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Abstract.  In this paper, we consider the challenge of designing a reflective 
middleware to integrate multiple autonomous simulation models into an integrated 
simulation environment (multiasimulation) wherein we can model and execute 
complex scenarios involving multiple simulators. One of the limitations of the 
simulators is that they are developed by domain experts who have an in-depth 
understanding of the phenomena being modeled and typically designed to be 
executed and evaluated independently. Therefore, the grand challenge is to facilitate 
the process of pulling all of independently created models together into an 
interoperating multisimulation model where decision makers can explore different 
alternatives and conduct low cost experiments. We aim to build such integrated 
simulation environments by creating a loosely coupled federation of pre-existing 
simulators. We evaluate our proposed methodology via a detailed case study from 
the emergency response domain by integrating three disparate pre-existing 
simulators – a fire simulator (CFAST), an evacuation simulator (Drillsim) and a 
communication simulator (LTEsim). 
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1   Motivation 

In this paper, we consider the challenge of designing a reflective middleware to 
integrate multiple autonomous simulation models into an integrated environment 
wherein we can model and execute complex scenarios involving multiple simulators. 
Modelling and simulation is an important methodology to address a variety of real-
world problems; it offers numerous advantages instead of experimenting with the real 
system itself.  Simulation is cheaper, quicker, and enables what-if analyses for better 
system design [7].  

This is particularly true in domains such as emergency response where response 
plans and methods are validated by simulating disasters and their impact on people 
and infrastructure. A variety of simulators; e.g., loss estimation tools (HAZUS [13], 
INLET [14], CAPARS [15], CFD [12]), fire spread simulators (CFAST [10], CCFM 
[19]), evacuation simulators (DrillSim [9], SDSS [11]), transportation simulators 
(VISIM [17], PARAMICS [18]) etc., that model different aspects of disasters, their 



impacts, and response/mitigation processes have been developed. While these 
simulators are individually important in understanding disasters, their integrated and 
concurrent execution can significantly enhance the understanding of the phenomena 
and interdependencies between multiple aspects of the complex processes. Consider, 
for instance, a fire simulator, CFAST, that simulates the impact of fire and smoke in a 
specific region and calculates the evolving distribution of smoke. Since fire and 
smoke can affect health conditions of individuals in the region of fire, one may wish 
to further study its impact on the evacuation process as captured within an evacuation 
simulator, e.g. DrillSim. Similarly, the progress of fire (captured by CFAST) may 
create infeasible paths/exits for evacuation (as captured by DrillSim). Such what-if 
analyses can significantly improve the understanding of adverse impacts such as 
increase in evacuation times or increased exposure to undesired particulates enabling 
intelligent decision making to improve the response. Not only do we need to 
understand how will fire and smoke distribute in a specific region, we also need to 
plan what traffic routes will people use to evacuate the affected regions, what 
demands will be placed on the hospital services in the region, etc. The individual 
simulation models such as those for studying the impact of fire and smoke need to be 
integrated with those analyzing the traffic movement through the highways and 
arteries of the affected area, and with those analyzing the resource constraints of 
hospital systems among others.  

The need for integrated execution of simulators is well recognized and is the main 
driver of U. S. Department of Defense (DoD) High Level Architecture (HLA) 
initiative [4] which has become the de-facto standard technical architecture for 
military simulations. HLA aims to promote interoperability and reusability among 
simulators. While HLA is suited to developing new simulators that can be easily 
integrated, its broader applicability to combining pre-existing simulators is 
questionable [21].  HLA forces developers to provide a particular functionality or to 
conform to specific standards in order to participate in the integration process; the 
rigid assumptions and limitations on participants makes it difficult to integrate pre-
existing simulators without significant modification (especially in non-military 
domains).  

In this paper, we consider the problem of integration of pre-existing simulators. 
We refer to such an integrated simulation environment as a multisimulation. We aim 
to build multisimulations by creating a loosely coupled federation of pre-existing 
simulators.  We explore a reflective middleware approach to address challenges of 
integrated simulation environments in which interoperability of different simulators 
can be ultimately achieved in a flexible and efficient manner. Unlike the significant 
code rewrite required in the HLA case, our multisimulation framework permits 
individual simulators to maintain their autonomy (i.e. retain their internal 
representations of time/state etc.), thereby avoiding the need for rigid common 
interfaces across simulators.   

