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Increasing exponentially with technology scaling, the soft error rate even in earth-bound embedded
systems manufactured in deep subnanometer technology is projected to become a serious design
consideration. Partially protected cache (PPC) is a promising microarchitectural feature to miti-
gate failures due to soft errors in power, performance, and cost sensitive embedded processors. A
processor with PPC maintains two caches, one protected and the other unprotected, both at the
same level of memory hierarchy. The intuition behind PPCs is that not all data in the application
is equally prone to soft errors. By finding and mapping the data that is more prone to soft errors
to the protected cache, and error-resilient data to the unprotected cache, failures induced by soft
errors can be significantly reduced at a minimal power and performance penalty. Consequently, the
effectiveness of PPCs critically hinges on the compiler’s ability to partition application data into
error-prone and error-resilient data. The effectiveness of PPCs has previously been demonstrated
on multimedia applications—where an obvious partitioning of data exists, the multimedia data is
inherently resilient to soft errors, and the rest of the data and the entire code is assumed to be
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error-prone. Since the amount of multimedia data is a quite significant component of the entire
application data, this obvious partitioning is quite effective. However, no such obvious data and
code partitioning exists for general applications. This severely restricts the applicability of PPCs
to data caches and instruction caches in general. This article investigates vulnerability-based par-
titioning schemes that are applicable to applications in general and effectively reduce failures due
to soft errors at minimal power and performance overheads.

Our experimental results on an HP iPAQ-like processor enhanced with PPC architecture, run-
ning benchmarks from the MiBench suite demonstrate that our partitioning heuristic efficiently
finds page partitions for data PPCs that can reduce the failure rate by 48% at only 2% performance
and 7% energy overhead, and finds page partitions for instruction PPCs that reduce the failure
rate by 50% at only 2% performance and 8% energy overhead, on average.

Categories and Subject Descriptors: B.3.4 [Memory Structures]: Reliability, Testing, and Fault-
Tolerance

General Terms: Design, Experimentation, Performance, Reliability

Additional Key Words and Phrases: Page partitioning technique, partially protected cache, soft
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1. INTRODUCTION

System reliability is becoming the paramount concern in system design in
the deep submicron era [ITRS 2005]. Four decades of technology scaling has
brought us to a point where the transistors have become extremely susceptible
to even small fluctuations in voltage levels, slight noise in the power supply,
signal interference, and even cosmic particle strikes [Hazucha and Svensson
2000; Wrobel et al. 2001; Shivakumar et al. 2002; Baumann 2005]. All of these
effects can temporarily toggle the logic value of a transistor, so it is therefore
called a transient fault. Such transient faults are random and nondestructive,
that is, resetting the device restores normal behavior. Previous investigation
finds cosmic radiation strikes to be responsible for more transient faults than
all the other reasons combined [Baumann 2005]. A high energy radiation
particle, for example, an alpha particle, a neutron, or a free proton, may strike
the diffusion region of a CMOS transistor and produce charge that can result in
toggling the logic value of the gates or flip-flops. This phenomenon of change in
the logic state of a transistor is called an upset. An upset may have catastrophic
consequences including the application generating incorrect results, accessing
unauthorized memory regions, crashing, or going into an infinite loop. The in-
correct or erroneous behavior of an application due to upsets is called a failure.

Not all upsets result in failures, and upsets can be masked due to effects such
as electrical masking (upset is not strong enough to reach the next latching
element), logical masking (upset on the input of the gate does not affect its
output), latching-window masking (upset does not reach latch at the latching
time), microarchitectural masking (upset happens on a variable that is no
longer used), and software masking (upset happens in a function, whose output
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is not used) [Shivakumar et al. 2002]. An upset will become a failure if it is not
masked by any of these effects.

Owing to the effectiveness of latching-window masking, upsets in memory
elements have significantly higher probability of causing a failure than upsets
in combinational logic [Gaisler 1997; Liden et al. 1994]. In addition, since mem-
ory elements may occupy the majority of the chip area, and the fact that they
operate on lower voltages than combinational circuits, they are extremely vul-
nerable to radiation, and radiation-induced faults. In fact, according to Mitra
et al. [2005], more than 50% of soft errors occur in memories.

The use of error detection code (EDC) like a parity check has been suggested
to protect the caches from soft errors. However, a parity check only detects an
error. While it is possible to employ simple error correction code (ECC)-based
techniques in off-chip and lower levels of memories, such solutions are not
suitable for caches, as they are highly sensitive to the performance and power
overheads of redundancy-based techniques. For example, using single-bit er-
ror correction and double-bit error detection (SEC-DED) codes may increase
the cache access time by 95% [Li and Huang 2005], power consumption by
22% [Phelan 2003], and area cost by 25% [Krueger et al. 2008]. While it may
be possible to hide the performance penalty, it is not possible to hide the power
penalty. Consequently, novel techniques are required for caches that can even-
tually reduce failure rates while incurring minimal power and performance
overheads.

We proposed partially protected cache (PPC) architectures to mitigate fail-
ures due to of soft errors on caches at minimal power, performance, and area
overheads [Lee et al. 2006, 2009]. A PPC architecture has two caches, one
protected against soft errors, and the other unprotected, at the same level of
memory hierarchy. The intuition behind PPC is that not all data is equally
prone to soft errors, and that most of the soft errors show up in a relatively
small amount of application data. Thus by protecting a small amount of data
by a small protected cache, programs can be made robust at minimal power,
performance, and area penalty.

Clearly the effectiveness of PPC architectures is critically hinged on the
compiler’s ability to partition the application data and code into error-prone
and error-resilient data and code. At the microarchitecture level, we use vul-
nerability as the measure of how error-prone a variable is [Mukherjee et al.
2003; Asadi et al. 2005]. Vulnerability of a program variable is essentially the
probability that the occurrence of a soft error in the variable in the cache will
affect the program state, possibly causing a program failure. Estimating the
vulnerability of a program variable is an inherently difficult task, as several
program and microarchitectural factors may have a significant effect on the
vulnerability of the program variable. These include, (1) the access pattern of
the variable, for example, a variable that is not read by the processor, and will
be overwritten, is not vulnerable, (2) the access pattern of the other program
variables, for example, if the other data evicts this variable from the cache, then
it will be in memory, and will not be vulnerable, and (3) cache characteristics,
for example, the size, associativity, write, and allocate policies of the cache can
significantly affect the time a datum is vulnerable in the cache.
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Previously, PPCs have been shown to be extremely cost effective in soft er-
ror protection for multimedia applications. An obvious partitioning of data
into soft error-prone and soft error-resilient data exists in multimedia ap-
plications, wherein the multimedia data itself is quite soft error-resilient.
For example, in an image or video processing application, a soft error in
the image or video data itself only causes a slight degradation in the qual-
ity of service (QoS). In contrast, most other data, for example, loop con-
trol variables, stack pointers, and so on, are not error-resilient. This obvious
partitioning is very effective since the size of the multimedia data is quite
significant.

However, no obvious data partitioning exists for general applications. To
use PPC architectures for applications in general, a data partitioning scheme
that divides application data and code into soft error prone and soft error
resilient is extremely critical. In this article, we examine application profile
to partition the application data and code into error-prone and error-resilient,
enabling the use of PPC architectures for several application-specific embedded
systems.

We find that Monte Carlo exploration is unable to find interesting data
partitions. While Genetic Algorithm can efficiently search the exploration
space, it does not achieve high reduction in vulnerability. Our partitioning
heuristics is aware of runtime and vulnerability, and is therefore able to ef-
ficiently prune the search space and uncover Pareto-optimal partitions. We
propose data partitioning schemes for both data PPC and instruction PPC. Ex-
perimental results on the HP iPAQ h4600-like processor memory subsystem
[Hewlett Packard] running benchmarks from the MiBench suite [Guthaus et al.
2001] demonstrate that data PPC architectures can reduce the vulnerability
by 48% with 2% performance and 7% energy penalty on average. In addition,
instruction PPC architectures can reduce the program vulnerability by 50%
while incurring 2% performance and 8% energy consumption overheads, on
average.

