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Abstract-This paper addresses quality vs. cost tradeoffs in 
multisensor pervasive spaces. Specifically, we focus on a case 
study that uses location sensing in instrumented pervasive spaces 
executing a variety of applications ranging from social network­
ing to surveillance and security. Location sensing is vital in 
creating effective situational awareness for mission critical ap­
plications, e.g. localization of firefighters and rescue personnel in 
emergency response scenarios as well as general purpose location 
based services. While advances in GPS and other technologies 
have enabled high quality outdoor localization, the realization 
of accurate indoor location technologies is significantly more 
complex. We present a generalized indoor localization framework 
that composes inputs from multiple localization technologies in a 
quality-aware manner so as to meet the accuracy/cost demands 
of diverse applications. 

I. INTRODUCTION 

Advances in embedded computing, networking, and related 

information technologies allow the creation of Instrumented 

Pervasive Spaces that deploy a variety of sensing devices, 

communication networks and IT services in the real world. 

Such IPS enable monitoring of the state of the physical world, 

its artifacts (including humans), as well as activities within this 

world. The resulting pervasive spaces offer numerous benefits 

by making it feasible to realize applications where wherein 

the system observes its own state (including humans and 

other objects) to dynamically adapt itself based on its current 

situation to offer new functionalities or bring unprecedented 

improvements in efficiencies to real-world tasks. Of particular 

interest are pervasive environments where human activities and 

interactions are monitored to support decision making tasks. 

Such applications include surveillance, critical infrastructure 

protection, personalized environments, social networks and 

smart spaces. The Responsphere infrastructure at DC Irvine 

is one such instrumented pervasive space; it consists of of 

a variety of sensors (video cameras, sensor mounted mobile 

robots, people counters, RFID, acoustic sensors, thermal and 

gas sensors) dispersed over approximately a third of the 

campus connected via a variety of network and communication 

technologies (802.11, cellular, mesh, and powerline networks). 

Responsphere is already used to implement variety of perva­

sive applications and functionalities within DCI. For instance, 

using a mixture of video and RFID technologies it has been 

used to implement social policies for the use of shared 

common facilities in campus buildings (kitchens, labs); it has 

been used to study social experiments on artifact usage, as well 

as to conduct and monitor a variety of emergency drills (such 

978-1-4244-5328-3/10/$26.00 ©2010 IEEE 81 

as building and region evacuations). Enabling cost-effective 

and high quality data collection from sensors will improve the 

functionality and QoS of the deployed applications; however, 

there exist several challenges in its realization and deployment. 

Continuous multimodal sensing requires significant network 

and storage resources. Capturing activities using sensors, e.g. 

video sensors, may violate the privacy of the target individuals 

in the space. Data captured from sensors may be erroneous due 

to inherent imprecision of the sensing devices and dynamicity 

of the underlying sensing and communication infrastructure. 

The goal of data collection service is to efficiently capture 

information from the various sensors/data producers at desired 

levels of accuracy and granularity in order to meet the informa­

tion quality, timeliness and reliability needs of data consumers 

given storage and communication constraints. 

This paper explores the notion of quality-aware data col­

lection in multisensor pervasive spaces via one specific case 

study, localization in instrumented pervasive spaces, where 

cost vs. quality tradeoffs are inherent. Localization is an 

important task in pervasive applications; it is a fundamental 

service used for target tracking, monitoring individuals, pro­

viding location based services etc.. Localization technologies 

have been extensively researched and developed resulting 

in a multitude of indoor and outdoor location systems. For 

outdoor localization, GPS technology is currently the de facto 

standard - it enables a cheap, robust solution for a majority of 

location based services. On the other hand, indoor localization 

mechanisms are more complex to design since they (a)depend 
on structural characteristics of the building, (b )differ in terms 

of levels of accuracy and precisions they can achieve, (c )have 

varying deployment and operational costs, e.g. the level of in­

frastructure support required, and (d) pose inherent limitations 

in diverse settings (e.g., sunlight in IR based mechanisms). 

