
A Reflective Middleware Architecture for
Simulation Integration

ABSTRACT
This paper presents a reflective middleware architecture for
simulation integration based on structural reflection and
metamodel concepts. The proposed architecture extracts the
simulator information as metamodels from the base-level
simulators, determines the required features and modules using
semantic constraints, and reflects the modified features to the
base- level. It is shown that the reflective middleware architecture
addresses various challenges in simulation integration. It also
enables a design that is more adaptable, flexible and easier to
extend. We present a detailed case study from the emergency
response domain, where simulations are critical, to illustrate the
potential benefits of applying the proposed architecture.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures Patterns
(Reflection)

General Terms
Design

Keywords
Reflective Middleware, Simulation Integration, Structural
Reflection, Metamodel

1. INTRODUCTION
Modeling and simulation (M&S) are accepted problem solving
methodologies for the solution of many real-world problems.
There is a wide variety of methods for studying models of real-
world systems using software designed to imitate the system’s
operations or characteristics, often over time. There are several
advantages of using simulations instead of experimenting with the
real system itself: simulation is cheaper, quicker, and enables
what-if analyses for better system design [1, 12]. This is
particularly true in domains such as emergency response where
the need to simulate disasters, their impact and the efficacy of
response methods are often validated via simulations. These

simulations (e.g. earthquake simulators, fire simulators) are often
developed by domain experts who have a clear understanding of
the field and are often difficult to recreate.

Building complex simulations to understand the joint effect of
multiple phenomena (spread of hazardous material as a result of
an earthquake, impact of earthquake on the cellular network in a
region) is useful. Consider an existing simulator in the crisis
management domain, HAZUS-MH, which estimates losses from
potential hazards such as earthquake, wind, flood or release of
hazardous material [18]. HAZUS-MH can be used in a scenario in
which a hazardous material has been released as a consequence of
an earthquake. In this scenario, authorities may wish to block
traffic, the blocked roads may be captured within a transportation
simulator, e.g. the INLET (Internet-based Loss Estimation Tool)
transportation simulator [19]. Such integration is useful to
understand various factors that can adversely delay evacuation
times or increase exposure and consequently used to make
decisions that can improve safety and emergency response time.
In the example above, one can study the actual effect of blocked
roads on the number of people affected by the hazmat release.
Additionally, traffic loads in the blocked area are reduced
enabling emergency response teams to reach the crisis sooner.

One approach to studying joint impact is to build monolithic
simulations; this is a cumbersome process; economic and
organizational constraints make it infeasible to build these
complex distributed simulations entirely from scratch. The second
approach is to leverage existing simulators (developed by
experts); since each simulator has its own models and entities, the
integration is a big challenge. In this paper we focus on using
reflective middleware solutions for integration and enhancement
of simulations built by domain experts that are likely available.
We design a reflective architecture for simulation integration in
which interoperability of different simulators can be ultimately
achieved via shared metadata. In Section 2, we discuss the related
work in simulation integration and its limitations. In Section 3, we
describe the reflective architecture, challenges, and our meta-
model. We illustrate the power of the reflective model using real
world case studies in Section 4 and compare the reflective
approach with a popular simulation integration framework (the
High level architecture). Finally we conclude in section 5 with
future research directions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ARM 2009, December 1, 2009, Urbana, Illinois, USA.
Copyright 2009 ACM 978-1-60558-850-6/09/12…$5.00.