This paper is organized as follows. In Section 2, we discuss our multisimulation 
architecture and the main challenges. In Section 3 we discuss our methodology for 
simulation integration that supports the interoperability of multiple existing 
simulation models. In Section 4 we discuss the implementation of our system 
prototype. We evaluate our proposed approach via a detailed case study that integrates 
multiple real world simulators. Finally we draw conclusions. 



2   Multisimulation Architecture 

We propose a reflective middleware architecture (Figure 1) to support the 
development of integrated simulation platforms. Our initial efforts [24] focused on 
using structural reflection [1] to reify (abstract out) the structure of objects and 
components of the underlying simulators.  The base-level consists of the various (pre-
existing) simulators that must be integrated. In the proposed architecture, integration 
of different simulators can be ultimately achieved by using the meta-level for 
specifying/modeling the properties of the different simulators and reasoning about the 
interactions among the different simulators. The meta-level is built on base-level 
simulators; reification of base-level entities yield data structures at the meta-level, 
modified features of these structures that implement the integration are then reflected 
to the base-level. A closer look at the base-level simulators themselves reveals that 
the structural aspects of the simulation application are not merely in the simulator 
code, backend databases and models stored in domain-specific formats contain 
aspects of the simulators that may need to be explored as well. In general, there can 
be many kinds of meta-level entities to cover various integration aspects.   

Given the potential black-box nature of simulators developed by experts in diverse 
domains, we believe that achieving a completely automated plug-and-play integration 
of simulators is a very difficult, if not infeasible challenge.  Our goals are more 
modest– we intend to develop enabling tools that will simplify the task of simulation 
integration with a wide range of simulators that vary in the degree to which they 
expose their interfaces and implementations. Our solution does not require simulator 
developers to adhere to a strict programming interface or conform to particular design 
styles - the ability to flexibly interoperate with multiple simulators is our goal.  

By using the metamodeling capability the model elements that need to be 
integrated can be extracted.  In other words, in our approach, we formulate the 
metamodel that captures concepts of interest using a publish- subscribe mechanism 
for data exchange – here, subscribers (the simulation integration tasks) express 
interest in aspects that they want to observe (implemented by base-level simulators) – 

 
Fig. 1.  Multisimulation Architecture. 



when changes in these monitored aspects occur at the base simulators, the meta-level 
entities receive information or updates of interest via publishers.  A pre-existing set of 
ontology models assist in the matching process for the pub-sub implementation of the 
simulation integration task; these include domain ontologies that are representations 
of knowledge in a well-circumscribed domain.  Interoperability of different simulators 
can be achieved by sharing and understanding the metamodels. Implementing the 
semantic constraints for simulation integration is a human in the loop process which 
results in the annotations that are invisible to base-level computation and are provided 
to the meta-level.  

In contrast to prior work on simulation integration (e.g. HLA) [4], [2], [3], [5], [27] 
in our architecture we do not need to integrate simulations tightly into a common 
framework, but we make it feasible to semi-automatically compose simulation models 
via a looser coupling approach that avoids the need to adhere to a rigid common 
interface, which can hinder leveraging prior work. We explore a reflective 
architecture to address challenges of integrated simulation environments in which 
interoperability of different simulators can be ultimately achieved in a flexible and 
efficient manner while preserving the autonomy of the individual simulators. 

3   Integration Methodology 

In this section, we describe the general structure of our methodology and its 
relevant issues. The complex process of integration is decomposed in several phases, 
and for every phase several tasks are specified, with the strategies to be followed. We 
describe step by step, different phases, making use of an example to make it easy to 
understand.  

Figure 2 demonstrates the basic steps of methodology for simulation integration. 
The first step is to extract metadata from basic simulators and to describe it using 
metamodels. Next is to analyze metamodels to discover inter-dependencies between 
simulators. The first two steps are pre-processing steps that are human-in-loop 
process. When federation runs, meta-level modules ensure the correctness until the 
end of simulation. In the following we describe each step in details.  

