
Energy-aware Complexity Adaptation for Mobile Video
Calls

Haiyang Ma†, Deepak Gangadharan‡, Nalini Venkatasubramanian§,
Roger Zimmermann‡

† Graduate School for Integrative Sciences and Engineering,‡ School of Computing
†‡National University of Singapore, Singapore

§ Dept. of Computer Science, University of California, Irvine
§nalini@ics.uci.edu

†‡{haiyang,gdeepak,rogerz}@comp.nus.edu.sg

ABSTRACT

High energy consumption has become a challenge for multi-
media applications on mobile platforms. We propose a cross
layer framework that integrates complexity adaptation and
energy conservation for mobile video calls. First we select
the most utility-aware encoding and decoding parameters
for videos of different motion levels through extensive offline
profiling and analysis. Then we design a feedback algorithm
to adaptively apply different coding parameters while moni-
toring the system performance online during a video call. To
minimize energy consumption, we utilize Dynamic Voltage
and Frequency Scaling (DVFS) for the CPU and buffered
transmissions for the network. Our experimental results
show an effective saving on energy consumption, with on
average 52% savings on the CPU and 30% on the wireless
network, while still maintaining high quality service.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; C.4 [Performance of
Systems]: modeling techniques

General Terms

Algorithms, Design, Experimentation

Keywords

Energy-use optimization, adaptation, mobile video calls

1. INTRODUCTION
In recent years we have witnessed the explosive increase

and widespread adoption of mobile devices such as smart-
phones and tablet PCs as entertainment hubs where multi-
media applications have been emerging as a dominant usage
pattern. For such applications sufficient processing power

∗
Area Chair: Pal Halvorsen

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
MM’11, November 28–December 1, 2011, Scottsdale, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0616-4/11/11 ...$10.00.

needs to be provided and a specific level of QoS (Quality of
Service) should be sustained. As a result, they pose huge
burdens for mobile devices with only constrained resources
such as battery capacity, memory and processing capability.

Recently video calling has been introduced into mobile
platforms, which we refer to as Mobile Video Calls, such as
Apple’s FaceTime. Compared with traditional multimedia
applications, mobile video calls entail both an encoder and
a decoder in simultaneous execution on energy-consuming
hardwares such as CPU, graphical display, wireless network
interface card (NIC) and integrated camera. Therefore mo-
bile devices are more susceptible to fast draining of the bat-
tery and severe degradation in QoS. While past research has
concentrated on workload reduction for either an encoder or
a decoder, complexity adaptation of dual coding algorithms
on mobile platforms has not been explored yet.

We propose an integrated framework based upon com-
plexity adaptation and energy conservation for mobile video
calls. We explore the complexity-quality design space for
MPEG-4 [1] through detailed profiling and choose the most
utility-aware coding parameters with regard to the video’s
context changes in a mobile scenario. We design a feedback-
based adaptation mechanism where execution conditions of
coding work, such as video quality, buffer size, coding delay,
etc., are continuously fed back. In this way we manage to
sustain QoS while considerably reducing the workload and
energy consumption of mobile video calls.

2. RELATED WORK
Various methods to reduce the workloads of different func-

tional components of video coding have been proposed. For
the decoder, Peng [6] suggests properly pruning the DCT
data within macroblocks to scale the computational com-
plexity. Ji et al.[5] propose substitution of pixel interpo-
lation modes in motion compensation. The complexity of
the decoder could also be adapted in cooperation with the
encoder, as put forth by Wang et al.[9] who adopt decoding-
complexity aware encoding. For encoding, most research ef-
forts have been devoted to motion estimation scaling. Ji et
al.[4] propose to decrease the search range and motion vector
resolution for complexity reduction. Shafique et al.[7] adopt
a pixel decimation pattern and adaptive stopping criteria.
Zhou et al.[11] propose a fast inter mode decision to curtail
the set of possible coding modes.