Leila Jalali
Department of Computer Science

University of California, Irvine
CA 92697 USA

jalalil@uci.edu

Nalini Venkatasubramanian
Department of Computer Science

University of California, Irvine
CA 92697 USA

nalini@ics.uci.edu

Sharad Mehrotra
Department of Computer Science

University of California, Irvine
CA 92697 USA

sharad@ics.uci.edu

2. RELATED WORK
To the best of our knowledge, simulation integration has been
applied in two domains – (a) military command-and-control and
(b) games. The U.S. Department of Defense (DoD) has promoted
the development of distributed simulation standards to provide a
common framework in which simulators can be integrated. These
include standards such as SIMulator NETworking (SIMNET) [4],
Distributed Interactive Simulation (DIS) [15], Aggregate Level
Simulation Protocol (ALSP) [5], High Level Architecture (HLA)
[6, 7]. These standards provide specific services for
interoperability in niche applications, for example DIS for human-
in-the-loop simulators or ALSP for war games. The recent HLA
effort has become the defacto standard technical architecture for
military simulations in the United States – it aims to promote
interoperability, scalability, and reusability between simulators.
One of the central components of HLA is the Runtime
Infrastructure (RTI); ORBs and CORBA services are candidate
tools for implementing HLA RTIs. While HLA led to some new
insights in simulation integration, its broader applicability for
general simulation integration is questionable. It is a complex
standard designed specifically for the military domain and is not
transparent enough – too much low level knowledge is needed
from the practitioner. Additionally it requires the participants to
agree on a common interpretation of data that is produced and
exchanged between them. Recently simulation integration
methods have been used in the game community [8, 9, 10, 11]
primarily to support interoperability. As in the case with the HLA
architecture, solutions here are prescriptive - they force the
developers to provide a particular functionality or to conform to
specific standards to participate in the integration process.

In contrast to the above approaches where the participating
simulators must conform to predefined standards, our goal is to
leverage existing simulators, as is, while enabling data
interchange between them. Existing middleware frameworks such
as CORBA, DCOM or RMI [2, 3], XML tools support data
exchange between software applications; supporting semantic

interoperability requires capabilities beyond what these
frameworks can provide. Time synchronization across multiple
simulations is one such challenge. Time synchronization services
offered by traditional middleware frameworks typically need the
participants to agree on a common interpretation of time and on
common time advancement methods. Although existing
simulators model time in disparate ways, it is difficult to achieve a
joint integration without a clear understanding of how each
simulator represents and advances time – this is essential for
accurate simulation.

3. A REFLECTIVE ARCHITECTURE FOR
SIMULATION INTEGRATION
There are several challenges that must be addressed to fully
realize simulation integration. The first challenge in modeling
complex scenarios using multiple simulators is the analysis of
cause-effect relationships between those simulators. The second
challenge arises from the fact that each simulator uses its own
models and entities; these must now be integrated in the context
of a single simulation. The simulators need to exchange the data
and have a correct interpretation of the data they send and receive.
It is necessary to analyze the data types used internally by the
simulators. Therefore, there are challenges in data transformation
and data integration. Time synchronization is yet another
challenge. When integrating simulators, there is a need for
synchronization of time between the different models. The
simulation clock that controls simulation time during execution of
a simulation resides within each simulator itself. Time
synchronization mechanisms are needed to ensure causal
correctness for models that use different time advancement
mechanisms.

Given the potential black-box nature of simulators developed by
experts in diverse domains (earthquake engineering and
transportation systems in the introductory example), we believe
that achieving a completely automated plug-and-play integration
of simulators is a very difficult, if not infeasible challenge. Our
goals are more modest – we intend to develop enabling tools that

Figure 1. Reflective Architecture for Simulation Integration

Figure 3. The meta-model

will simplify the task of simulation integration with a wide range
of simulators that vary in the degree to which they expose their
interfaces and implementations. Our solution does not require
simulator developers to adhere to a strict programming interface
or conform to particular design styles - the ability to flexibly
interoperate with multiple simulators is our goal.
We will use reflective middleware solutions to provide a
principled, yet flexible approach to support the development of
simulation integration platforms. There are two main forms of
reflection in middleware platforms: structural and behavioral
reflection [16]. In solutions for simulation integration, we are
primarily interested in abstracting out the structural aspects of the
underlying simulators. Structural reflection is concerned with the
reification of the underlying structure of objects or components,
e.g., in terms of the needs of the high level integration task. The
expected mode of operation is that the actual interactions between
simulations are specified and altered by a specialist who
understands the purpose of the different simulators (and the
rationale for their integration) but not necessarily their details.