2. RELATED WORK

Radiation-induced soft errors have been under investigation since late 1970s.
Due to incessant technology scaling, soft error rate (SER) has exponentially
increased [Hazucha and Svensson 2000], and now it has reached a point, where
it becomes a real threat to system reliability.

2.1 Packaging Solutions

Radioactive substances such as alpha particles emitted by packaging and wafer
processing materials are one of the major sources of radiation that causes
soft errors in semiconductors. Thus, advances in process technology such as
purification of packaging materials, radiation hardening, and elimination of
Boron-10 (B'°) impurities, are expected to mitigate the soft errors [Baze et al.
2000]. However, the effects of interactions between high energy cosmic parti-
cles (e.g., neutrons) and radioactive materials, cannot be completely prevented
[Mastipuram and Wee 2004].
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2.2 Process Technology Solutions

Process technology solutions such as SOI (silicon on-insulator) pro-
cesses [Musseau 1996; Roche et al. 2003] have been proposed. In order to
mitigate the soft errors, they extend the depletion region or raise the capaci-
tance, which increases the critical charge of semiconducting devices. The crit-
ical charge is the least charge to be able to invert the bit value of the memory
cell. However, process engineering technology may require the cost of addi-
tional process complexity, the loss of manufacturability, and extra substrate
cost [Baumann 2005].

2.3 Microarchitectural Solutions

Microarchitectural solutions attempt to reduce the number of upsets that trans-
late into errors and/or errors that result in failures. Solutions at the microar-
chitecture level can be categorized based on the components where they are
applied: the combinational components, the sequential components, and the
memory components.

Solutions for Combinational Logic. Logic elements were considered more
robust against soft errors than memory elements, mainly due to the masking
effects. However, many researchers predict that the logic soft errors will become
one of main contributions to system unreliability [Shivakumar et al. 2002;
Baumann 2005; Nieuwland et al. 2006]. The simplest and most effective way
to reduce failures due to soft errors in combinational logic is triple modular
redundancy (TMR) [Pradhan 1996], which typically uses three functionally
equivalent replicas of a logic circuit and a majority voter. But the overheads
of hardware and power for conventional TMR exceed 200% [Nieuwland et al.
2006]. Duplex redundancy [Mohanram and Touba 2003; Nieuwland et al. 2006]
is also available but it requires more than 100% area and power overheads
without any optimization techniques. In order to reduce the high overheads in
conventional redundancy techniques, Mohanram and Touba [2003] presented
a partial error masking by duplicating the most sensitive and critical nodes in
a logic circuit based on the asymmetric susceptibility of nodes to soft errors.
Nieuwland et al. [2006] proposed a structural approach analyzing the soft
error rate sensitivity of combinational logic to identify the critical components
at circuits.

Solutions for Sequential Logic. Temporal redundancy is another main ap-
proach that has been used to combat soft errors in circuits. In order to detect soft
errors, Nicolaidis [1999] applied fine time-grain redundancy within the clock
cycle, greater than the duration of transient faults, by using the temporal na-
ture of soft errors. Similarly, Anghel and Nicolaidis [2000] exploited the tempo-
ral nature to detect timing errors and soft errors by means of time redundancy.
Krishnamohan and Mahapatra [2004] proposed time redundancy methodology
by using the timing slack available in the propagation path from the input to
the output in CMOS circuits. A razor flip-flop was presented in Ernst et al.
[2003] to detect transient errors by sampling pipeline stage values with a fast
clock and with a time-borrowing delayed clock.
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Solutions for Memories. By far, reducing soft errors in memories has been
the most extensive research topic. Error detection and correction codes (EDC
and ECC) have been widely investigated and implemented as the most effective
scheme to detect and correct soft errors in memory systems. However, an ECC
system consists of an encoding block as well as a decoding block responsible
for detection and correction, and of extra bits that store parity values. Thus,
ECC-based techniques consume extra energy and incur performance delay as
well as additional area cost [Pradhan 1996; Phelan 2003; Li and Huang 2005;
Krueger et al. 2008], and are therefore not suitable for caches. Thus, only a few
processors, such as the Intel Itanium processor [Quach 2000] protect L2 and L3
caches with ECC [Stackhouse et al. 2008], but we are not aware of any proces-
sor employing an ECC-based protection mechanism on L1 cache in resource-
constrained embedded processors. This is mainly due to high overheads of ECC
implementation [Kim 2006; Mohr and Clark 2006; Zorian et al. 2005]. Zhang
et al. [2003] proposed in-cache replication where the dead cache block space
is recycled to hold replicas of the active cache block. Also, Zhang [2005b] pre-
sented replication cache where a small fully associative cache is added to keep
the replica of every write to the L1 data cache. However, these techniques incur
overheads to maintain replicas. A cache scrubbing technique [Mukherjee et al.
2004] has been proposed, which can fix all single-bit errors periodically and
prevent potential double-bit errors. Li et al. [2004] evaluated the drowsy cache
and the decay cache, exploiting voltage scaling and shutdown schemes, respec-
tively, in order to efficiently decrease the power leakage. They also proposed an
adaptive error correcting scheme to different cache data blocks, which can save
energy consumption by protecting clean data less than dirty data blocks. Kim
[2006] proposed the combined approach of parity and ECC codes to generate
the reliable cache system in an area-efficient way. However, they all exploit
expensive error correcting codes in order to unnecessarily protect all the data.

Recently, Sugihara et al. [2007] proposed reliable cache architectures (RCA),
in which the cache methods are configured to control reliability and perfor-
mance, and they presented a task scheduling method to dynamically switch
these operation modes between the performance and reliability in cache archi-
tectures of multiprocessor systems. Sugihara also presented task schedulding
for heterogeneous multiprocessor systems, and demonstrated that a hetero-
geneous multiprocessor is more reliable than a homogeneous one in terms of
soft error vulnerability [Sugihara 2008]. However, their RCAs are configured
to switch operation modes at a task level among multiple tasks in multiproces-
sor systems while our partitioning techniques partition data and instructions
into physically separated multiple caches within a task at a page level. Fur-
ther, their constraint is a real-time requirement, that is, their task scheduling
is satisfactory with 1.6 and 3.0 times longer runtimes than a conventional
cache [Sugihara et al. 2007], while ours considers the minimal performance
overhead, that is, only 5% runtime penalty is allowed.

Partially Protected Cache Architecture. We proposed PPC architecture and
demonstrated its effectiveness in reducing the failure rate with minimal power
and performance overheads [Lee et al. 2006; 2009]. However, the effectiveness
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of PPCs has been limited to only multimedia applications; there is no known ap-
proach to use PPCs for both data and instruction caches in general applications.

2.4 Software Solutions

Software-only techniques have been studied to protect data and code from soft
errors. Both software and hardware techniques have their own advantages and
disadvantages in combating the impact of soft errors. For example, hardware
techniques increase the resource cost, but with high effectiveness indetecting
and even correcting errors while software solutions mostly do not incur hard-
ware costs, but provide minimal coverage, for example only error detection.

Reis et al. [2005a] presented software-implemented fault tolerance (SWIFT)
for soft error detection by exploiting unused resources and enhancing control-
flow checking. Also, Lucchetti et al. [2005] proposed software mechanisms to
tolerate soft errors by leveraging virtual machine and memory sharing tech-
niques. However, they are limited to detecting errors, and must be used in
conjunction with recovery techniques. Through user-specified annotations, the
compiler can separate and map data elements in programs either to a reliable
domain that has protection techniques against soft errors, or to an unreliable
domain without protection [Chen et al. 2005]. But it requires annotation for
important data by user specification.

Soft error detection in software is extremely expensive in terms of delay,
while it can be done without much overhead in hardware. In contrast, since the
soft error rate is very low (as compared to the processor clock cycle), soft error
correction is efficient in software but incurs too much overhead in hardware.
Consequently, a combined approach that achieves the best of both hardware
and software solutions is very efficient. Reis et al. [2005b] proposed a software-
hardware hybrid suite named CRAFT (CompileR Assisted Fault Tolerance)
combining a software-only approach, SWIFT (Software Implemented Fault Tol-
erance), with a hardware-only approach, RMT (Redundant MultiThreading).
The CRAFT approaches are promising alternatives since they can trade off
performance, reliability, and hardware costs between software-only approaches
and hardware-only approaches. Hu et al. [2005] proposed a hardware-software
hybrid approach, which duplicates instructions directed by compilers and sup-
ported by architecture such as register and address queues. The performance
and reliability of this proposal are located between no duplication and full
duplication for error detection in VLIW architectures. However, both hybrid
techniques are for soft error detection rather than for soft error correction.