3.1 Preprocessing Steps: Extract Simulators’ Metadata and Dependencies 

The first step is to extract simulator-related meta-data and describe it at meta-level 
using metamodels. Metamodels are abstracts of lower-level details of integration and 
interoperability which make the underlying simulator more understandable. Figure 3 
shows our meta-model. There are several key classes in the metamodel: model type, 
actions, model elements (data items) which could be local data or shared data, input 
or output parameters, actions, and constraints. We construct our metamodel using 
UML (Unified Modeling Language). 

Model type includes information about the type of simulation model. In general 
simulators can be categorized into Discrete-event, Agent-based, System dynamics. 
They also can be categorized based on the time management mechanism that they 
employ as time stepped simulators or event based simulators [1, 7]. In time stepped 



simulators, for each execution of the main control loop the simulation time is 
incremented by one quantum of time Δt. In the case of event based simulators, 
execution is driven by an event list, each event has a time stamp (usually causality 
preserving) and the simulation time jumps from one event time stamp to the next 
without representing all the values in between. For example for Drillsim [9] we have 
agent-based and time-step as model type.  

Model elements are the main elements of a simulation and can be captured from 
the interfaces, the source code, or databases. We develop a set of tools to extract the 
simulator information as metamodels from the base-level simulators. Model elements 
consist of simulation model features. Since we are interested in structural reflection, 
currently we only use structural features which include classes and attributes. We may 
also take behavioral features into account to represent operations and associations in 
future. We implemented a parser using a tool for large scale code repositories search 
to extract the entities and attributes from a complex and large simulators using the 
simulator’s source code, interfaces, and databases. Then we group extracted 
information into features to capture the structure of the simulator. The features are put 
into the same class if they are considered equivalent.  

Since our metamodel needs to take several domain expert simulators into account, 
the metamodel should be comprehensive, yet extensible. In our metamodel, we also 
consider input and output parameters. The careful examination of the features in 

 
Fig. 3.  Basic Metamodel. 

 
Fig. 2.  The Basic Steps of Methodology. 



various simulators of the different domains has allowed us to identify and categorize 
common features using key classes.  Finally, constraints are the number of limits for 
the simulation parameters in the simulation model. We will discuss complete 
examples of metamodels in our case study later. 

In the second step, we analyze the metamodels to discover the interdependencies 
between simulators. We use dependency descriptors to specify the dependency 
between a data item ݀ in simulator ௜ܵ and a data item ݀′ in simulator ௝ܵ when updates 
on ݀′ need to be reflected into ݀: ௜ܵ ՚ ௝ܵ ൌ൏ ݀ א ,௜ܦ ݀′ א ,௝ܦ ݂ ൐. Note that 
dependency notion is directional. ௜ܵ is the supplier simulator,  ௜ܵ is the consumer 
simulator. Here, ݀ and ݀′ are interdependent data items. In general, there can be more 
than one dependency between two simulators describing multiple aspects of their 
relationships. A dependency function, f, defines the relationship between two data 
items values. At each iteration, the new value of ݀ is determined by the dependency 
function ݂:݉݋ܦሺ݀ᇱሻ ՜ ݒ ሺ݀ሻ, that is݉݋ܦ ൌ ݂ሺݒᇱሻ. For each dependency between 
simulators such a dependency function is defined at meta-level.  

3.2 Run Federation 

We consider each simulator’s execution as a sequence of actions (time steps in 
time stepped simulators or events in event based simulators). Typically simulators 
execute their set of actions independently from the beginning to the end of simulation 
in an uncoordinated way. To participate in a federation, each of these simulators 
needs to be modified, i.e. the introduction of synchronization points at which the 
simulations needs to stop processing its actions and communicate with the meta-level 
in order to be synchronized with other simulators.  

Simulators are interfaced with met-level by using wrappers. The wrapper 
determines the external actions for which the simulator needs to communicate with 
meta-level and sends them to meta-level. External actions are those actions that access 
at least one data item which is an interdependent data item (there exists a dependency 
between this data item and another data item in another simulator). Upon receiving 
such actions from a simulator, the meta-level generates meta-actions to notify its 

 
Fig. 4.  Base-level federates, wrapper, and meta level interactions (step 3). 



dependent simulators.  
Figure 4 shows the details of Step 3 in our methodology.  First, the wrapper sends a 

request for connection to the meta-level. The meta-level confirms the connection and 
sends information about interdependent data items and dependencies to the wrapper. 
Once simulation starts, the wrapper determines the external actions and sends 
corresponding requests to the meta-level. Upon receiving a request, the meta-level 
modules evaluate the dependencies and respond to the wrapper with a decision (allow, 
rollback, or delay) based on the scheduling approach used (which will be discussed in 
the next section). It also sends to the wrapper meta-actions that contain the updates by 
other simulators. The wrapper reflects the received meta-actions on the execution of 
the underlying simulator. This loop is continued until the end of simulation.  