3.1 Reflection for Simulation Integration
In this section we present a two-level reflective architecture for
simulation integration, as illustrated in Figure 1. In the proposed
architecture, integration of different simulators can be ultimately
achieved by using the meta-level for specifying/modeling the
properties of the different simulators and reasoning about the
interactions among the different simulators – i.e. what we intend
to design and develop is a meta-simulator. The meta-level is built
on base-level simulators; reification of base-level entities yield
data structures at the meta-level, modified features of these
structures that implement the integration are then reflected to the
base-level. A closer look at the base-level simulators themselves
reveals that the structural aspects of the simulation application are
not merely in the simulator code - backend databases and models
stored in domain-specific formats contain aspects of the
simulators that may need to be explored as well -- in general,
there can be many kinds of meta-level entities to cover various
integration aspects. By using the metamodeling capability the
model elements that need to be integrated can be extracted.

A major challenge toward the realization of reflective
architectures for simulation integration is related to the
complexity associated with reification. Many reflective systems
[2, 3] provide access to their internal operations in terms of a
composition graph, describing the dependencies between their
components. Such an approach requires the specification of all
interfaces and objects involved. However, in using existing
available simulators we may not have access to all details of the
simulators including the specification of their interfaces and
objects. In our approach, we formulate the metamodel that
captures concepts of interest using a publish- subscribe
mechanism for data exchange – here, subscribers (the simulation
integration tasks) express interest in aspects that they want to
observe (implemented by base-level simulators) – when changes
in these monitored aspects occur at the base simulators, the meta-
level entities receive information or updates of interest via
publishers. A pre-existing set of ontology models assist in the
matching process for the pub-sub implementation of the
simulation integration task – these include domain ontologies that
are representations of knowledge in a well-circumscribed domain.
Interoperability of different simulators can be achieved by sharing
and understanding the metamodels. Implementing the semantic

constraints for simulation integration is a human in the loop
process which results in the annotations that are invisible to base-
level computation and are provided to the meta-level. In the
following section we propose our metamodel.

3.2 Meta-model
In this section we attempt to construct a metamodel that helps to
reify the main features of the simulation platforms. Metamodels
make the underlying simulators more understandable by
abstracting out lower-level details of integration and
interoperability. The main challenge in deriving a metamodel is
what features need to be present in the metamodel. Since our
metamodel needs to take several domain expert simulators into
account, the metamodel should be comprehensive, yet extensible.
The careful examination of the features in various simulators of
the different domains has allowed us to identify and categorize
common features using key classes. We describe the process and
tools used in deriving key structural aspects of simulators to assist
the integration process.

Given a set of sample simulators, we used Creole as an Eclipse
plug in to examine source code dependencies and to extract the
simulator’s features. Since Creole did not help us with complex
and large simulators, we implemented a parser using a tool for
large scale code repositories search [17] to extract the entities and
attributes from a Java simulator using the simulator’s source code,
interfaces, and databases. Then we group extracted information
into features to capture the structure of the simulator. The features
are put into the same class if they are considered equivalent. The
key classes in our metamodel will be: model elements, features
which could be structural features or behavioral features, and
constraints. Model elements are the main elements of a simulation
and can be captured from the interfaces, the source code, or
databases. Since we are interested in structural reflection,
currently we only use structural features which include classes
and attributes. We may also take behavioral features into account
to represent operations and associations in future. Constraints are
the number of limits for the simulation parameters in the
simulation model.

Figure 2 shows the key classes that comprise our metamodel. We
construct our metamodel using UML (Unified Modeling
Language). The reflective UML metamodel has several
metamodel propositions including class diagrams for describing
the main elements and the static relations among them. We used
the Eclipse Modeling Framework (EMF) to define and customize
our metamodel which also allows the automatic generation of

tools (such as a repository). We will explain some examples of the
key classes in our case study in next section.

4. CASE STUDY
In this section we develop a case study for simulation integration
using two available existing simulators – the primary goal is to
validate the proposed reflective architecture and understand issues
in its realization. The two simulators are (a) a fire simulator that
simulates the effects of fire and smoke inside a building and (b)
an activity simulator that model a response activity – evacuation.