PPC architecture with software page partitions is promising as a joint
solution of hardware-software techniques for error correction in resource-
constrained embedded systems. The compiler separates the failure-critical and
failure-noncritical data and maps each of them into the two caches in a PPC
for the selective data protection technique in multimedia applications [Lee
et al. 2006; 2009]. However, there is no partitioning technique for general
applications.

Our Contribution. This article investigates the software challenges in using
PPCs. The contribution of this article is in developing techniques to utilize
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Unprotected Cache [ | i
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Pipeline E Y
Protection E
Overhead '
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Fig. 1. Partially protected cache architecture: a protected cache and an unprotected cache at the
same level of hierarchy.

PPC architectures for general applications and establishing PPC as an effective
microarchitectural solution to mitigate failures due to soft errors, not only for
data caches but also for instruction caches.

3. PARTIALLY PROTECTED CACHES AND PROBLEM DEFINITION

In a processor with partially protected cache (PPC), the processor has two
caches at the same level of memory hierarchy. As shown in Figure 1, one of
two caches is protected from soft errors, while the other is unprotected. Any
soft error protection mechanism can be implemented in the protected cache, for
example, increasing the thickness of the oxide layer of the transistors in the
cache, or adding redundancy logic like SEC-DED (single-bit error correction
and double-bit error detection). To keep the access latencies of the protected
cache and the unprotected cache the same, the protected cache is typically
smaller than the unprotected cache.

Each page in the memory is mapped exclusively to one of the caches in a PPC
architecture. The page mapping is set as a page attribute by the compiler. The
mapping of the pages present in the cache resides in the translation lookaside
buffer (TLB). On a cache access, first a TLB lookup is performed to find out if
the page is present in the cache, and if so, in which one. Thus, only one cache
lookup is performed per cache access.

While PPC architectures can be very effective in reducing the failure rate
with minimal performance and power overheads, the effectiveness hinges on
the ability to partition the application data and code between the two caches.
To demonstrate the need and effectiveness of page partitioning to reduce the
failure rate, we performed a small experiment. First we mapped all the ap-
plication pages to the unprotected cache, and then moved the pages to the
protected cache one by one. Figure 2 plots the failure rate at each step of this
exploration for benchmark susan corners from the MiBench suite on a modified
sim-outorder simulator from SimpleScalar [Burger and Austin 1997] to model
a HP-iPAQ like system. To estimate the failure rate, we injected soft errors on a
randomly selected bit at data caches for each execution of the benchmark at an
SER of 10~!! per KB per instruction for single-bit errors. Each execution is de-
fined as a success if it ends within twice the normal execution time and returns
the correct output. Otherwise, it is a failure. The failure rate is calculated as
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1 Failure Rate (Susan Corners)

Normalized Failure Rate (LOG)

B o B B e B
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The number of pages mapped into the protected cache

Fig. 2. Failure rate reduction by moving pages from the unprotected cache into the protected
cache one by one in a PPC.

the ratio of the number of failures to the number of runs. Figure 2 shows that
the failure rate of the application drops rapidly as pages are moved from the
unprotected cache to the protected cache. Note that the y-axis is logarithmic
and the failure rate of each mapping is normalized to the failure rate of the
default mapping, where all the application pages are mapped into the unpro-
tected cache in a PPC in Figure 2. However, the pages have to be carefully
moved to the small protected cache, as it is small; mapping too many pages
to the small cache may increase the cache misses and result in a significant
degradation of performance and increase in the energy consumption. Indeed,
the performance can decrease by up to 27% for susan corners when all pages are
mapped to the 256 byte protected cache as compared with mapping all pages
to the 4 KB unprotected cache in a PPC. So there is a definite need to study
the tradeoff between the failure rate and performance (energy consumption) in
finding the partitions for PPC architectures.

Therefore, the partitioning problem is a multiobjective optimization problem,
in which we need to reduce the failure rate at minimal performance degrada-
tion, and minimal increase in the energy consumption. Since, even medium
sized applications use a large number of data pages, our benchmarks were
selected from the MiBench suite [Guthaus et al. 2001] access 27-95, on aver-
age 56 pages. Owing to their exponential complexity, enumerative techniques
(e.g. trying all the possible page partitions and picking up the best one) do not
work.

We formulate our problem as: Given an allowable performance degradation,
determine the page partitioning to minimize the failure rate at minimal energy
penalty.
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CacheAccess (cmd, addr, nbytes, now)

01: if (CACHE_MISS)

02:  VDS.doEvent(E, evictLine.getAddr(), lineSize, now, evictLine.isDirty())
03: now += CACHE_MISS_PENALTY

04:  VDS.doEvent(I, addr.getAddr(), lineSize, now)
05: endIf

06: if (¢cmd == READ)

07:  VDS.doEvent(R, addr, nbytes, now)

08: else

09: VDS.doEvent(W, addr, nbytes, now)

10: endIf

Fig. 3. Modified cache access function.

4. VULNERABILITY: MICROARCHITECTURAL METRIC FOR FAILURE RATE

To efficiently choose pages to be mapped to the protected cache, we need a
metric to quantitatively compare page partitions in terms of susceptibility to
soft errors. Previous studies [Mukherjee et al. 2003; Asadi et al. 2005; Zhang
2005a; Wang et al. 2006] have tried to formulate such an estimate. The most
closely related one is the critical time metric in Asadi et al. [2005]. However,
they loose accuracy by computing the metric at a word level, and they have
not demonstrated the accuracy of their approach. To partition the data into the
protected and unprotected caches in a PPC, we use the metric of vulnerability,
based on the critical time metric in Asadi et al. [2005], while we estimate the
vulnerability at a byte level and consider more comprehensive events in the
caches (e.g., an eviction event). We observe that if an error is injected into
a variable that will not be used, the error does not matter. However, if the
erroneous value will be used in the future, then it will result in a failure. Thus
data is defined to be vulnerable for the time it is in the unprotected cache
until it is eventually read by the processor or written back to the memory.
If data will be overwritten, or if it will not be written back to the memory
(typically because it is not dirty), then it is not vulnerable. Figure 3 shows the
modifications required to the cache access function to compute the vulnerability
in an execution.

We consider four cache events, Incoming (I), Read (R), Write (W), and Evic-
tion (E). All the cache events are registered in the VDS (vulnerability data
structure). In case of a cache miss, only if the evicted line is dirty (line 02 in
Figure 3), an eviction event for the whole line will be registered in the VDS. The
incoming line will register an incoming event (line 04), while read and write
events will be registered on a cache read and a cache write, respectively (lines
07, 09).

What happens in each event is described in Figure 4. For each event, the
event and the time stamp on each byte are updated (lines 03, 05, 09, 11, 15, 16,
20, 25). The variable, cv, computes the cumulative vulnerability of each byte.
When a byte is read, the elapsed time from the last event to this read is added
to cv (line 11). However, when a byte is written, the time from the last event to
this write event is ignored.

When a byte is evicted from the cache, if the byte is dirty, it will be written
back into the memory, and therefore the time from the last event to this eviction
is added to cv (line 23). However, if this line is not dirty and if this line will
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doEvent (event, addr, nbytes, now, dirty)
01: if (event ==1)
02:  for (i = 0;4 < nbytes; i + +)

03: V DSladdr + i].event = I
04: V DSladdr + i].cv_le =0
05: V DS[addr + i].time = now

06: endFor
07: else if (event == R)
08: for (i = 0;¢ < nbytes; i + +)

09: V DSladdr + i].event = R
10: V DS[addr + i].cv+ = now — V DS[addr + i].time
11: V DS[addr + i].time = now

12:  endFor
13: else if (event == W)

14: for (i = 0;¢ < nbytes; i + +)
15: V DS[addr + i].event = W
16: V DS[addr + i].time = now

17: endFor
18: else if (event == E)

19:  for (i = 0;i < nbytes;i + +)

20: V DS[addr + 1] t=F

21: V DS[addr + i].cvle = V. DS[addr + i].cv

22: if (dirty)

23: V DS[addr + i].cv+ = now — V DS[addr + i].time
24: endIf

25: V DS[addr + i].time = now

26:  endFor

27: endIf

Fig. 4. Update vulnerability on each event.