4   Challenges 

There are several challenges in integrating multiple autonomous simulation 
models. The first challenge arises from modeling complex scenarios using multiple 
simulation models and the analysis of cause-effect relationships between those 
models. Given the potential black-box nature of simulators developed by experts in 
diverse domains we believe that achieving a completely automated plug-and-play 
integration of simulators is a very difficult, if not infeasible challenge.  Our goals are 
more modest – we intend to develop enabling tools that will simplify the task of 
simulation integration with a wide range of simulators that vary in the degree to 
which they expose their interfaces and implementations. We do not want to require 
simulator developers to adhere to a strict programming interface or conform to 
particular design styles - the ability to flexibly interoperate with multiple simulators is 
our goal. Another challenge arises from the fact that each simulator uses its own 
models and entities; these must now be integrated in the context of a single 
simulation.  The simulators need to exchange the data and have a correct 
interpretation of the data they send and receive. Time synchronization is yet another 
challenge. When integrating simulators, there is a need for synchronization of time 
between the different models. In the following we discuss the details: 
(a) Managing Complexity of Interoperating Systems. Integration of independently 
created models can lead to a complex interoperating system of systems that need to be 
managed efficiently. Understanding the interoperability issues that arise in this 
context is the main aim of multisimulations. In our proposed approach, we use meta 
models to describe simulator-related meta-data; a way to infer data transformations, 
and a means of specifying and automatically executing orchestration. Metamodels can 
make the underlying simulator more understandable. Additionally, metamodels are 
abstracts of lower-level details of integration and interoperability. Other challenges 
arise from heterogeneity of the data that simulation models need to exchange. Since 
we are working with existing simulation models, it is necessary to analyze the data 
types used internally by the simulators. It might be possible to adapt prior work on 
data transformation and integration [26]. We plan to investigate whether such 
techniques can be extended to account for or detect potential data exchange issues that 
will arise.  



(b) Correctness. Another challenge in integrated simulation environments is to 
ensure the correctness of multisimulations (e.g. preserving causality among different 
simulation models). In particular, we focus on time synchronization and data 
consistency as critical problems that must be addressed to ensure the correct 
interoperability of the concurrently executing simulators. The simulation clock that 
controls simulation time during execution of a simulation resides within each 
simulator itself. Time synchronization mechanisms are needed to ensure causal 
correctness for models that use different time advancement mechanisms. Most of 
available synchronization methods need the participants to agree on a common 
interpretation of time and a common time advancement method. Our goal is to 
leverage existing simulators, as is, while enabling data interchange between them and 
to accommodate multiple time management and advancement mechanisms 
implemented internally in participating simulators, preserving the autonomy of the 
individual simulators. We need to describe the semantics of the internal time 
advancement in different simulation models (e.g., whether it is a continuous-time 
model with observations made at regular time intervals, a discrete-time model with 
observations only at “ticks,” or a discrete-event model with observations only at 
irregularly spaced event-occurrence times). The spatial coordinate system must also 
be specified so that different models can be spatially aligned. We came across both 
issues in our exercise and resolved them with appropriate interpolations of data and 
transformations to overcome mismatches.  
(c) Scalability. Accurate modeling and analysis of large scale and complex scenarios 
presents a scalability challenge. Modeling such complex scenarios places 
considerable stress on the system resources. Such scenarios involve a lot of entities, 
e.g. agents with complex behavior operating on dynamic environments. In this paper 
we focus on interoperability and correctness issues. Scalability is currently another 
ongoing topic of research on multisimulations [25] 

We focus on time synchronization and data consistency as critical problems that 
must be addressed to ensure the correct interoperability of the concurrently executing 
simulation models. In the following we discuss the details of our approach for 
federation time synchronization and data consistency. 