4.1 Fire Simulator: CFAST
CFAST, the Consolidated Model of Fire and Smoke Transport, is
a simulator that simulates the impact of fires and smoke in a
specific building environment and calculates the evolving
distribution of smoke, fire gases, and temperature [14]. CFAST
have several interfaces to input the parameters that contain
information about the building geometry (compartment sizes,
materials of construction, and material properties), connections
between compartments (horizontal flow openings such as doors,
windows), fire properties (fire size and species production rates as
a function of time), and specifications for detectors. The simulator
produces outputs that contain information about temperatures,
ignition times, gas concentrations such as CO and CO2, and etc.

Figure 3-a shows the representation of CFAST using our
metamodel. Since in CFAST we only have access to several
interfaces and we do not have access to the source code and
databases, the model elements are captured from the interfaces. In
the figure the model that we try to capture is CFAST-fire. The
model elements include time, fire, and geometry. Each element

has its own structural features. We try to make our model general
and easy to extend to be used for any other fire simulator. A major
property associated with any simulation is time. CAFST is a time
stepped simulator which has a simulation environment interface in
which the simulation time duration and time intervals can be
defined. Structural features of time are simulation start time, time
interval, and current time. The second model element is the fire
which has several structural features, such as location, fire type,
time, temperature, etc. Finally, geometry is another model element
in CFAST which includes information on the building geometry
such as compartments and connections between compartments.
CFAST has also some limitation on its parameters that can be
specified in the metamodel using constraints. There are two
significant properties of the metamodel that we want to briefly
mention: flexibility and scalability. First our metamodel is flexible
because it is easy to add other key classes to the metamodel using
UML specifications. Second, we made our metamodel scalable by
developing the meta-adaptors. When using another fire simulator
we can adapt its metamodel to the CFAST metamodel using the
adaptor. Detailed information about the meta-adaptors is beyond
scope of this paper.

4.2 Activity Simulator: Drillsim
Drillsim is a simulation environment that plays out the activities
of a crisis response (e.g., evacuation), which is a multi-agent
system that simulates human behavior in a crisis [13]. Agents
represent an evacuee, a building captain, etc. Every agent has a set
of properties associated with it, such as physical and perceptual
profile (e.g., range of sight, speed of walking) and the current
health status of the agent (e.g. injured, unconscious). At any
given time, agents are associated with a given location in the

Figure 3. (a) CFAST Metamodel, (b) Drillsim Metamodel

Figure 4. Using the proposed architecture

geographical space. Indoor space consists of floors, rooms,
corridors, stairways, etc. Outdoor space is represented by a grid in
Drillsim. Figure 3-b shows Drillsim using our metamodel key
classes extracted from the source code and databases.

4.3 Drillsim-CFAST integration
In order to integrate Drillsim and CFAST using our reflective
architecture we first need to extract semantic constraints by using
the metadata to capture where we need to integrate the two
simulators. The careful examination of the features in the
metadata and the cause-effect analysis allow us to extract the
following constraints. The main constraint is that fire from
CFAST can affect an agent’s health in Drillsim. Therefore we
need to extract the harmful condition caused by fire and smoke
from CFAST and update agent health condition in Drillsim. The
following are the examples on how the integration enables
information interchanged between two simulators:

• Harmful condition from CFAST can affect someone’s health
in Drillsim.

• Agents in Drillsim can talk about the fire and its location –
this will prevent agents from entering dangerous areas.

• Smoke from CFAST can decrease someone’s visual distance
in Drillsim.

• Harmful conditions from CFAST can affect the evacuation
process in Drillsim e.g. increase walking speed.

Since the harmful condition in CFAST is associated with the
specific time and location, we need a time synchronizer and
geometry transformer. Each simulator has its own internal time
management mechanism. This implies that we need a time
synchronization method to guarantee the logical correctness and
causality during simulation. The two simulators also use different
geometry representations – translators are required to translate
specific locations in CFAST to corresponding locations in
Drillsim. In the following sections we will describe each
integration module in more detail.

4.3.1 Data Issues
We discussed one example of the semantic constraints between
the two simulators. In our example harmful conditions extracted
from CFAST can affect the health of agents in Drillsim. In the
data management module we need to update an agent’s health
level in Drillsim based on the harmful condition caused by fire
and smoke in CFAST. In general, the data management module
provides data transfer that preserves the meaning and relationships
of the data exchanged between two simulators. Since we are
working with existing simulators, we cannot use the methods
based on the common representation of data. Each simulator may
have its own data representation which can not be easily modified.
We used data translators that work based on the constraints.
Clearly one of the most difficult portions is to extract these
constraints. Finally if the data translators are implemented
correctly, they can provide immediate conduits to publish or
subscribe to information.