In this paper, we outline an general extensible localization 

framework that enables seamless fusion of multiple localiza­

tion technologies. Such a framework will support the needs of 

multiple applications that need indoor and outdoor localiza­

tion. Consider, as an example, the special needs of firefighters, 

rescue personnel and the emergency response community 

in general. Location sensing is amongst the most vital and 

important needs for creating effective situational awareness 

in firefighter settings; various studies have established a need 
for such technology for fire fighter safety during search and 

rescue operations. Any general-purpose localization frame­

work should encompass three aspects. First, it must be able 



to accomodate the plethora of localization technologies that 

have been developed, such as GPS, GSM, Wi-Fi, Ultrasound, 

UWB, Inertial sensors, IR, etc. These technologies differ in 

many aspects - operational costs, infrastructure requirements, 

levels of accuracy they can achieve, efforts needed to calibrate 
and use the technology, etc.[?] For instance, Wi-Fi based 

localization requires little new infrastructure (assuming that 

the structure in which localization is to be implemented 

is already instrumented for networking), and coupled with 

significant training and calibration using fingerprinting/scene 

analysis could lead to accuracy levels of about 2-3 meters. 

UWB technology, on the other hand, can provide significant 

accuracy, and unlike WI-FI fingerprinting approach can be 

rapidly deployed; however, it is expensive and also requires 

appropriate placement of outdoor base units which may not 

be feasible in all situations. 

Secondly, the framework must address diverse location 

query needs that come from different applications. Location 

queries of interest could range from simple position queries 

(e.g., "where am I?") that request specific (either absolute or 

relative) location information or Boolean queries that evaluate 
a boolean predicate based on location of entities. An example 

of a Boolean query of particular importance for firefighters are 

proximity queries(e.g., "are the members of a firefighter com­
pany within a specified range of each other?"). Note that most 

location based queries can be appropriately answered if ac­

curate location information is available for every target/entity, 

meaningful results for a large class of queries does not require 

accurate localization of every entity involved. For instance, 

proximity queries can still be meaningfully answered even 

though the location technology might not provide accurate 

location information for all individuals. 

Finally, interesting design tradeoffs arise based on the 

distributed nature of computing localization information - i.e. 

where the location query originates (at a centralized server, or 

on a mobile device), where the location information is com­

puted (at the server or on the located object itself), and who 

needs the localization to be performed (the located object or a 

different entity). For instance, GPS receivers use triangulation 

to compute their location, the GPS satellites and corresponding 

infrastructure are oblivious to who needs that information. The 

choice of how, where and for whom localization information 

is computed has numerous implications on factors such as 

privacy, power consumption, timeliness, etc. Tradeoffs and 

design choices can be made in determining design choices 

for indoor localization. 

Proposed Framework: The key observation on which our 

localization framework is based is that localization applica­

tions can often tolerate different levels of quality (since no 

technology can localize perfectly is ubiquitously available, 

applications typically have to be designed to accomodate such 

quality degradations). The notion of quality here is multi­

faceted and refers to properties such as precision/accuracy, 

confidence in the location accuracy, timeliness of the location 

information, etc. Likewise, we wish to exploit knowledge 

of which technologies work well in specific situations to 
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combine/fuse localization mechanisms to improve the overall 

localization performance. For instance, Wi-Fi fingerprinting 

based location information can be coupled with techniques 

such as signal strength analysis to more accurately locate 

targets. Indeed such fusion techniques have been explored in 

the past e.g., coupling inertial sensing with UWB to improve 

on the localization accuracy [?]. 

The goal of our framework is two folds: (i) develop a 

generic approach whereby diverse location technologies can 

be fused together to meet the diverse needs of the location 

applications (e.g., different location queries), (ii) to enable 

such location fusion to occur in a cost-effective manner. 