ComputeVulnerability (VDS)
01: for (addr = 0;addr < |VDS]|; addr + +)
02:  if (VDS[addr].event == E)

03: vul+ = V DS[addr].cv_le
04: else

05: vul+ = V DS[addr].cv
06: endIf

07: endFor

08: return vul

Fig. 5. Compute the vulnerability of an application by adding byte vulnerabilities.

not be brought into the cache again, then the time from the last event to
this eviction should not be considered (line 21). Since whether the line will be
brought back into the cache or not is unknown, this value is maintained in a
separate variable cv /e, which denotes the vulnerability of the byte after an
eviction, assuming that it will not be brought back into the cache. If it is later
brought into the cache, the variable is set to zero on a byte incoming event (line
05).

The final computation of the vulnerability of an application is computed
after the end of the simulation, which is described in Figure 5. The application
vulnerability is the sum of the vulnerabilities of each byte. Only if the last
event on a byte was an eviction, the cv_e is added (line 03). Otherwise, cv is
added (line 04).

To validate our idea of using vulnerability as a failure rate metric, we simu-
lated the susan corners benchmark for various L1 cache sizes. Figure 6 plots the
vulnerability and the failure rate obtained by the simulations. The failure rate
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Fig. 6. Vulnerability is a good metric for estimating failure rate.

is calculated in % by multiplying by 100, the number of failures divided by the
total number of runs, and the vulnerability is measured in cycles from the mod-
ified SimpleScalar sim-outorder simulator for the benchmark. Figure 6 shows
that the shape of the vulnerability closely matches the failure rate curve. Other
applications also show similar trends. On average, the error in predicting the
failure rate using the vulnerability metric is less than 5%. In this article, we use
vulnerability as the metric to estimate the failure rate, and perform automated
design space exploration to decide the page partitioning between the two caches
of a PPC. Note that the main benefit obtained from the vulnerability metric
other than this design space automation is that we can save exploration time
as compared to estimating the failure rate by simulation-based enumerative
techniques.

Then we need a strategy to find pages causing high vulnerability of an ap-
plication and to map them into the protected cache in a PPC architecture. We
have developed a simple strategy, which (1) profiles a vulnerability for each
page, and (2) explores the partition by moving a page with the highest vulner-
ability among the remaining pages in the unprotected cache to the protected
cache. Simple experiments have been performed to observe the impact of page
mappings on the vulnerability and the runtime. Figure 7 shows the vulnera-
bility reduction when each page is mapped from the unprotected cache to the
protected cache in a PPC in descending order of page vulnerability, as shown
in Figure 2.

However, reducing vulnerability can be contrary to performance improve-
ment. For example, to reduce the vulnerability of data, it should not remain
in the cache for long. It is better to evict and reload the reused data to re-
duce the vulnerability, but this may degrade performance. Figure 7 shows the
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Fig. 7. Vulnerability and runtime with an increase of mapping pages into the protected cache.

trade-off between vulnerability and the runtime. Page partitions can incur sig-
nificant runtime overheads while reducing vulnerability. Therefore, there is
a fundamental trade-off between performance improvement and vulnerabil-
ity reduction in page partitions for PPC architectures. Thus, our partitioning
heuristics will find the interesting partitions while moving pages with higher
vulnerability than the others from the unprotected cache to the protected cache,
one by one under the performance constraint.

5. PARTITIONING TECHNIQUES

In this section, we present two traditional page partitioning techniques (Sec-
tion 5.1), and our heuristic partitioning techniques (Section 5.2) for PPC archi-
tectures.

5.1 Traditional Page Partitioning Techniques

Our first attempt was to apply generic search algorithms, (1) Monte Carlo
method (MC), and (2) genetic algorithm (GA), to explore the solution space. We
represent a page mapping by an N bit number, such that if the i* bit of the
page mapping is 1, then the i** page is mapped to the protected cache in a PPC.
Thus, the page mapping 00..0 represents the default case, when all pages are
mapped to the unprotected cache, and the page mapping 11..1 represents the
case when all pages are mapped to the protected cache.

5.1.1 Monte Carlo Method. Monte Carlo (MC) algorithms are nondeter-
ministic simulation methods, which usually exploit pseudorandom numbers.
They are widely used in simulations with a large number degrees of freedom
and uncertainty. For each exploration in the MC method, we generate each
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PPExplore (rPenalty, eWidth, pCount)

01: pageMap0 = 0...0

02: < runtime, power, vulnerability >= simulate(pageMap0)
03: config0 = (pageMap0, runtime, power, vulnerability)

04: for (k = 0; k < eWidth; k + +)

05:  bestConfigs.insert(config0)

06: endFor

07: for ()

08: newBestConfigs = bestConfigs

09: for (i = 0;¢ < eWidth;i + +)

10: for (j = 0;j < pCount;j + +)

11: testConfig.pageMap = addPage(newBestCon figs[i].pageMap, j)

12: < runtime, power, vulnerability >= simulate(testCon fig.pageMap)

13: if (runtime < config0.runtime x w

14: if (vulnerability < newBestCon figs[0].vulnerability)

15: newBestCon figs.insert(testCon fig.pageMap, runtime, power, vulnerability)
16: endIf

17: endIf

18: endFor

19: endFor

20:  for (i = newBestConfigs.length(); i > eWidth;i — —)

21: newBestCon figs.delete[i — 1]

22: endFor

23:  if (newBestConfigs[0].vulnerability < bestCon figs[0].vulnerability)

24: bestConfigs = newBestConfigs
25: else break;

26: endIf

27: endFor

Fig. 8. PPExplore: an exploration algorithm for page partitioning.

bit of the page mapping, 0 or 1, with pseudorandom numbers. Through the
simulation, the page mapping is then evaluated with respect to vulnerability,
performance, and energy consumption. We then consider the sequence with
minimal vulnerability under the runtime constraint.

5.1.2 Genetic Algorithm. Genetic algorithms (GA) are adaptive search al-
gorithms using evolutionary ideas such as mutations and crossovers (recombi-
nation). Initially, we form a randomly generated sequence, representing a page
mapping. At each successive generation, the superior sequences in terms of the
vulnerability under the performance constraint are selected as the evolution-
ary page mappings through the simulation, where vulnerability, performance,
and energy consumption are evaluated. In order to generate the next sequence,
we implemented two GA operations, for example, mutation and crossover oper-
ations. For the mutation operation, a simple pseudorandom number indicates
whether each bit in a sequence is modified or not. For the crossover operation,
one point is selected in the current sequences and they are swapped on page
mappings to the next generated sequences. Then we consider the sequence with
least vulnerability under the runtime constraint.

5.2 Customized Page Partitioning Techniques

Our page partitioning techniques employ the vulnerability metric to estimate
the failure rate, and they are customized to find a page partition with minimal
vulnerability under the runtime constraint.

5.2.1 PPExplore—Page Partitioning Exploration. Figure 8 outlines our
PPExplore partitioning algorithm, which starts from the case when no page
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is mapped to the protected cache (all pages are mapped into the unprotected
cache) which is the default case. In each step, pages are moved from the un-
protected cache to the protected cache, each partition is evaluated, and the
best page partition in terms of the vulnerability reduction under the runtime
penalty is selected to be mapped into the protected cache in a PPC. Our page
partitioning algorithm uses two parameters: (1) allowable runtime penalty
(rPenalty), and (2) exploration width (eWidth), that is, how many partitions are
maintained as best configurations for the whole exploration. PPExplore uses
pCount, the number of pages in a benchmark, and searches for page mappings
that will suffer no more than the specified runtime penalty, while trying to
minimize the vulnerability. PPExplore maintains a set of best page mappings
found so far (line 05) in bestConfigs, sorted in order of the vulnerability. After
initialization, the algorithm goes into a forever loop in line 07. It takes each
existing best solution and tries to improve it by mapping a page to the protected
cache, and by evaluating a new page map in terms of runtime, power, and vul-
nerability (lines 11 and 12). If the new page mapping is better than the worst
solution in terms of vulnerability in the newBestConfigs with runtime satisfied,
then the new page mapping is inserted in the ordered list (newBestConfigs) ac-
cording to the vulnerability (lines 13—17). The loop in lines 09—-19 is one step
of exploration. After each step, the new set of page mappings is trimmed down
to the exploration width (lines 20-22). The termination criterion of the explo-
ration is when an exploration step cannot find any better page mapping. In
other words, no page can be mapped to the protected cache to improve vulnera-
bility (lines 23, 25) under the runtime penalty. Otherwise, the global collection
of the best page mappings are updated (line 24).