4.3.2 Time Synchronizer
Time synchronization can be implemented differently in
simulators: clock synchronization and timescale transformation
are two common techniques. In clock synchronization the
simulators’ clocks have the same time at any given moment which
is a costly approach and sometime impossible because the internal
time advance manner of a simulator might not be accessible. In

timescale transformation we can transform the internal time of
one simulation into the internal time of another simulation. When
a message or update is sent to another simulator, it has a time
stamp which is transformed to the timescale of receiver. For
messages sent over multiple simulators the transformation is
repeated. Time stamp transformation can be achieved by
computing the difference from message creation and its arrival.
Since CFAST and Drillsim are both time stepped simulators the
timescale transformation can be performed by means of time
calibration.

4.3.3 Geometry Transformer
Geometry translators have the responsibility of performing
coordinate conversions between geographies that use different
coordinate systems. To create this translator module we create a
set of guide points in both geographies and determine a coordinate
transform matrix. Figure 4 illustrates how to use the proposed
architecture in our case study 1) it allows to extract the simulator
design information as metamodels from the base-level simulators
using their interfaces, source code, and databases. In CFAST we
do not access to the simulator’s source code and databases but we
can access several interfaces that contain simulation parameters.
On the other hand, Drillsim does not provide us with powerful
interfaces but we can access the source code and databases; 2) by
using the metamodels capability the model elements that need to
be integrated can be extracted. This step is a human-in-the-loop
process and we use the semantic constraints for integration. In our
case study, the fire and smoke from the fire simulator can affect
someone’s health in the activity simulator; 3) using the main
model elements involve in the integration we need: (i) the data
translator to transform the data on fire and smoke and to update
agent’s health, (ii) the time synchronizer to synchronize the time
of fire and smoke to the time in Drillsim, (iii) the geometry
transformer to perform coordinate conversion between the two
simulators. Finally; 4) by using reflection we reflect the modified
features to the base-level that means we modify health conditions
using the source code and databases in Drillsim.

Comparing with HLA: Table 1 presents a brief comparison
of the reflective architecture to HLA. Using HLA outside the
defense domain such as our case study is very complex, if not
impossible. In HLA low level knowledge needed from
participants. Each simulator must use the common data format
that leads to simulations that are very closely coupled to an
underlying database. Since the HLA environment is a fully
distributed simulation environment, the simulators must fully
conform to the designated features of the HLA standard. Note
that transforming existing simulators to conform to the standard
may not always be feasible. In our reflective architecture each
simulator can have its own data representation, internal time

management, and data management. Therefore, we do not force
the simulators to change their internal properties. Another
advantage of our reflective architecture is separation of concerns,
that is, separate the concerns related to the simulation domain
from those related to the integration mechanisms. Additionally it
provides a design that is more adaptable, flexible and easier to
extend.

Table 1. Comparison between HLA and Reflective
Architecture for simulation integration

Criterion HLA Reflective Architecture

Objective − Interoperability
− Reusability

− Semantic
Interoperability

− Reusability
− Flexibility

Domain − Defense − Flexible via use of
domain ontologies

Complexity

− Low level
knowledge
needed

− Lack of semantic
interoperability

− No need to conform

the internal properties
− Semantic constraints

implemented at the
meta-level

Time
Management

− Optimistic and
conservative
methods

− Allows Timescale
transformation

Separation
of Concerns

− Merges domain-
specific and
integrated
simulation
aspects

− Separate concerns
related to simulation
domain to those related
to integration
mechanisms

.

5. CONCLUSIONS AND FUTURE WORK
In this paper we proposed a reflective middleware architecture for
simulation integration that implements structural reflection to
alleviate the flexibility issues in current simulation integration
techniques. In this architecture, the meta-level is structured as a
series of metamodels representing the various simulators. We
have implemented a detailed case study using two available
simulators and illustrated the utility of the reflective architecture.
In the near term, we intend to extend our approach to integrate
more than two simulators. Future research will focus on
addressing challenges in the complexity associated with
reification, generalizing the metamodels for other evacuation and
fire simulators, integrating simulators in other domains including
earthquake and transportation simulators as well as supporting
non-Java simulators.