Location applications/queries can use our proposed framework 

in two complementary fashions. The first approach would be 

to identify the best answers (with least uncertainty) given 

the total cost budget. An alternate formulation would be 

to minimize cost to produce results, if possible, at a given 

level of qUality. Cost metrics can be defined to subsume a 

variety of operational and deployment factors. In this paper, 

we describe an initial prototype of such a framework and use 

it to integrate a variety of scene analysis approaches (Wi-Fi 

based and Bluetooth based localization technologies among 

many others). We have experimented with combining such 

technologies for direct localization queries in the context of 

fire fighter drills within our CS Building (Bren Hall); our initial 

results show significant accuracy in distance estimation. 

II. INFORMATION QUALITY IN LOCALIZATION 

Every location-based application or service requires a cer­

tain accuracy and a certain precision to correctly carry out 

its task. For instance, intelligent transportation applications 

such as routing assistance requires position information whose 

errors cannot exceed 15-20 meters. To determine whether a 

person is at work, it would be sufficient to know if whether 

he or she is inside a building or not. Robotic control appli­

cations may require that the positioning error not exceed a 

few millimetres. The quality of location information can be 

expressed using two concepts: accuracy and precision [?]. The 

accuracy is the average distance between the actual and the 

computed position of a generic located object. The precision 

is a percentage value which indicates how often we can expect 
to get a certain accuracy from a measurement. For example, 

cheap GPS receivers can locate positions within 10 meters 

95% of the time. These two attributes cannot be analysed 

separately, and every location system must find a satisfying 

trade-off between them. In this section we try to formalize 

the problem of localization in the broadest and most generic 

fashion, to meet the needs of most applications that express 

their location needs via a querying framework. The following 

is a taxonomy of location query types: 

1) Absolute location queries: these queries require the sys­

tem to output an absolute value for the target's location. 

Applications may specify a bound on the accuracy of the 

answer, e.g. "Where am I (with 100 meters accuracy)?". 

2) Relative location queries: this addresses situations in 

which users are not interested in absolute positions. 



To correctly answer the query "How far am I from 

firefighter F?" - it may be unnecessary to obtain absolute 

location information (based on available technologies). 

3) Absolute boolean queries: in this case the boolean pred­

icate is used to check the relationship between targets 
and fixed location or regions, e.g. "Is firefighter F in 

building B?". 

4) Relative boolean queries: relative location can be impor­

tant when checking the status of a group of targets, e.g. 

"Are John and Jane within 10 meters from each other?". 

In other words, queries can express precision constraints and 

certainty parameters as inputs. Furthermore, location queries 

are usually submitted specifying, either implicitly or explicitly, 

a proper answer set. For instance, the query "In which room 

am I?" explicitly indicates a symbolic answer set, whose 

elements are the different rooms in a considered environment. 

On the contrary, the simplest natural language location query, 

"Where am I?" does not contain that information. However, 

since a query must specify either a granularity value or region, 

these values must refer to a specific answer set. 

III. LOCALIZATION FRAMEWORK DEFINITION 

In this section, we develop a generalized localization frame­

work in which any location technique can be modeled as 

a generic location component. The main purpose of such a 

framework is to answer location queries with the best trade­

off between accuracy, precision and cost, choosing the fittest 

location technology or the best combination of technologies 

for each query. We now present elements of our framework. 

A. Location components 

In our framework, we characterize the different location 

technologies as location components. Components are able 

provide non-boolean, uncertain answers among a defined an­
swer set, which is the space of the possible query answers. It is 

reasonable to assume that all components' outputs are on the 

same answer set, since they are collaborating to solve the same 

query. For example, a physical absolute coordinate system 

«(latitude, longitude, height) represents the most obvious 
choice. This assumption might not be correct if, for instance, 

we start considering location components which can output 

a relative location. For the sake of simplicity we will now 

focus on components which share the same answer set, which 

are called homogeneous components. Non-homogeneous com­

ponents will be further briefly discussed. The input set is 

the space of input data that localization components need 

to actually compute their answers. To model granularity and 

uncertainty of answers, a component should actually output 

a probability mass function (pm/) on the answer set. A valid 

query solution could then be extracted from such function. 