PPExplore is very effective in eventually finding interesting partitions with
minimal vulnerability, since it explores all the possible page partitions by mov-
ing one page at each step from the beginning.

5.2.2 qPPExplore—quick PPExplore. Our PPExplore is effective in finding
the interesting partitions but its complexity is O(mN!), where N is the number
of pages to be explored and O(m) is the complexity of a simulation to evaluate
a page partition. PPExplore is expensive since at each step PPExplore tries all
possible partitions by mapping a page from the remaining pages at the unpro-
tected cache into the protected cache, and finds a page partition with minimal
vulnerability among them. On the contrary, the complexity of gPPExplore is
O(mN) as shown in Figure 9 since it selects the partition with the least vulner-
ability among partitions explored by moving a page from the unprotected cache
to the protected cache in descending order of page vulnerability, which satis-
fies the runtime constraint. Note that each page is queued in the descending
order of page vulnerability and thus the page with the highest vulnerability
is mapped into the protected cache at each step. config0 keeps the runtime,
power, and vulnerability when all pages are mapped into the protected cache
in a PPC (lines 01-03). Then, qPPExplore explores a partition by mapping
the page with the highest vulnerability, and selects this partition as the best
(bestConfig) if it satisfies the runtime constraint and it has less vulnerability
than the least vulnerability so far (lines 07-13). It repeats page partitioning
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qPPExplore (rPenalty, pCount)

01: pageMap0 = 0...0

02: < runtime, power, vulnerability >= simulate(pageMap0)

03: config0 = (pageMap0, runtime, power, vulnerability)

04: bestVulnerabilility = vulnerability

05: bestConfig = baseConfig = config0

06: for (j = (pCount — 1);5 > —1;5 — —)

07: baseCon fig.pageMap = addPage(baseConfig.pageMap, j)

08: < runtime, power, vulnerability >= simulate(baseCon fig.pageMap)

09: if (runtime < config0.runtime X W)
10: if (vulnerability < bestV ulnerability)

11: bestConfig = baseCon fig

12: endIf

13:  endIf

14: endFor

Fig. 9. gqPPExplore: a quick exploration algorithm for page partitioning.

and evaluation until all pages are mapped into the protected cache in a PPC
(lines 06, 14).

qPPExplore is efficient in terms of the exploration speed to explore the large
set of page partitions and is also effective in finding interesting partitions with
minimal vulnerability in benchmarks we have studied, as demonstrated in
Section 7.

5.2.3 EPPExplore—Enhanced PPExplore. EPPExplore enhances our ex-
ploration algorithms by combining PPExplore with qPPExplore. PPExplore
begins with exploring partitions from the default case: mapping all pages into
the unprotected cache, as shown in lines 01-06 in Figure 8, and tries to im-
prove the vulnerability by finding a page with the minimal vulnerability, which
is effective but slow for exploring a large set of possible partitions. However,
at the initial step, EPPExplore applies qPPExplore to find the best partition
in terms of vulnerability under the runtime constraint. From the partition
discovered by qPPExplore, EPPExplore applies the algorithm of PPExplore
to further reduce the vulnerability under the runtime constraint. Figure 10
shows that lines 06 to 14 are from qPPExplore and lines 15 to 38 are from PP-
Explore. EPPExplore can explore the page partitions that may not be explored
by PPExplore, since PPExplore stops exploring partitions further if it no longer
improves the vulnerability. In fact, it is possible to reduce the vulnerability by
mapping multiple pages into the protected cache without significantly degrad-
ing performance, while mapping one page out of the remaining pages from the
unprotected cache to the protected cache in a PPC does not reduce the vulner-
ability. Figure 7 shows this possible scenario; increasing the number of pages
to be mapped into the protected cache does not keep reducing the vulnerabil-
ity, as shown in Figure 7. In particular, EPPExplore discovers the interesting
page partitions first by qPPExplore, and further reduces vulnerability by ex-
tensively exploring partitions with an algorithm in PPExplore. The complexity
of EPPExplore is between the complexities of gPPExplore and PPExplore.

6. SETUP

In order to demonstrate the effectiveness of our page partitioning heuristics in
exploring and discovering the partition with minimal vulnerability at minimal
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EPPExplore (rPenalty, eWidth, pCount)

01: pageMap0 = 0...0

02: < runtime, power, vulnerability >= simulate(page M ap0)

03: config0 = (pageMap0, runtime, power, vulnerability)

04: bestVulnerabilility = vulnerability

05: bestConfig = baseConfig = config0

06: for (j = (pCount — 1);5 > —1;5 — —)

07: baseConfig.pageMap = addPage(baseCon fig.pageMap, j)

08: < runtime, power, vulnerability >= simulate(baseCon fig.pageMap)

09:  if (runtime < config0.runtime X w)
10: if (vulnerability < bestVulnerability)

11: bestConfig = baseCon fig

12: endIf

13:  endIf

14: endFor

15: for (k = 0; k < eWidth; k + +)

16: bestCon figs.insert(bestConfig)
17: endFor

18: for (;;)

19: newBestConfigs = bestConfigs
20: for (i = 0;¢ < eWidth;i + +)

21: for (j = 0;5 < pCount; j + +)

22: testConfig.pageMap = addPage(newBestCon figs[i].pageMap, j)
23: < runtime, power, vulnerability >= simulate(testCon fig.pageMap)
24: if (runtime < config0.runtime X w

25: if (vulnerability < newBestConfzgs[O] vulnerabzlzty)

26: newBestCon figs.insert(testCon fig.pageMap, runtime, power, vulnerability)
27: endIf

28: endIf

29: endFor

30:  endFor

31:  for (i = newBestConfigs.length();i > eWidth;i — —)

32: newBestConfigs.delete[i — 1]

33: endFor
34:  if (newBestConfigs[0].vulnerability < bestCon figs[0].vulnerability)

35: bestConfigs = newBestConfigs
36: else break;

37:  endIf

38: endFor

Fig. 10. EPPExplore: a combined exploration algorithm of qPPExplore and PPExplore for page
partitioning.

power and runtime! penalty, we have built an extensive simulation frame-
work. The application is first compiled to generate an executable. The appli-
cation is then profiled, and the Page Vulnerability Estimator calculates the
vulnerability of each page accessed by the application. The pages are then
sorted according to their vulnerabilities, and then Page Partitioning Heuris-
tics partitions and maps the pages to the two caches in the PPC architecture.
Through the simulations, Page Partitioning Heuristics finds out the page map-
ping with minimal vulnerability under the runtime constraint. Finally, the
executable and the page mapping are provided to the platform, which runs the
application and generates outputs such as runtime, energy consumption, and
vulnerability.

The platform is modeled using sim-outorder simulator from the SimpleScalar
toolchain [Burger and Austin 1997]. The simulation parameters have been set
up so as to model an HP iPAQ h4600 [Hewlett Packard ]-like processor memory

1Here runtime and performance are used interchangeably and represent the number of cycles for
execution of an application.
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Fig. 11. Page partitioning exploration framework for PPC architectures.

system. We model a data PPC architecture consisting of a 4 KB unprotected
cache and a 256 byte protected cache, and an instruction PPC architecture
of a 32 KB unprotected cache and a 2 KB protected cache. Cache parameters
are set with a line size of 32 bytes, 4 way set-associativity, and FIFO (first-in
first-out) cache replacement policy. This model protects one small cache with an
ECC-based technique such as a Hamming code [Pradhan 1996]. The overheads
of power and delay for ECC protected caches are estimated and synthesized
using CACTI [Shivakumar and Jouppi 2001] and the Synopsys design com-
piler [Synopsys Inc. 2001].We assume that our ECC-protected caches in PPC
architectures are optimized to be accessed within one cycle without overheads
in terms of access latency, while ECC-protection incurs energy consumption
overheads.

