ACM, 
45(6), 33–38. 

[17] Lemos, O., Bajracharya, S., Ossher, J. 2007. CodeGenie:: a 
tool for test-driven source code search. In Companion To the 
22nd ACM SIGPLAN Conference on Object Oriented 
Programming Systems and Applications Companion. 
Montreal, Quebec, Canada, 917-918. 

[18] HAZUS-MH 2003 Multi-hazard Loss Estimation 
Methodology. HAZUS-MH User Manual, FEMA. 

[19] Cho, S., Huyck, C.K., Ghosh, S. Eguchi, R.T., 2006. 
Development of a Web-based Transportation Modeling 
Platform for Emergency Response. 8th Conference on 
Earthquake Engineering, San Francisco. 

 

 