4.1 Time Synchronization 

Time synchronization services is a research area with a very long history. In 
general the time synchronization mechanisms can fall into two different categories: 1) 
conservative, and 2) optimistic [16]. A conservative strategy ensures the legality of 
simulator actions by delaying the actions such that the dependencies are preserved in 
the concurrent execution of actions of different simulators. This approach prevents 
action roll-backs. A simulator can proceed if the synchronizer can guarantee that by 
executing its external action, no dependencies will be violated. In the optimistic 
strategy, we accept the fact that violations occur, but instead of trying to prevent them 
by delaying the actions, we simply choose to detect them after the action has executed 
and then resolve the violation when it does occur; by aborting the actions that caused 
the violation.  

We categorize simulators based on the time management mechanism that they 
employ as being time stepped or event based (Table 1)[7]. In time stepped simulators, 



for each execution of the main control loop the simulation time is incremented by one 
quantum of time Δt. In the case of event based simulators, execution is driven by an 
event list, ܧ ൌ ሼ݁௠|݉ ൌ 1,2,… ሽ, each event has a time stamp (usually causality 
preserving) and the simulation time jumps from one event time stamp to the next 
without representing all the values in between. For every two events ݁௔ and ݁௕ we 
have the following property: ݌݉ܽݐݏ݁݉݅ݐሺ݁௔ሻ ൑ ܽ ሺ݁௕ሻ when݌݉ܽݐݏ݁݉݅ݐ   ൑ ܾ. We 
allow different simulators to have different levels of granularity in their events or 
timestamps.  

Just as in any concurrency controller, the synchronizer can follow a conservative or 
optimistic strategy for scheduling actions.  
Conservative approach. A conservative strategy ensures the legality of schedules by 
delaying the actions such that the dependencies are preserved in the concurrent 
execution of actions of simulators. The delay will cause the simulator to freeze until 
the synchronizer allows it to proceed. This approach prevents action roll-backs. A 
simulator can proceed if the synchronizer can guarantee that by executing its action, 
no dependencies will be violated; otherwise, the action will be delayed.  
Optimistic approach. In some applications it is quite common to be in a situation 
where although simulators are working simultaneously on interdependent data, 
violations are infrequent and dependencies continue to be preserved. When this is the 
case, an optimistic strategy becomes efficient. In the optimistic approach, we accept 
the fact that violations occur, but instead of trying to prevent them by delaying the 
actions, we choose to detect them after the action has executed and resolve the 
violation when it does occur; by aborting the actions that caused the violation.  

Above strategies may become more (or less) effective as a multisimulation 
progresses. The efficacy of a specific strategy at a point in time is a factor of the 
underlying dependencies and actions taken by the concurrently executing simulators. 
Initially, the cost of abort is small, so the optimistic strategy will be preferred. 
However, as the simulator proceeds, aborts costs become increasingly high. 
Therefore, the conservative strategy becomes more effective. We plan to propose a 
hybrid approach that combines the benefits of both the optimistic and conservative 
strategies by considering the underlying dependencies and the costs of delays and 
aborts to make an informed decision for an action. 

4.2 Data Transformation 

In general, the data management module provides data transfer that preserves the 
meaning and relationships of the data exchanged between two simulators. Since we 

Table 1. Time-stepped and Event-based Simulators. 
Time-stepped simulator Event-based simulator 

while (simulation in progress ) do  
   for each tick do 
         read data; 
         modify data; 
         time = time + Δt; 
   end for 
end while 

while (simulation in progress)do  
      Event e= nextEvent; 
      while(e!=null)do 
            process(e); 
            time= timestampe(e); 
            e= nextEvent; 
      end while 
end while



are working with existing simulators, we cannot use the methods based on the 
common representation of data. Each simulator may have its own data representation 
which can not be easily modified. We used data translators that work based on the 
dependencies between federates. If the data translators are implemented correctly, 
they can provide immediate conduits to publish or subscribe to information.   

To integrate a simulator to the multisimulation, adaptors components need to built. 
The purpose of developing the adaptors is to provide a descriptor of a simulator to 
implement a standard interface that makes the run-time multisimulation capable of 
controlling the data exchange between multiple simulators. Adaptors are responsible 
for transforming data values of entities of one simulator to the corresponding values 
of entities of another simulator. For instance, a traffic simulator provides updates for 
other simulators on traffic congestion values for the links in the network geography. If 
other simulators use a different geography, a conversion must take place to map a 
value on the first geography to one or more values on other geographies. 