Definition (nondeterministic component) Let A be a count­

able set and :F the space of all pmfs on A. A nondeterministic 
component is a function CD-->.r(A) being D a generic input 

domain. Let's assume that I = c(d) 
• D is called input set 
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• A is called answer set 
• VA * � A is called answer subset 
• if A * is an answer subset: 

- gAO = IA* I is called granularity or accuracy of the 

subset 

- PA°,j = L I(a) is called I-certainty or 1-
aEA* 

precision of the subset 

Definition (homogeneous components) Given two nondeter­

ministic components CD-->.r(A) and c' D' -->.r(A'), they are said 

to be homogeneous if A == A'. 
A component can be qualitatively compared to other compo­

nents on the base of the trade-off between cost and efficacy. 

We define the two properties cost and selectivity [1] of a 

component. The cost information is modeled as a per-input 

cost. In other words, it is a measure of computational effort to 

output the pmf, given a certain element of the input set. Such 

cost can be considered to be not dependent on the specific 

formulated query. Given a location query, the selectivity of a 

component is the probability that it will not manage to output 

a valid answer for that query. This property is directly query­

dependent; it can be estimated by choosing a query samples 

and noting if the component execution is successful. 

B. Location queries 

Queries can be solved by components in relation to a certain 

input d. Answers given by components can be valid answers 

for a certain query or not, e.g. the requested precision bounds 

may not be satisfied, or answer granularity is too coarse. 

Definition (query) Let A be an answer set. Then, 

• a simple query q on A is a tuple (gq,Pq) such that gq E 
N,pq E JR, 0 � Pq � 1. gq is called granularity of q. Pq 
is called certainty of q. 

• a boolean query b on A is a tuple (A�,pq) such that 

A� � A, Pq E JR, 0 � Pq � 1. Aq is called region of q. 

Pq is called certainty of q. 

Definition (query satisfaction) Let 

• D be an input set 

• A be an answer set 

• q = (gq, pq) be a simple query on A 
• b = (A�,pq) be a boolean query on A 
• cD-->.r(A) be a component 

• I = c(d) where d E  D. 
Then, 

• q is said to be satisfied by c with input d iff 3A * � A 
such that (gAO � gq) 1\ (PA0,j � pq) 

• b is said to be satisfied by c with input d iff 3A * � A 
such that (A� � A*) 1\ (PA*,j � pq). 

The output of a component indicates how probability is 

distributed among answers, according to that component. The 

pm! can cover several answer subsets which meet the the query 

parameters. 



Example Let's consider the following function f: 
f(h) = 0.6;f( l2) = 0.3;f(h) = o.I;f(x) = 0, Vx 1:- h, l2, l3 
where h, l2, h E A. Let q be a simple query (gq = 3, Pq = 

0.8) on A. Both the answer subsets (h, l2) or (h, h, h) fit the 

query parameter. 

Given an answer subset A *, the ratio � represents the 

average probability of the single answers 
9i� the subset. The 

subset to look for is the one which maximizes this ratio. 

Definition (best answer subset) Given an answer space A 
and a pmf fA-+�. A best answer subset for f, according to 

a query (gq, pq) on A is a subset Abest � A such that: 

1) gAo 5:. gq (granularity acceptability) best 
2) PA* ? Pq (certainty acceptability) best 
3) VA* C A � > � (maximum cer-- ' 9Abest 9A* 

tainty/granularity ratio) 

Example The answer subset ratios are: 