The SimpleScalar sim-outorder simulator has been modified to include
the vulnerability computation. Thus, the modified sim-outorder returns the
runtime and vulnerability in cycles for each page partition. To estimate the
system energy consumption, we consider the energy consumption of the pro-
cessor (including the processing pipeline and caches) and the energy consump-
tion of the memory subsystem (including 2 off-chip SDRAMs and external
buses). Thus, our model of system energy consumption (E) consists of the en-
ergy consumption of the processing core (E,..), that of the caches (Ecqcpe),
and that of the memory subsystem (Ep.m). Eproc is estimated by multiply-
ing the number of instructions by the power consumption per access, and
E,..r is estimated by multiplying the number of cache misses by the power
overhead per memory access. For the cache energy consumption (E.ucpe), We
detail cache access and cache miss into read_access_hit, read_access_miss,
write_access_hit, and write_access_miss since each operation results in differ-
ent ECC events. For example, the energy consumption of read_access_hit is
the sum of the access energy consumption and the energy consumption of
ECC decoding while the energy consumption of read_access_miss is the sum
of the access energy consumption and the energy consumptions of ECC decod-
ing as well as ECC encoding. So the energy consumption model for the cache is
E.oche = RHxd+RM x(d+e)+WH xe+WM x(d+e) = (RH xd+RM xd+WH x
d+WMxd—WH xd)+(RMxe+WMxe+WH xe) = Axd+M xe+WH x (e —d),
where RH is the number of read accesses and hits, RM is the number of read
accesses but misses, W H is the number of write accesses and hits, WM is the
number of write accesses but misses, A(= RH+RM+ WH +WM) is the number
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of cache accesses, M (= RM + WM) is the number of cache misses, and d and e
are energy consumption of ECC decoding and ECC encoding, respectively.

HP iPAQ [Hewlett Packard ] is a wireless handheld device, and MiBench
is the set of benchmarks that are representatives of applications that run on
wireless handheld devices [Guthaus et al. 2001]. The MiBench suite is therefore
the right set of benchmarks to run on the iPAQ; and we choose them. However,
we pick only those benchmarks in which the runtime difference between the
default case when all data is mapped to the 4 KB unprotected cache, and the
case when all data is mapped to the 256 byte protected cache in the data PPC is
more than 5%. Similarly, we select benchmarks for the instruction PPC. This is
to avoid benchmarks for which only the small protected cache is enough. Note
that although some of the benchmarks in MiBench are multimedia applications
(for which an obvious data partitioning exists), we use our heuristics to partition
the data and instructions of all applications in the selected benchmark suite.

7. EXPERIMENTAL RESULTS

7.1 Comparison of Exploration Algorithms

We bring out the details of exploration using MC (Monte Carlo), GA (genetic
algorithm), and PPExplore with data PPCs over the susan corners benchmark,
when PPExplore is configured for 5% performance penalty, and exploration
width, 2. Figures 12(a) and 12(b) plot the runtime, energy consumption, and
vulnerability of the page partitions searched by MC, GA, and PPExplore. Note
that the y-axis in these graphs—the vulnerability scale—is logarithmic. The
most important observation that we make from these graphs is that PPExplore
searches much more useful page mappings (low vulnerability), as compared to
MC and GA. We allow each technique to explore 1900 page mappings. Thus,
in total there are 5700 page mappings. Of them, only 83 are Pareto-optimal. A
page mapping is Pareto-optimal, if it is no worse than any other configuration
in all three dimensions: runtime, vulnerability, and energy consumption. Out of
these 83 Pareto-optimal page mappings, 68 were first drawn from PPExplore
searches (82%), 12 came from GA (14%), and only 3 were discovered by MC
(4%). This Pareto-optimal observation demonstrates the effectiveness of our
algorithm as compared to MC and GA. The main reason for the effectiveness of
PPExplore as compared to MC and GA explorations is that PPExplore attempts
to explore every possible partition by moving each page in the order of the page
vulnerability, and improves the vulnerability from that of the best partitions
discovered so far. GA explores more interesting partitions in terms of the vul-
nerability than MC, since GA attempts to find better partitions from the best
one so far, while MC always attempts randomly generated page partitions.
Figure 13(a) plots the vulnerability reduction ratio as the exploration pro-
gresses for MC, GA, and PPExplore. Vulnerability Ratio indicates the ratio of
the vulnerability of the default case—all pages mapped into the unprotected
cache—to the vulnerability of the page partition discovered by each exploration
algorithm. A ratio greater than 1 implies the reduction of the vulnerability met-
ric. The plot shows that while MC is ineffective, GA improves vulnerability by
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Fig. 12. Exploration by MC, GA, and PPExplore: PPExplore effectively explores the design space.

about 20 times, PPExplore continuously finds better page mappings, and is
eventually able to reduce vulnerability by about 30 times. Since PPExplore
begins with the default page partition, PPExplore improves the vulnerability
gradually.

We also compare the speed of the various exploration algorithms. Figure
13(b) plots the speed of exploration: the inverse of the number of page partitions
explored to achieve a required vulnerability reduction. The plot shows that MC
is quite ineffective. Between GA and PPExplore, GA is a faster approach when
low reduction in vulnerability is required, but it is unable to achieve high
reduction in vulnerability. This is where our approach is really effective, in
terms of the vulnerability reduction.

Further, we run similar experiments over several benchmarks such as a
multimedia application (djpeg), cryptographic algorithms (rijndael decryption
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Fig. 13. Exploration by MC, GA, and PPExplore: PPExplore is efficient and eventually finds
interesting space.

and sha), and a searching algorithm (stringsearch), from the MiBench suite.
All experimental results demonstrate that our heuristic explorations are more
effective than MC and GA in terms of vulnerability reduction under the run-
time constraint. For example, PPExplore can find the page partition with about
11 times reduction of the vulnerability for 226 explorations with benchmark,
stringsearch, while MC and GA find page partitions with less than 6 times
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Table I. Evaluation of Vulnerability, Runtime, and Energy Consumption Under No Performance
Penalty with Our Partitioning Heuristics for Data PPCs

Vulnerability Reduction (%) | Runtime Overhead (%) | Energy Overhead (%)
Benchmarks PPE qPPE EPPE PPE qPPE EPPE | PPE qPPE EPPE
susan corners || 14.2 6.6 15.1 0.0 0.0 0.0 0.6 0.1 0.1
susan edges 9.8 9.1 20.4 0.0 0.0 0.0 05 -0.1 0.0
djpeg 35.2 20.0 31.9 -0.1 -05 -0.4 12.9 4.8 7.7
rijndael_dec 0.2 96.7 96.7 00 -1.1 -1.1 -04 -10.5 -10.5
rijndael_enc 1.6 0.0 1.6 -0.4 0.0 -04 -3.8 00 -338
blowfish_dec 0.6 0.0 0.0 -0.2 0.0 0.0 -1.3 0.0 0.0
blowfish_enc 0.6 0.0 0.6 -0.2 0.0 -0.2 -14 0.0 -14
fft 14.8 7.7 12.4 0.1 0.0 0.0 2.8 2.4 2.5
sha 21.7 327 21.7 0.0 0.0 0.0 -0.1 02 -0.1
cre 126 975 97.5 0.0 -0.5 -0.5 2.3 1.5 1.5
stringsearch 25.5 0.0 34.7 0.0 0.0 0.0 3.5 00 -0.1
AVERAGE 124 246 30.2 -0.1 -0.2 -0.2 14 -01 -04

*PPE = PPExplore, gPPE = qPPExplore, EPPE = EPPExplore.
**Negative value indicates performance improvement or energy reduction.

reduction of the vulnerability for the same number of explorations as
PPExplore.

In summary, PPExplore is very effective in exploring page partitions and in
finding interesting partitions to reduce the vulnerability with minimal power
and performance overheads for PPCs, as compared to the genetic algorithm
and Monte Carlo methods.