We plan to adapt prior work on data exchange [26], which infers a default 
transformation mapping from a source schema to a target schema. Our goal is to 
investigate whether such mapping-generation algorithms can be extended to account 
for or detect potential time-management, geometry-management, and unit-conversion 
issues that may arise. In any case, there are standard transformations that will be 
required for the majority of model mash-ups. These include unit conversions, time 
and space interpolations and aggregations, and database join-operations on files. 
Future work includes identifying the set of such functions and establishing a standard 
library. Such transformation functions will need to be highly scalable. Other non-
standard transformations can be quite challenging (e.g., aligning or combining 
different social networks in multiple agent-based simulation models, or allocating 
household caloric intake among household members). 

5   Prototype System Implementation 

In this section we discuss the general structure of our methodology, its relevant 
issues, and the implementation of a prototype multisimulation system.  Figure 5 
shows different modules in the prototype system. Consistent with our 

 
Fig. 5. Multisimulation Framework. 



metaarchitecture design philosophy, the design aims to separate the base level aspects 
of each simulator (this includes the simulator code, the backend databases and models 
stored in domain-specific formats) from the meta-level synchronization and 
adaptation mechanisms. Base-meta interactions occur through simulator wrappers that 
handle the processing of external actions in each simulator by forwarding requests to 
meta-level. There are 3 key modules at meta-level: (a) a Synchronizer which uses the 
proposed approaches to monitor and control concurrent execution in the 
multisimulation. This module also makes use of a lock manager to coordinate 
concurrent access to simulators data items. (b) an Analyzer which analyzes the 
interactions between simulators using meta-models to capture the dependencies which 
stored in a separate table and indexed by its corresponding interdependent data items. 
(c) an Adaptor which manages the data exchange and adapts information that is 
passed between simulators through the design of wrapper modules for each simulator.  

In the initialization steps the wrapper sends a request for connection to the 
synchronizer. The synchronizer confirms the connection and sends information about 
interdependent data items and dependencies to the wrapper. Once simulation starts, 
the wrapper determines which actions are external actions and sends corresponding 
requests to the synchronizer. Upon receiving a request, the meta-level modules 
evaluate the dependencies and respond to the wrapper with a decision (allow, 
rollback, or delay) based on the scheduling approach used. It also sends to the 
wrapper meta-actions that contain the updates by other simulators. The wrapper 
reflects the received meta-actions on the execution of the underlying simulator. This 
loop is continued until the end of simulation.  

The implementation of allow and delay in the wrapper is straightforward; it will 
proceed or freeze the simulation respectively. In the case of rollback, associated with 
the rollback notification from synchronizer is a time, t, which indicates the time in the 
past to which simulation needs to be rolled back. One option is to start the simulation 
from time t, initialize all the interdependent and local data items values to the values 
that they had in time t, and run the simulation – obviously this involves a high 
overhead for storing/checkpointing the data item values at each instance of time, 
especially when working with pre-existing simulators. In the case of simulators when 
it is not possible to start a simulation from a random time in the past, we will be 
required to rerun the simulation from its start time until it reaches time t.   

5.1   Integrating Real-World Simulators 

To ground our work in reality, we develop a case study for simulation integration 
using three pre-existing real world simulators from the emergency response domain – 
the primary goal is to validate our approach and synchronization solutions and 
understand issues in its realization. The specific simulators are (1) CFAST, a fire 
simulator that simulates the effects of fire and smoke inside a building and (2) 
Drillsim, an activity simulator that model a response activity evacuation and (3) 
LTESim, a communication simulator for the next generation wireless network 
infrastructure. Table 1 summarizes the three simulators and their properties. In our 
case study, we focus primarily on integrating simulation and models aimed at 