• For subset A' = (h, l2) , � = 
0.61°·2 

= 0.45. 9A' 
• For subset A" = (l l l ) � 

= 
0.6+0.2+0.1 

= 0.333. l,2,3' 9A" 2 

C. Component Aggregation and Status Networks 

This section deals with the composition rules for compo­

nents, discussing a structure to link components and to com­

bine their capabilities. We explore two methods using which 

diverse localization components can be merged together for the 

purpose of properly answering location queries - (a) pipelined 

execution and (b) parallel evaluation. Pipelining is useful to 
split a technology into a pipeline of stages with increasing 

efficacies and costs. For example, in Wi-Fi fingerprinting, the 

basic nearest neighbor approach [2] can be refined with more 

techniques exploiting directional information [3]. A pipeline 

of technologies can be used to progressively refine estimates as 

new information becomes available. The answer coming from 

the last stage of the pipeline includes information from all the 

previous stages. Parallel evaluation can be used to enhance 

accuracy. When two or more technologies used in combination 

yield the same result, the outputs can be combine to obtain 

an aggregate estimate providing increased confidence in the 

result. In other words, a greater precision will be achieved. 

We combine these two orthogonal composition methods into 

a component graph called status network. In the most general 

situation, we consider a set of pipelines, each of which may 

have a different number of components. Assume that we have 

N pipelines with respectively h,··· , IN components. The 

status network is defined by its nodes and its edges. The set of 

nodes, called statuses, is S = {O, . . .  , h} x ... x {O, . . .  , IN}' 
Each status is actually a vector of integer values, the i-th 

values representing which version of i-th pipeline has been 

evaluated. For what concern edges, given a certain status 

s = (81 ," ' ,8 N), its following statuses are the elements 

of the set Fs = {f = (/1,'" ,fN) l::Ii E 1···N s.t. 

8i < fi 1\ 8j = fj Vj 1:- i}. An oriented edge is assumed 

to be established from s to s', Vs E S, Vs' E Fs. 
The designed framework is a broad generalization of the 
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multi-version predicate framework designed by Lazaridis and 

Mehrotra in [1]. Figure 1 shows a graphical representation of 

component pipelines and the correspondent status network. 

�8 
8 

Fig. I. A two-component pipeline and a one-component pipeline (LHS), and 
the resulting status network (RHS) 

During the query solution process, each status will output 

a pmf consistent with the components which have been 

evaluated so far. The output of the start status (0,··· ,0), 
when no components has been evaluated yet, can be defined 

as a uniform probability distribution on the answer set. This 

directly proceeds from the fact that there are no clues about the 

target's location, so each answer is as good as any other. What 

is missing is a way to combine the contributions of different 

components, i.e. a way to aggregate pmfs in a consistent way. 

As briefly indicated before, parallel use of different loca­

tion components can provide a precision-enhanced answer. 

Components which are evaluated in parallel output different 

pmfs which must be combined to obtain a global answer. 

The problem is similar to the probability aggregation problem 

studied in probabilistic risk analysis where in the presence of 

limited information, decision-makers and risk analysts usually 

turn to judgments coming from different experts/sources [4] 

to obtain as much information as possible. One may use a 

straightforward Bayesian updating scheme to merge results 

from different sources [5]. Let Pi(i = 1"" , n) denote expert 

i's stated probability that 0 occurs. Expressed in terms of the 

posterior odds of the occurrence of 0, q* = 1��* the model 

is defined as follows: 

* Po rrn fli(Pilq = 1) 
q = 

1 - Po i=l fOi(Pilq = 0)' 

where fli (fOi) represents the probability of source i gen­

erating probability Pi conditional on the occurrence (non­

occurrence) of 0 and Po denotes the prior probability p( 0 = 1). 
Since in our case we are dealing with a probability mass 

function, the single computed probabilities will have to be 

normalized to make sure that the aggregation function still 

meets the pmf requirements (i.e. the values sum up to 1). 

Thus, the final aggregation formula is: 
q* � 

* l±q; Pj = N q�' 
Lj=l Ii7 

J 

pj indicating the aggregated probability of the j-th answer of 

the answer set, and N being the answer set cardinality. 
So far, we made the assumption that all the components 

which form a certain network share the same answer set. In 



the following the problem of using components with different 

answer sets is addressed by defining the concept of translator. 

Definition (translator) Given two answer spaces A and B, 
let :FA and :F B be the spaces of all pmfs on A and B 
respectively. A translator from A to B is a function tFA-':FB. 