6. REFERENCES
[1] Kheir, N.A., Dekker, M. 1995. Systems modeling and

computer simulation, 2nd ed., Springer, New York, USA.
[2] Buss, A., Jackson, L. 1998. Distributed Simulation

Modeling: A Comparison of HLA, CORBA and RMI,
Proceedings of the Winter Simulation Conference, 818-825.

[3] Verbraeck, A., Valentin, E., Saanen, Y.A. 2000. Simulation
as a Real-time Logistic Control System: AGV Control with
Simple++, The New Simulation in Production and Logistics
Prospects, Views and Attitudes ed., Germany, 245-255.

[4] Pope, A. 1989. The SIMNET Network and Protocols,
Technical Report 7102, MA: BBN Systems and
Technologies, Cambridge, Massachusetts.

[5] Weatherly, R., Seidel, D., Weissman, J. 1991. Aggregate
Level Simulation Protocol, Summer Computer Simulation
Conference, Baltimore, Maryland, 953-958.

[6] Xiaoxia, S.. Quihai, Z. 2003. The introduction on High Level
Architecture(HLA) and Run Time Infrastructure(RTI), SICE
Annual Conference, Japan, 1136-1139.

[7] Kuhl, F., Weatherly, R., Dahmann, J. 1999. Creating
Computer Simulation Systems: An Introduction to the High
Level Architecture, New Jersey, Prentice Hall.

[8] Ling, Y., Zhang, M., Lu, X., Wang, W., Lao, S. 2006.
Model Searching Algorithm Based on Response Order and
Access Order in War-Game Simulation Grid, Edutainment,
Springer-Verlag Berlin Heidelberg, 627-637.

[9] Huang, H., Wu, W., Tang, X., Zhou, Z. 2006. Federate
Migration in Grid-Based Virtual Wargame Collaborative
Environment, 606-615 .

[10] Rhalibi, A.E., Merabti, M., Shen, Y. 2006. Improving Game
Processing in Multithreading and Multiprocessor
Architecture, Edutainment, Springer-Verlag,669 – 679.

[11] Jain, S., McLean, C.R., 2005, Integrated simulation and
gaming architecture for incident management training,
Simulation, Proceedings of the Winter Simulation
Conference, 904-913.

[12] Fujimoto, M.R., 2000. Parallel and Distributed Simulation
Systems, John Wiley and Sons, Inc., New York.

[13] Balasubramanian, V., Massaguer, D., Mehrotra, S.,
Venkatasubramanian, N., 2006. DrillSim: A Simulation
Framework for Emergency Response Drills, Intelligent and
Security Informatics (ISI), 237-248.

[14] Peacock, R., Jones, W., Reneke, P., Forney, G. 2005.
CFAST– Consolidated Model of Fire Growth and Smoke
Transport (Version 6) User’s Guide, NIST Special
Publication.

[15] Davis, P.K. 1995. Distributed Interactive Simulation (DIS)
in the Evolution of DoD Warfare Modeling and Simulation,
Proceedings of the IEEE 83(8), 1138-1155.

[16] Kon, F., Costa, F., Blair, G., Campbell, R.H. 2002. The Case
for Reflective Middleware, Communications of the ACM,
45(6), 33–38.

[17] Lemos, O., Bajracharya, S., Ossher, J. 2007. CodeGenie:: a
tool for test-driven source code search. In Companion To the
22nd ACM SIGPLAN Conference on Object Oriented
Programming Systems and Applications Companion.
Montreal, Quebec, Canada, 917-918.

[18] HAZUS-MH 2003 Multi-hazard Loss Estimation
Methodology. HAZUS-MH User Manual, FEMA.

[19] Cho, S., Huyck, C.K., Ghosh, S. Eguchi, R.T., 2006.
Development of a Web-based Transportation Modeling
Platform for Emergency Response. 8th Conference on
Earthquake Engineering, San Francisco.