informing emergency response policy decision making, but we expect our framework 
and methods will be applicable to other complex problem domains. 
1) Fire simulator: CFAST, the Consolidated Model of Fire and Smoke Transport, is a 
simulator that simulates the impact of fires and smoke in a specific building 
environment and calculates the evolving distribution of smoke, fire gases, and 
temperature [10].  CFAST has several interfaces to input the parameters that contain 
information about the building geometry, fire properties, and etc. The simulator 
produces outputs that contain information about temperatures, ignition times, gas 
concentrations, and etc.  
2) Activity simulator: Drillsim is a multi-agent that plays out the activities of a crisis 
response process, e.g. building evacuation in response to an evolving fire hazard. 
Drillsim simulates human behavior in a crisis at fine granularities [9] - agents 
represent an evacuee, a building captain, etc. Every agent has a set of properties 
associated with it, such as physical perceptual profile (e.g., range of sight, speed of 
walking) and the current health status of the agent (e.g. injured, unconscious).       
3) Communication simulator: LTEsim, the communication simulator in our case 
study, is a LTE System Level simulator [20] which abstracts the physical layer and 
performs network level simulations of 3GPP Long Term Evolution with lower 
complexity. We chose LTEsim because the LTE standard has several improvements 
in capacity, speed, and latency and will be the technology of choice for most existing 
3GPP mobile operators [8]. LTEsim considers several parameters to model the 
communication infrastructure (such as number of transmit and receive antennas, 
network layout, bandwidth, pathloss, and etc.).  

In our integration scenario, the fire simulator, CFAST, is used to simulate the 
impact of fire and smoke in a specific region and calculates the evolving distribution 
of smoke; fire and smoke can affect evacuation process, e.g. people’s health 
condition, in the evacuation simulator, Drillsim, which has impacts on communication 
patterns in communication simulator, LTEsim. Such integration is useful to conduct 
better what-if analyses and understand various factors that can adversely delay 
evacuation times or increase exposure and consequently used to make decisions that 
can improve safety and emergency response times. The first step is to specify meta-
models for the three base level simulators and dependencies across them (see 
Appendix). The following are the examples of information interchanged among 
simulators: 
 A harmful condition in CFAST can affect an individual’s health in Drillsim. 

Table 2. Three Real-World Simulators. 
Evacuation Simulator Communication Simulator Fire Simulator 

 
 DrillSim [9],Time stepped 
 Open source (in Java) 

 Parameters: health profile, 
visual distance, speed of 
walking, num. of ongoing 
call, etc. Output: num. of 
evacuees, injuries, etc. 

 
 LTESim [20], Event based 
 Open source (in Matlab) 

 Parameters: num. of transmit and 
receive antennas, uplink delay, 
network layout, channel model, 
bandwidth, frequency, etc. 
Output: pathloss, throughput, etc. 

 
 CFAST [10], Time stepped 
 Black-box (no access to source) 
 Parameters: bldg geometry, 

materials of construction, fire 
properties, etc. Output: 
temperatures, pressure, gas 
concentrations: CO2, etc. 



 Smoke in CFAST can decrease an agent’s visual distance in Drillsim. 
 The number of ongoing communications in Drillsim can affect network pathloss 

and throughput in LTEsim. 
 Pathloss in LTEsim can be used to determine connectivity/coverage in Drillsim. 
In our current implementation, several such dependencies specified (the actual 

number of dependencies required was in the range of 10-50 for most situations).  

5.2   Initial Results 

Our experiments are based on the case study described above where we integrate 3 
real world simulators. In our experiments, we implemented techniques for 
synchronization across the three simulators: We implemented three different solutions 
for time synchronization across the three simulators: Lock-step approach (LS), 
conservative approach (CS), and optimistic approach (OS). Lock-step approach is the 
most conservative approach for the purpose of evaluating the other two approaches, 
by having a lock step schedule. All simulators advance step by step, and at any step 
they synchronize by locking at data item level until the next step. The lock table is 
maintained at meta-level. By locking shared data in the beginning of action and 
releasing the locks at the end, we can prevent deadlocks. In OS, we consider wait time 
before each rollback to be 0.5 s.  

We studied the synchronization overhead and the total execution time using 

 
Fig. 6. (a) Average synchronization overhead (b) Total execution time vs. the number 

of actions. 