In practice, such a function will have to be implemented 

for a certain transition from an answer set to another (e.g. 

mapping symbolic places to geographical coordinates). Since 

they output a pmf on a specific answer set, the translators can 

be treated like components, therefore they can be inserted into 

the status network to be evaluated. 

IV. EVALUATING LOCALIZATION QUERIES 

Given the formalization and definitions above, we now focus 

on finding a way to properly choose the most suitable location 

components to answer a query while minimizing the total 

cost of the operation. Our solution leverages a prior technique 

used in database query optimization [1] that generates optimal 

query plans to evaluate multi-version predicates which are 

sequences ("trains") of selection predicates with increasing 

selectivity (m) and cost (c); this work shows how the cost of 

predicate evaluation can be reduced by utilizing cheaper, but 

less accurate, versions of the predicates to pre-filter tuples. 

The optimal generalized plan generation algorithm proposed 

in [1] can be adapted to our problem with non-deterministic 

localization components where the status network happens to 

be a generalization of the predicate train. We propose a novel 

algorithm, called EOGP (Extended Optimal Generalized Plan). 

Extended Optimal Generalized Plan: The defined status 

network is more specifically a directed acyclic graph with one 

start and one terminal. Each edge represents the execution of a 

specific component starting from a specific status. Therefore, 

following a certain edge means to evaluate a certain com­

ponent knowing which other components have already been 

evaluated. As a consequence, the cost of following a certain 

edge is given by the per-input cost of the component, times 

the number of inputs which are expected not to be filtered by 
the edge source status. As a result, not only the selectivity of 

each component, but in general the selectivity of each status 

has to be estimated. 

Consistently with what stated in [1] a certain component per­

input cost might not be constant. A pipe lined component 

could exploit the results previously outputted by the pipeline, 

reducing the cost of computing its pm! This concept can be 

modeled actually putting the costs on the status network edges 

instead of directly associating them with the components. 

Definition (conditional cost) Given an edge est of a net­

work, and being s and t respectively the source and the 

destination statuses of est. the conditional cost of est is 

Cst = m:Cst, where m: is the status selectivity of s and 

Cst is the shared cost of the edge est. 
All the edges of a network can now be marked with their 

conditional costs. Since a path on the status network can be 

mapped to a sequence of components, the total cost incurred 
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by a sequence is the sum of the conditional costs on its path's 

edges. This means that the less expensive path from start to 

terminal identifies the less expensive component sequence. The 

problem is equivalent to the single-pair shortest path problem 

solved by 
Dijkstra [6]. 

Algorithm 1 Extended Optimal Generalized Plan 

Require: N etwork,start,terminal {a status network, its start node 
and its tenninal node} 

Ensure: S {the sequence of status on the minimum cost path} 
1: for aU status s in network do 
2: dist[s] +- 00 

3: previous[s] +- undefined 
4: end for 
5: dist[start] +- 0 
6: Q +-the set of all statuses in Network 
7: while Q #- 0 do 
8: s +- status in Q with smallest condCostD 
9: Q +- Q \ {s} 

10: for ail sibling t of s, where t has not yet been removed from 
Q do 

11: alt +- dist[s] + condCost(s, t) 
12: if alt < dist[t] then 
13: dist[t] +- alt 
14: previous[t] +- s 
15: end if 
16: end for 
17: end while 
18: S +-empty sequence 
19: s +-terminal 
20: while previous[s] #- undefined do 
21: insert s at the beginning of S 
22: s +- previous[s] 
23: end while 
24: return S 

The runnin§ time of this algorithm is known to be 0(1812 + 

lEI) = 0(181 ) where 8 is the network nodes set and E the 

edges' set. 