Power management for resource-demanding multimedia
applications on mobile platforms has long been an impor-

1313

tant research focus. Some researchers try to minimize en-
ergy consumption on hardware components, such as Cao et

al.[2] who designed a DVFS algorithm for the CPU and,
Tamai et al.[8] who proposed to shorten the working time
of the network card using periodic bulk transfer. Some re-
searchers seek the best tradeoff between QoS and energy
consumption so that battery life can be extended without
sacrificing much service quality. Typical methods include
the one by Yuan et al.[10] who trade off multimedia qual-
ity against energy by leveraging a hierarchy of global and
internal adaptations and, Hsu et al.[3] who utilize scalable
video coding in video streaming service. However, these ap-
proaches either focus on one particular hardware component
or coding functionality, and concurrent encoder and decoder
optimization has not been considered. In contrast, our work
provides a solution for a dual coding scenario with energy
savings contributed by multiple components.

3. SYSTEM OVERVIEW

Encoding Set

Selection
Encoder

Decoding Set

Selection
Decoder

Decision

Module

Decoding

Buffer

Encoding

Buffer

MOBILE DEVICE

Frame

Drop

Module

Threshold

Adaptor

NIC

Control

CPU

Control

camera

display

NIC

CPU

wireless

network

Figure 1: System framework. The white blocks illus-
trate the coding module and the solid arrows show
its workflow. The blue (dark) blocks illustrate the
proposed feedback module with its workflow indi-
cated in dashed arrows.

The structure of our video call system on a mobile device
is shown in Figure 1. The white blocks illustrate the cod-
ing module with its workflow indicated in solid arrows. Like
other video conferencing systems, the coding module has
an encoder and a decoder. The encoder continuously reads
frames from the front-facing camera and encodes them into
a compressed bitstream that is to be transmitted to the re-
ceiver through a wireless network. The decoder, on the other
hand, reads the received bitstream from the network and de-
codes it into complete frames for display on the screen.
The blue (dark) blocks show the feedback module pro-

posed in this paper and the dashed arrows indicate its work-
flow. The feedback module consists of a Frame Drop Mod-
ule that decides when and how to drop frames, a Threshold
Adaptor as well as an Encoding and a Decoding Set Selection
module that decide which coding parameters should be se-
lected for the current frames. The CPU and the NIC Control
Module implement DVFS and buffered transmissions. The
Decision Module controls all other modules’ behaviors. Next
we take a deeper look at the coding module for the work-
load reduction while the control mechanism and algorithm
for the feedback module will be explained in Section 5.

4. VIDEO CODING COMPLEXITY SCAL-

ING
Most video codecs adopt a macroblock-oriented motion

compensation approach and can be decomposed into several
modules. The complexity of each module can be fine-tuned
with different control parameters, generating videos of vari-
ous qualities at different workloads. In order to explore the
quality-complexity (energy) design space, we conducted ex-
tensive experiments and profiled the output and workloads
of the main functional modules with various coding options.
We utilize Xvid, an open source implementation of MPEG-
4, as the video codec for analysis and experiments. We se-
lected ten 150-frame video sequences in QCIF (176x144) for-
mat from a set of standard MPEG test videos1. We ran all
profiling work on the SimpleScalar platform configured with
the MIPS instruction set. The results are discussed in the
following parts separately for the encoder and the decoder.

4.1 Encoder Adaptation
Motion Estimation (ME) is the most computationally in-

tensive component of the encoding process, therefore we fo-
cus on the workload scalability in ME. During motion esti-
mation, the encoder searches through the reference frames,
trying to find a best matching motion vector (MV) for the
current macroblock in terms of minimal pixel SAD (Sum of
Absolute Difference). We define Motion Level MotionL to
be the average SAD between two consecutive raw frames,
and show that video sequences with similar MotionL show
comparatively similar workloads under the same encoding
parameters. For a frame, the workload of the ME module
is controlled by three parameters: the search precision, the
search range and the compensation mode. In Table 1 we list
all the workload reduction options for encoding in MPEG-
4 and there are 12 combinations in total, each of which is
referred to as an encoding set. To select the most appro-
priate encoding set for different videos, we encode the ten
test videos with all encoding options and record the result-
ing complexity and quality. To quantitatively evaluate the
tradeoff between quality and complexity we define a utility
function Util:

Util =
∆COUNT

∆SAD
.