Table 3. Comparison between HLA and Multisimulation Architecture.
Criterion HLA Multisimulation Architecture 
Objective ─ Interoperability 

─ Reusability 
─ Semantic Interoperability, Reusability 
─ Flexibility 

Domain ─ Defense ─ Flexible via use of  domain ontologies 

Complexity 
─ Low level knowledge needed 
─ Lack of semantic 

interoperability 

─ No need to conform the internal properties 
─ Semantic constraints implemented at the 

metalevel 
Time 
Management 

─ Optimistic and conservative 
methods 

─ Optimistic and conservative methods 

Separation of 
Concerns 

─ Merges domain-specific and 
integrated simulation aspects 

─ Separate concerns related to simulation domain 
to those related to integration mechanisms 



different techniques. We measure synchronization overhead by adding the 
synchronization overhead in all simulators.  In CS, we considered the total delay time, 
i.e. the duration a simulator is blocked and the locking overhead, i.e. the time needed 
for acquiring or releasing locks, to calculate the synchronization overhead. In OS, we 
considered the total rollback time. Figure 6-a and 6-b illustrate the average 
synchronization overhead per time step and average execution time for different 
numbers of actions. In our base case, the number of dependencies betweens 
simulators is 30 (a reasonably large number for our case study). The synchronization 
overhead in CS is much lower as compared to OS during later phases of execution. 
This is due to the high rollback time in OS.  

Table 3 presents a brief comparison of the reflective architecture to HLA. Using 
HLA outside the defense domain such as our case study is very complex, if not 
impossible. In HLA low level knowledge needed from participants. Each simulator 
must use the common data format that leads to simulations that are very closely 
coupled to an underlying database. Since the HLA environment is a fully distributed 
simulation environment, the simulators must fully conform to the designated features 
of the HLA standard.  Note that transforming existing simulators to conform to the 
standard may not always be feasible. In our reflective architecture each simulator can 
have its own data representation, internal time management, and data management. 
Therefore, we do not force the simulators to change their internal properties. Another 
advantage of our reflective architecture is separation of concerns, that is, separate the 
concerns related to the simulation domain from those related to the integration 
mechanisms. Additionally it provides a design that is more adaptable, flexible and 
easier to extend. 

6   Related Work and Conclusions 

To best of our knowledge, simulation integration has been studied in two domains 
– (a) military command-and-control [4], [2], [5], [27], and (b) games and virtual 
environments [3]. The U.S. Department of Defense (DoD) has promoted the 
development of standards to provide a common framework in which simulators can 
be integrated. These include standards such as SIMulator NETworking (SIMNET) 
[27], Distributed Interactive Simulation (DIS) [5], Aggregate Level Simulation 
Protocol (ALSP) [2], High Level Architecture (HLA) [4]. These standards provide 
specific services for interoperability in niche applications, for example DIS for 
human-in-the-loop simulators or ALSP for war games. The recent HLA effort has 
become the defacto standard technical architecture for military simulations – it aims 
to promote interoperability and reusability between simulators. 

While HLA is suited to developing new simulators that can be easily integrated, its 
broader applicability to combine pre-existing simulators is questionable [6], [21]. It is 
a complex standard designed specifically for the military domain and is not 
transparent enough – too much low level knowledge is needed from the practitioner. 
HLA forces developers to provide a particular functionality or to conform to specific 
standards in order to participate in the integration process; the rigid assumptions and 
limitations on participants makes it difficult to integrate pre-existing simulators 
without significant modification (especially in non-military domains). As in the case 



with the HLA architecture, solutions in the game community are also prescriptive - 
they force the developers to provide a particular functionality to participate in the 
integration process and have different assumptions/limitations on how participants 
interact. Such methods are unsuited to the integration of pre-existing simulators.  

In this paper we proposed a reflective middleware architecture for simulation 
integration that implements structural reflection to alleviate the flexibility issues in 
current simulation integration techniques. In this architecture, the meta-level is 
structured as a series of metamodels representing the various simulators. We have 
implemented a detailed case study from the emergency response domain by 
integrating 3 disparate simulators: a fire simulator (CFAST), an evacuation simulator 
(Drillsim) and a communication simulator (LTEsim).  Future research will focus on 
addressing challenges in the complexity associated with generalizing the meta-models 
for simulators, integrating simulators in other domains including earthquake and 
transportation simulators, and addressing the challenges of data transformation in 
multisimulations. 
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