V. IMP LEMENTATION AND EVALUATION 

The proposed framework was implemented and evaluated in 

the Responsphere (http://www.responsphere.org) multisensor 

infrastructure at UCI. Figure 2 illustrates a basic schematic of 

the implemented framework with several simple localization 

techniques that have been adapted to fit in the framework (Le. 

to provide probabilistic answers). Components involving the 

following localization techniques were implemented: 

1) the Wi-Fi fingerprinting-based component exploits de­

ployed WLAN access points using a database matching 

technique to localize targets. This technique involves a 

nearest-neighbor search on a data space of previously 

collected signal strength readings (fingerprints) [3]; 

2) the GPS-based component takes the coordinates pro­

vided by a GPS receiver and uses them to build a 

truncated Rayleigh distribution based on the accuracy 

value provided by the receiver itself [7]; 

3) the Bluetooth-based component is a simple anchor-based 

proximity localization system. This component outputs a 

uniform truncated pmf around fixed Bluetooth anchors; 



Localization query 1- Accuracy ( 1mt? 100 mt?) 
- Precision ( 75% ? 95% ? ) 

Fig. 2. Localization framework general architecture 

4) the speech recognition-based component consists of a 

simple natural language parser was written to extract 

location information from recognized speech. These 

information are used to retrieve pmfs which were pre­

viously written and which are stored in a database; 

5) the accelerometer-based component uses previously cal­

culated pmfs as a prior. Movement information coming 

from an accelerometer are also used to better exploit 

location information from the past. 

The whole localization system has been developed in two tiers: 

(1) the client tier, running on N95 devices, is made of a Python 

script and several Nokia packages to access the hardware 

modules of the smartphone. This script periodically inquires 

the device modules for information about the status of the Wi­

Fi network, GPS receiver and all the input data needed by the 

components which might be available at every instant; (2) the 

server tier, which hosts all the business logic of the framework. 

All the framework modules were implemented inside SATware 

[8] , a middleware for pervasive spaces developed at UCI, 

which offers a support for mobile software agents communi­

cation amongst many other features. Several components and 

the aggregation algorithm were incorporated in a number of 

SATware mobile agents. SATware middleware is suitable to 

host the defined localization system, because the modularity of 

the framework, defined formally, is preserved. During the tests, 

communication between the client and the server was carried 

out using the WLAN capabilities of the device: all collected 

information were packed in a UDP datagram and sent to the 

server. Quantitative tests for the selectivity estimation process 

and the pmf aggregation technique have been carried out 

using Wi-Fi fingerprinting and Bluetooth-based components 

and are briefly described in the following. The testbed for the 

experiments was the UCI-ICS Bren Hall building. To test in 

real-time the answers given by components the demo GUI has 

been created. The results obtained using the Bluetooth-based 

component and the Wi-Fi component are shown respectively 

in figure 3(a) and in figure 3(b). The plotted surfaces show 
how selectivity varies with certainty and granularity. The 

volume bounded by the selectivity surface can vary from 0 
(every possible query always satisfied) to 100 . 100 (every 
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possible query never satisfied). The lower is the surface­

bounded volume, the higher is the efficacy of the component 

in the query solving process. Figure 3(c) shows that the two 

components aggregated in our localization framework allow 

to provide a better accuracy/precision answer. 

--- --

--

Fig. 3. Estimated selectivities of the single test components (a) Bluetooth, 
(b)Wi-Fi fingerprinting and their aggregation 

Discussiou aud Future Research Directious: We plan to 

extend our current framework design in many ways. First, 

we plan to expand the repertoire of base level localization 

algorithms into the framework. E.g., implementation and in­

corporation of particle filtering methods, incorporation of iner­

tial sensors. Second, we will explore techniques to effectively 

incorporate multimodal input such as speech as a localization 

methodology into the framework. Third, we will explore a 

range of options to combine diverse localization mechanisms 

into a localization strategy. While we have estimation tech­

niques incorporated into the framework, current approaches 

are somewhat ad-hoc and also developed at coarse granularity 

(e.g., quality is considered for an algorithm at an average in the 

aggregate sense). Better estimation mechanisms are expected 

to result in better (fasterlhigher quality) answers. Finally, we 

will address a variety of application needs manifested through 

diverse query types. 
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