∆SAD, the average percentage by which the final matching
SAD value increases compared to the original approach in
Xvid, serves as the indicator of quality loss due to simplifica-
tion in the ME process. Similarly, ∆COUNT is the average
reduction in the number of performed searches and SAD
computations per macroblock. After processing all videos
we observe that videos with similar motion levels tend to
have similar performances for the same encoding options
and the selected encoding sets fall into three clusters. As a
result, we create three sets L1, L2 and L3 as listed in Ta-
ble 2, which provide the best optimizations for video frames
with high, medium and low MotionL values.

4.2 Decoder Adaptation
Like the encoder, the decoder can also be decomposed into

several components and the receiver may choose to simplify
or ignore some components to decrease the workload. The
primary mechanisms are Huffman Coefficient Discard and

1media.xiph.org/video/derf/

1314

Item Parameter
Search Range original, half range, quarter range
Precision fullpel, half and quarter pel
Coding Mode all, DIRECT and INTER only

Table 1: Available encoding options.

Level Range Precision Mode MotionL
L1 full subpel all high
L2 half fullpel Direct,Inter only medium
L3 quarter fullpel Direct,Inter only low

Table 2: Selected encoding sets for adaptation.

Fullpel Compensation Replacement. To test the efficacy of
these two approaches, we first decode the ten test videos
with the standard decoding process (SDP) where no work-
load reduction measure is taken. We refer to this decoding
set as D0. Then four decoding optimizations are tested,
namely 30%, 50% and 70% Huffman codes drop and Fullpel
MC replacement, respectively. The workloads are measured
as average processor cycles per frame, and ∆WorkRed de-
notes the percentage of the workload reduction compared to
D0. For the decoder, we define the relative quality difference
∆RelQ to be the average PSNR between the output frames
produced by SDP and the complexity reduction measures
mentioned above. An upper bound of 50 dB is set for out-
put frames of identical content. We select four videos from
our test set with different MotionL (grandma: 2.57; lab-

video: 9.91; cityvideo: 19.76; husky : 26.03). The decoding
results of ∆WorkRed and ∆RelQ are depicted in Figure 2.

30% Drop 50% Drop 70% Drop Fullpel MC
0

10

20

30

∆
W

o
r
k
R

e
d

(a) Workload Reduction ∆WorkRed

grandma

labvideo

cityvideo

husky

30% Drop 50% Drop 70% Drop Fullpel MC
0

20

40

60

80

∆
R

e
lQ

(b) Relative Quality ∆RelQ

grandma

labvideo

cityvideo

husky

Figure 2: Workload Reduction ∆WorkRed (a) and
Relative Quality ∆RelQ (b) for different decoding
sets.

We can see from Figure 2 that when dropping Huffman
codes the workload reduction rarely exceeds 5%, while Fullpel
MC can reduce the workload by about 20% on average.
Therefore, we will adopt Fullpel MC as the only workload
reduction approach at the decoder side and refer to this de-
coding set as D1.

5. DECISION MODULE
Algorithm 1 illustrates the workflow of the decision mod-

ule. Once a frame’s coding work has been completed, its
corresponding statistics (execution time, frame size, buffer
queue size, etc.) are sent to the decision module, which keeps
collecting statistics until the GOP size threshold is reached.
Line 6 predicts the motion level for the next GOP based on
the amount and change rate of recent GOPs. Line 7 calcu-
lates the difference between the averaged encoding time of
current GOP frames and the standard encoding time (the
inverse of the frame rate), which is used for motion level
threshold adaptation in lines 9 and 10. Line 8 computes a
similar value for the decoder. Based on the current threshold
and predicted motion level, a proper coding set is assigned
to the encoder and the decoder for the next GOP, as lines 11
to 22 show. We use adaptive instead of fixed thresholds to
maintain a fair use of computational resources in the system.