7.2 Effectiveness of Our Heuristics for a Data PPC

We perform two kinds of experiments to demonstrate the effectiveness of our
partitioning heuristics for page mappings into a data PPC for general applica-
tions. All the results in Table I and Table II show the vulnerability reduction
and runtime/energy overheads of page partitions discovered by our heuristics
as compared to those of the default case where all data is mapped into the
unprotected 4 KB cache (no protection on the data cache).

In the first set of experiments, we want to find the page partition with the
least vulnerability without any performance loss (rPenalty = 0%) and explo-
ration width set to 1 (eWidth = 1). Table I shows that PPExplore, qPPExplore,
and EPPExplore find the page partitions for data PPCs, resulting in vulnera-
bility reductions of 12.4%, 24.6%, and 30.2%, respectively. Since the runtime
penalty is set to 0%, the partitions we discovered incur no runtime overhead,
as shown in Table I. Table I shows that the data partitions discovered by PPEx-
plore, qPPExplore, and EPPExplore incur the overhead of the system energy
consumption by less than 1%. Interestingly, we can find partitions for some
benchmarks (e.g., rijndael decryption and crc), which not only reduce the vul-
nerability significantly (by about more than 95%) but also improve the perfor-
mance or the system energy consumption. Note that qPPExplore only explores
the number of data pages, and its average over all benchmarks is about 56,
while PPExplore explores 627 partitions and EPPExplore explores 401 parti-
tions, on average. Thus, under no runtime penalty, EPPExplore is the best in
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Table II. Evaluation of Vulnerability, Runtime, and Energy Consumption Under 5% Performance
Penalty with Our Partitioning Heuristics for Data PPCs.

Vulnerability Reduction (%) | Runtime Overhead (%) | Energy Overhead (%)
Benchmarks || PPE qPPE EPPE PPE qPPE EPPE PPE qPPE EPPE
susan corners || 52.3 31.0 43.7 4.4 3.4 3.4 20.0 26.4 26.9
susan edges 67.3 44.1 52.8 4.0 0.0 0.0 41.4 0.1 5.7
djpeg 98.1 20.0 34.5 0.5 -0.5 2.4 1.9 4.8 42.7
rijndael_dec 99.9 99.9 99.9 3.2 -04 -04 57.0 -3.0 -3.0
rijndael_enc 1.6 0.0 1.6 -04 0.0 —-04 -3.8 0.0 -3.8
blowfish_dec 0.6 0.0 0.0 —-0.2 0.0 0.0 -1.3 0.0 0.0
blowfish_enc 0.6 0.0 0.6 —0.2 0.0 —0.2 -14 0.0 -14
fft 81.5 92.3 94.2 0.0 49 49 8.1 177.5 178.5
sha 53.7 727 77.0 0.1 0.5 0.5 2.1 2.1 2.1
cre 999 975 97.5 -05 -0.5 -0.5 1.5 1.5 1.5
stringsearch || 90.8 75.5 77.6 4.9 4.9 4.9 116.5 1249 130.9
AVERAGE 58.8 48.4 52.7 1.4 1.1 1.3 22.0 30.4 34.5

*PPE = PPExplore, gPPE = qPPExplore, EPPE = EPPExplore.
**Negative value indicates performance improvement or energy reduction.

terms of vulnerability reduction with least overheads of runtime and energy
consumption, and qPPExplore searches the least number of partitions explored.

In the next experiment, we allowed 5% performance degradation and an
exploration width of 1. Table II presents the vulnerability reduction, the in-
crease in runtime, and the increase in the system energy consumption of
the least vulnerable page partitions obtained by PPExplore, gPPExplore, and
EPPExplore. Vulnerability reductions achieved by PPExplore, qPPExplore,
and EPPExplore are 58.8%, 48.4%, and 52.7%, respectively. Unfortunately,
we observe very small vulnerability reductions for benchmarks such as ri-
Jjndael encryption, blowfish decryption, and blowfish encryption. This result
is because some pages are very sensitive to the size of the cache and most
pages do not cause any reduction of the vulnerability when they are moved
from the unprotected cache to the protected cache in a data PPC. No higher
reduction in vulnerability has been observed with any other exploration al-
gorithms such as MC and GA for those benchmarks. Note that qPPExplore
only explores the number of data pages (56) while PPExplore explores 1190
partitions, and EPPExplore 460 partitions, on average over all benchmarks.
Thus, gPPExplore and EPPExplore are very efficient in terms of exploration
speed compared to PPExplore, while PPExplore is best in terms of vulnerability
reduction in this set of experiments. Energy consumption overheads are 22.0%,
30.4%, and 34.5% for PPExplore, qPPExplore, and EPPExplore, respectively,
while the runtime overheads are less than 5% over all the benchmarks. Thus,
even very small runtime degradation allows our heuristics to find page map-
pings that can significantly reduce vulnerability with minimal overheads. Note
that they incur relatively high energy consumption overheads (in particular,
the partitions for fft and stringsearch benchmarks incur more than 100%) since
our heuristics do not restrict the energy consumption overhead. We can trade
off vulnerability for the reduction of energy consumption. The experimental
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Table ITII. Runtime Overheads and Vulnerability Reductions for Different
Data Inputs (Benchmark - Susan Corners)

| Data Input || Runtime Overhead (%) | Vulnerability Reduction (%) |
small (default) 4.4 52.3
balloons 1 0.7 35.6
balloons 2 5.4 51.3
columns 1 1.6 25.2
columns 2 3.6 42.6
feep 1 0.2 64.4
large 1 4.4 57.6
large 2 3.7 26.7
AVERAGE 2.8 43.3

results with EPPExplore when both the energy consumption (10%) and the
runtime (5%) are limited show that vulnerability reduction is decreased from
58.8% to 48.4% at 2.1% runtime overhead and 7.3% energy consumption over-
head, on average.

These experimental results show the effectiveness of PPC architectures and
heuristic algorithms compared to conventional ECC-protected caches. Conven-
tional ECC-protected 4KB data caches can reduce 99%?2 of vulnerability while
they incur about 15% runtime overhead and 11% energy consumption over-
head on average as compared to unprotected 4 KB data caches—the default
case. Thus, PPC architectures with our partitioning heuristics can effectively
trade off vulnerability for performance improvement and energy reduction.

Note that these experimental results are obtained with sample inputs com-
ing with benchmarks and our profile-based page partitioning heuristics works
well if the page mapping of application codes and input data do not change. To
observe the impact of different input data, we ran another set of experiments
for the benchmark susan corners with the best page partition discovered by
PPExplore under the 5% runtime penalty for different data inputs. Table III
shows the effectiveness of our exploration technique on different data inputs.
Other than the default data input (small), the vulnerability reduction for seven
different data inputs ranges from 25.2% to 64.4% and the average reduction is
about 43.3%, which is a little bit less than the vulnerability reduction (52.3%)
with the default input in our experiments. These results show that the page
partitions for data PPCs discovered by our heuristics can reduce the vulnera-
bility not only with simulated data input but also with different data inputs.
Under several different inputs for other benchmarks, we can observe similar
results and also observe less reduction of vulnerability in benchmarks with
different data inputs.

In summary, the best page partitions discovered by our exploration heuristics
(PPExplore) show vulnerability reduction by 48.4% with minimal overheads
of runtime (by 2.1%) and energy consumption (by 7.3%) over benchmarks as

2The vulnerability of an unprotected cache is estimated in vulnerable cycles during execution, and
that of an ECC-protected cache is calculated by multiplying the vulnerability of an unprotected
cache with the ratio between the single-bit soft error rate and the double-bit soft error rate, which
is about 10~2, since our modeled ECC (a Hamming code) corrects only single-bit soft error.
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Table IV. Evaluation of Vulnerability, Runtime, and Energy Consumption Under No
Performance Penalty with Our Partitioning Heuristics for Instruction PPCs

Vulnerability Reduction (%) | Runtime Overhead (%) | Energy Overhead (%)
Benchmarks PPE qPPE EPPE PPE oPPE EPPE | PPE qPPE EPPE
susan corners || 17.9 9.6 15.1 0.0 0.0 0.0 2.8 44 4.4
susan edges 194 8.7 20.3 00 0.0 0.0 2.7 0.3 2.6
dijkstra 731 124 65.2 -0.3 0.0 -0.3 7.0 4.7 4.9
rijndael_dec 11.5 10.8 11.3 0.0 0.0 0.0 1.0 1.0 1.0
rijndael_enc 129 124 12.9 0.0 0.0 0.0 1.0 1.0 1.0
blowfish_dec 21.0 21.0 21.0 0.0 0.0 0.0 2.0 2.0 2.0
blowfish_enc 20.9 20.9 20.9 0.0 0.0 0.0 2.0 2.0 2.0
fft 9.5 8.6 9.5 0.0 0.0 0.0 0.9 0.7 0.8
stringsearch 154 14.2 15.4 0.0 0.0 0.0 0.1 0.1 0.1
AVERAGE 224 13.2 21.3 0.0 0.0 0.0 2.2 1.8 2.1

*PPE = PPExplore, qPPE = qPPExplore, EPPE = EPPExplore.
**Negative value indicates performance improvement.

compared to the default case when all data is mapped into the unprotected
cache. Our exploration heuristics effectively expand the applicability of data
PPCs in general.