Algorithm 1 Workflow of Decision Module

1: for each frame do
2: CollectStats(Encoder,Decoder);
3: if !GOP Size Reached then
4: continue;
5: end if
6: MotionL = α × prevMotionL + β × (MotionL −

prevMotionL);
7: ∆EncT ime = EncT ime− StdEncT ime;
8: ∆DecT ime = DecT ime− StdDecT ime;
9: ThreshL = ThreshL + λ×∆EncT ime;
10: ThreshH = ThreshH + λ×∆EncT ime;
11: if MotionL < ThreshL then
12: SetEncoderSet(L3);
13: else if MotionL > ThreshH then
14: SetEncoderSet(L1);
15: else
16: SetEncoderSet(L2);
17: end if
18: if ∆DecT ime/StdDecT ime > θ then
19: SetDecoderSet(D1);
20: else
21: SetDecoderSet(D0);
22: end if
23: FrameDropHardwareControl();
24: ResetStats(Encoder,Decoder);
25: end for

To optimize network usage, the NIC is set to sleep mode
when the buffer is emptied. When frames of a GOP have
been encoded, the NIC is transitioned into working mode to
send and receive data. The frame drop rate is proportional
to buffer occupancy rate BOR and DVFS. The CPU fre-
quency will be adjusted to the next lower or higher level if
BOR is below or higher than some thresholds. If the highest
frequency level has been reached in the previous round and
BOR still remains high, more frames will be dropped and
the coding set will be further lowered.

6. EXPERIMENTAL EVALUATION
We established a video call connection between a server

and a ThinkPad laptop through a WiFi network, which was
measured to have sufficient bandwidth and a negligible loss
rate. The laptop was equipped with a 2.8GHz IntelR©Core 2

1315

Vid. Res. App
EDrop NPSNR EQT

[%] [dB] [ms]

lab
640x360

S 0 33.992 1.24
A 0 34.024 2.12

640x480
S 0 32.768 18.96
A 0.331 32.713 18.92

city
640x360

S 0 28.571 25.04
A 0 29.325 27.36

640x480
S 1.466 28.281 44.04
A 3.864 28.294 51.72

Table 3: Performance comparison at 400kbps with
standard (S) and adaptive (A) approaches.

Duo processor and an IntelR© Wireless WiFi Link 5300AGN
NIC. The processor supports DVFS through the ACPI in-
terface2 at four frequency levels: 0.8GHz, 1.6GHz, 2.13GHz
and 2.8GHz. The energy model for the CPU and the NIC
are derived from prior work. We recorded two 2-minute-
long videos in raw YUV format at resolution 640x480, then
rescaled them to 640x360. The bitrate was fixed at 400kbps.
For the standard approach (S), we set the frequency to the
highest available value (2.8GHz) and sent every frame once
it was encoded. For the adaptive approach (A), DVFS and
buffered transmission are both employed. We performed our
tests five times and the results were averaged. The perfor-
mances are shown in Table 3. Figure 3 shows the energy
consumption of the CPU and the NIC. In Table 3 EDrop,
NPSNR and EQT stand for encoder drop rate, encoder
nominal PSNR and encoder drop rate, respectively.
From Table 3 we observe that the adaptive, energy saving

mode shows comparable performance to the standard mode
(at the highest CPU frequency) while its energy consump-
tion is impressively decreased. With DVFS, the CPU energy
consumption is reduced by 52.04% on average, and NIC en-
ergy is reduced by 30.88% through buffered transmission.