7.3 Effectiveness of Our Heuristics for Instruction PPC

To explore the page partitions for instruction PPCs, we employ PPExplore, gPP-
Explore, and EPPExplore under no performance penalty and 5% performance
penalty. For this set of experiments, PPExplore and EPPExplore are config-
ured with exploration width of 2. In these experiments, we added benchmark
dijkstra instead of djpeg, crc, and sha since they show less than 5% runtime
difference between the default case when mapping all instructions into the 32
KB unprotected cache and the case when mapping all instructions into the 2
KB protected cache in an instruction PPC. Under no runtime penalty, Table IV
shows that PPExplore discovers the page partitions for instruction PPCs with
22.4% reduction of vulnerability at a cost of 2.2% energy consumption with no
runtime overhead as compared to the default case, qPPExplore discovers them
with 13.2% reduction of vulnerability and 1.8% energy consumption overhead,
and EPPExplore discovers them with 21.3% reduction of vulnerability and 2.1%
energy consumption overhead, on average. Under 5% runtime penalty, Table V
shows that the page partitions discovered by PPExplore reduce the vulnera-
bility by 49.9% with 1.9% overhead of runtime and 8.2% overhead of energy
consumption, the page partitions discovered by qPPExplore reduce the vulner-
ability by 26.6% with 0.5% runtime overhead and 3.5% energy consumption
overhead, the page partitions discovered by EPPExplore reduce the vulnera-
bility by 49.6% with 2.3% runtime overhead and 12.9% energy consumption
overhead. In terms of the efficiency (i.e., the number of partitions explored),
while qPPExplore evaluates about 56 partitions (the average number of in-
struction pages among benchmarks), PPExplore evaluates 681 partitions and
1,457 partitions, and EPPExplore explores 593 and 1,299 partitions, under no
performance penalty and under 5% performance penalty, respectively. Thus,
gPPExplore is the most efficient, and EPPExplore explores fewer partitions
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Table V. Evaluation of Vulnerability, Runtime, and Energy Consumption Under 5%
Performance Penalty with Our Partitioning Heuristics for Instruction PPCs

Vulnerability Reduction (%) | Runtime Overhead (%) | Energy Overhead (%)
Benchmarks PPE qPPE EPPE PPE qPPE EPPE | PPE qPPE EPPE
susan corners || 48.5 9.6 48.0 4.0 0.0 5.0 16.2 4.4 34.4
susan edges 23.1 8.7 23.3 0.0 0.0 0.1 3.0 03 4.9
dijkstra 98.8 96.2 98.0 0.6 2.6 2.7 99 144 14.6
rijndael_dec 374 10.8 36.8 0.4 0.0 0.4 1.7 1.0 2.7
rijndael_enc 341 124 34.1 0.4 0.0 0.4 1.7 1.0 2.7
blowfish_dec 70.9 29.5 70.9 1.6 0.1 1.6 7.8 2.3 12.7
blowfish_enc 70.8 295 70.8 1.6 0.1 1.6 7.8 23 12.7
fft 19.1 8.6 18.4 4.7 0.0 4.6 14.1 0.7 14.4
stringsearch 46.5 342 46.5 4.3 1.7 4.3 11.3 4.8 16.7
AVERAGE 499 26.6 49.6 1.9 0.5 2.3 82 35 12.9

*PPE = PPExplore, gPPE = qPPExplore, EPPE = EPPExplore.

than PPExplore while finding the effective pages in terms of vulnerability re-
duction close to those of PPExplore. However, the partitions discovered by PP-
Explore are the most effective in terms of vulnerability reduction with minimal
overheads of runtime and energy consumption.

These experimental results show that our partitioning heuristics for instruc-
tion PPC architectures can effectively trade off vulnerability for performance
improvement and energy reduction. Conventional ECC-protected instruction
caches with the size of 32KB incur about 12% performance overhead and 23%
energy consumption overhead as compared to the default case while they can
reduce 99% vulnerability. The partitions for instruction PPCs discovered by our
heuristics can improve vulnerability by about 50% while incuring less overhead
of performance and energy consumption than the conventional ECC-protected
caches.

In summary, the results that our heuristics obtain are very effective since the
instruction PPCs with page partitions discovered by our heuristics can reduce
vulnerability by about 50% with less than 2% performance overhead and 8%
overhead of the system energy consumption. Our page partitioning heuristics
effectively expand the applicability of PPC architectures for instruction caches
as well as for data caches.

7.4 Sensitivity of Vulnerability Reduction

We also studied the effectiveness of vulnerability reduction with our heuris-
tics by varying the allowable performance penalty and the exploration width.
Figure 14(a) shows that as we increase the exploration width from 1 to 10
with PPExplore, the vulnerability reduction increases with the benchmark
stringsearch, on data PPCs. Note that this experiment limits the runtime
penalty to 0% and is very effective (up to 99% vulnerability reduction under no
performance penalty). However, increasing the exploration width can increase
the number of partitions explored by up to eWidth times more than the case
with exploration width 1.
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Fig. 14. Sensitivity of exploration width and performance penalty to vulnerability reduction.

Figure 14(b) shows that as we increase the allowable performance penalty,
from 1% to 10%, the vulnerability reduction of benchmark susan corners, on
instruction PPC increases. Note that allowing a greater performance penalty
in our heuristics incurs more overhead in terms of performance and energy
consumption. However, this performance penalty parameter can increase the
effectiveness of finding interesting partitions with least vulnerability, as shown
in Figure 14(b).

In summary, when increasing the exploration width and the allowable run-
time penalty in our heuristic algorithms such as PPExplore and EPPExplore,
increase of vulnerability reduction has been observed in most benchmarks for
instruction and data PPCs. Thus, we can definitely trade off exploration time
for vulnerability reduction of applications.

8. SUMMARY

Owing to incessant technology scaling, soft errors, especially in caches, are
becoming a critical design concern for the reliability of embedded systems.
Partially protected cache (PPC) architecture has been proposed as an effective
microarchitectural means of improving the system reliability with minimal
power and performance penalty for resource-constrained embedded systems.
However, the challenge is in partitioning pages among the two caches in a PPC.
While page partitioning schemes have been proposed for multimedia applica-
tions, there is no page partitioning scheme for data PPCs not for instruction
PPCs in general. The page partitioning space is huge, and existing random
techniques are unable to identify and explore the page partitions that lead to
low vulnerability. In this article, we develop page partitioning heuristics such
as PPExplore, qPPExplore, and EPPExplore at design time that effectively
and efficiently find page partitions resulting in, on average, 48% reduction in
vulnerability (failure rate) at only 2% performance and 7% energy penalty for
data PPCs, and 50% reduction in vulnerability at only 2% performance and 8%
energy penalty for instruction PPCs over benchmarks.

The main contribution of our partitioning heuristics is that they increase the
applicability of PPC architectures and establish PPC as the hardware/software
hybrid solution of choice to improve the reliability of cache-based architectures.
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Our future work includes intelligent schemes to improve the page partitioning
in PPCs and dynamic schemes to relocate page partitions at runtime. Also,
we plan to investigate partitioning techniques for more than two caches with
different levels of protection for PPC architectures.
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