Lab 640x360 Lab 640x480 City 640x360 City 640x480
0

2000

4000

E
n
er

g
y
 (

J)

(a) CPU Energy Consumption

standard

adaptive

Lab 640x360 Lab 640x480 City 640x360 City 640x480
0

100

200

300

400

(b) NIC Energy Consumption

E
n

er
g

y
 (

J)

standard

adaptive

Figure 3: Energy consumption of CPU and NIC.

7. CONCLUSIONS AND FUTURE WORK
We have proposed an integrated framework for complexity

adaptation and energy conservation for mobile video calls,

2www.acpi.info

combining selected encoding and decoding sets for videos of
different motion levels into a feedback algorithm. We also
utilize hardware energy saving techniques such as DVFS for
the CPU and buffered transmissions for the wireless net-
work to reduce the energy consumption while still achieving
satisfactory system performance, which is validated by our
experimental results under two scenarios.

Going forward, we plan to extend and implement the feed-
back mechanism with a holistic decision on the execution
conditions of both participants. Moreover, wireless networks
can be unstable, which may result in frequent data loss and
varied bandwidth. Therefore, error correction and conceal-
ment must be employed.

8. ACKNOWLEDGEMENT
We would like to acknowledge that this research was car-

ried out at the Centre of Social Media Innovations for Com-
munities (COSMIC), sponsored and supported by the Singa-
pore National Research Foundation and Interactive & Digi-
tal Media Program Office, MDA.

9. REFERENCES
[1] ISO/IEC 14496-2:2004 - Information technology – Coding

of Audio-Visual Objects – Part 2: Visual, 2004.

[2] Z. Cao, B. Foo, L. He, and M. van der Schaar. Optimality
and Improvement of Dynamic Voltage Scaling Algorithms
for Multimedia Applications. In 45th Design Automation
Conference, pages 179–184, 2008.

[3] C. Hsu and M. Hefeeda. Achieving Viewing Time
Scalability in Mobile Video Streaming Using Scalable Video
Coding. In 1st ACM SIGMM Conference on Multimedia
Systems, pages 111–122, 2010.

[4] W. Ji, M. Chen, X. Ge, P. Li, and Y. Chen. A Perceptual
Macroblock Layer Power Control for Energy Scalable Video
Encoder Based on Just Noticeable Distortion Principle.
Journal of Network and Computer Applications, 34(5),
2010.

[5] W. Ji, M. Chen, X. Ge, P. Li, and Y. Chen. ESVD: An
Integrated Energy Scalable Framework for Low-power
Video Decoding Systems. EURASIP Journal on Wireless
Communications and Networking, Special Issue on
Multimedia Communications over Next Generation
Wireless Networks, 2010.

[6] S. Peng. Complexity Scalable Video Decoding via IDCT
Data Pruning. In IEEE International Conference on
Consumer Electronics (ICCE), pages 74–75, 2001.

[7] M. Shafique, L. Bauer, and J. Henkel. 3-Tier Dynamically
Adaptive Power-Aware Motion Estimator for H.264/AVC
Video Encoding. In 13th International Symposium on Low
Power Electronics and Design (ISLPED), pages 147–152,
2008.

[8] M. Tamai, T. Sun, K. Yasumoto, N. Shibata, and M. Ito.
Energy-Aware Video Streaming with QoS Control for
Portable Computing Devices. In 14th International
Workshop on Network and Operating Systems Support for
Digital Audio and Video, pages 68–73, 2004.

[9] Y. Wang and S. Chang. Complexity Adaptive H.264
Encoding for Light Weight Streams. In IEEE International
Conference on Acoustics, Speech and Signal Processing,
pages II25–28, 2006.

[10] W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets.
GRACE-1: Cross-layer Adaptation For Multimedia Quality
and Battery Energy. IEEE Transactions on Mobile
Computing, pages 799–815, 2006.

[11] Z. Zhou and M. Sun. Fast Macroblock Inter Mode Decision
and Motion Estimation for H.264/MPEG-4 AVC. In
International Conference on Image Processing (ICIP),
pages 789–792. IEEE, 2004.

1316

