
Multisimulations: Towards Next Generation Integrated
Simulation Environments

Leila Jalali, Sharad Mehrotra, Nalini Venkatasubramanian,

 University of California at Irvine, USA
{ljalali, sharad, nalini}@ics.uci.edu

Abstract. In this paper, we consider the challenge of designing a reflective
middleware to integrate multiple autonomous simulation models into an integrated
simulation environment (multiasimulation) wherein we can model and execute
complex scenarios involving multiple simulators. One of the limitations of the
simulators is that they are developed by domain experts who have an in-depth
understanding of the phenomena being modeled and typically designed to be
executed and evaluated independently. Therefore, the grand challenge is to facilitate
the process of pulling all of independently created models together into an
interoperating multisimulation model where decision makers can explore different
alternatives and conduct low cost experiments. We aim to build such integrated
simulation environments by creating a loosely coupled federation of pre-existing
simulators. We evaluate our proposed methodology via a detailed case study from
the emergency response domain by integrating three disparate pre-existing
simulators – a fire simulator (CFAST), an evacuation simulator (Drillsim) and a
communication simulator (LTEsim).

Keywords: Reflective Middleware, Simulation Integration, Metamodels,
Methodology.

1 Motivation

In this paper, we consider the challenge of designing a reflective middleware to
integrate multiple autonomous simulation models into an integrated environment
wherein we can model and execute complex scenarios involving multiple simulators.
Modelling and simulation is an important methodology to address a variety of real-
world problems; it offers numerous advantages instead of experimenting with the real
system itself. Simulation is cheaper, quicker, and enables what-if analyses for better
system design [7].

This is particularly true in domains such as emergency response where response
plans and methods are validated by simulating disasters and their impact on people
and infrastructure. A variety of simulators; e.g., loss estimation tools (HAZUS [13],
INLET [14], CAPARS [15], CFD [12]), fire spread simulators (CFAST [10], CCFM
[19]), evacuation simulators (DrillSim [9], SDSS [11]), transportation simulators
(VISIM [17], PARAMICS [18]) etc., that model different aspects of disasters, their

impacts, and response/mitigation processes have been developed. While these
simulators are individually important in understanding disasters, their integrated and
concurrent execution can significantly enhance the understanding of the phenomena
and interdependencies between multiple aspects of the complex processes. Consider,
for instance, a fire simulator, CFAST, that simulates the impact of fire and smoke in a
specific region and calculates the evolving distribution of smoke. Since fire and
smoke can affect health conditions of individuals in the region of fire, one may wish
to further study its impact on the evacuation process as captured within an evacuation
simulator, e.g. DrillSim. Similarly, the progress of fire (captured by CFAST) may
create infeasible paths/exits for evacuation (as captured by DrillSim). Such what-if
analyses can significantly improve the understanding of adverse impacts such as
increase in evacuation times or increased exposure to undesired particulates enabling
intelligent decision making to improve the response. Not only do we need to
understand how will fire and smoke distribute in a specific region, we also need to
plan what traffic routes will people use to evacuate the affected regions, what
demands will be placed on the hospital services in the region, etc. The individual
simulation models such as those for studying the impact of fire and smoke need to be
integrated with those analyzing the traffic movement through the highways and
arteries of the affected area, and with those analyzing the resource constraints of
hospital systems among others.

The need for integrated execution of simulators is well recognized and is the main
driver of U. S. Department of Defense (DoD) High Level Architecture (HLA)
initiative [4] which has become the de-facto standard technical architecture for
military simulations. HLA aims to promote interoperability and reusability among
simulators. While HLA is suited to developing new simulators that can be easily
integrated, its broader applicability to combining pre-existing simulators is
questionable [21]. HLA forces developers to provide a particular functionality or to
conform to specific standards in order to participate in the integration process; the
rigid assumptions and limitations on participants makes it difficult to integrate pre-
existing simulators without significant modification (especially in non-military
domains).

In this paper, we consider the problem of integration of pre-existing simulators.
We refer to such an integrated simulation environment as a multisimulation. We aim
to build multisimulations by creating a loosely coupled federation of pre-existing
simulators. We explore a reflective middleware approach to address challenges of
integrated simulation environments in which interoperability of different simulators
can be ultimately achieved in a flexible and efficient manner. Unlike the significant
code rewrite required in the HLA case, our multisimulation framework permits
individual simulators to maintain their autonomy (i.e. retain their internal
representations of time/state etc.), thereby avoiding the need for rigid common
interfaces across simulators.

This paper is organized as follows. In Section 2, we discuss our multisimulation
architecture and the main challenges. In Section 3 we discuss our methodology for
simulation integration that supports the interoperability of multiple existing
simulation models. In Section 4 we discuss the implementation of our system
prototype. We evaluate our proposed approach via a detailed case study that integrates
multiple real world simulators. Finally we draw conclusions.

2 Multisimulation Architecture

We propose a reflective middleware architecture (Figure 1) to support the
development of integrated simulation platforms. Our initial efforts [24] focused on
using structural reflection [1] to reify (abstract out) the structure of objects and
components of the underlying simulators. The base-level consists of the various (pre-
existing) simulators that must be integrated. In the proposed architecture, integration
of different simulators can be ultimately achieved by using the meta-level for
specifying/modeling the properties of the different simulators and reasoning about the
interactions among the different simulators. The meta-level is built on base-level
simulators; reification of base-level entities yield data structures at the meta-level,
modified features of these structures that implement the integration are then reflected
to the base-level. A closer look at the base-level simulators themselves reveals that
the structural aspects of the simulation application are not merely in the simulator
code, backend databases and models stored in domain-specific formats contain
aspects of the simulators that may need to be explored as well. In general, there can
be many kinds of meta-level entities to cover various integration aspects.

Given the potential black-box nature of simulators developed by experts in diverse
domains, we believe that achieving a completely automated plug-and-play integration
of simulators is a very difficult, if not infeasible challenge. Our goals are more
modest– we intend to develop enabling tools that will simplify the task of simulation
integration with a wide range of simulators that vary in the degree to which they
expose their interfaces and implementations. Our solution does not require simulator
developers to adhere to a strict programming interface or conform to particular design
styles - the ability to flexibly interoperate with multiple simulators is our goal.

By using the metamodeling capability the model elements that need to be
integrated can be extracted. In other words, in our approach, we formulate the
metamodel that captures concepts of interest using a publish- subscribe mechanism
for data exchange – here, subscribers (the simulation integration tasks) express
interest in aspects that they want to observe (implemented by base-level simulators) –

Fig. 1. Multisimulation Architecture.

when changes in these monitored aspects occur at the base simulators, the meta-level
entities receive information or updates of interest via publishers. A pre-existing set of
ontology models assist in the matching process for the pub-sub implementation of the
simulation integration task; these include domain ontologies that are representations
of knowledge in a well-circumscribed domain. Interoperability of different simulators
can be achieved by sharing and understanding the metamodels. Implementing the
semantic constraints for simulation integration is a human in the loop process which
results in the annotations that are invisible to base-level computation and are provided
to the meta-level.

In contrast to prior work on simulation integration (e.g. HLA) [4], [2], [3], [5], [27]
in our architecture we do not need to integrate simulations tightly into a common
framework, but we make it feasible to semi-automatically compose simulation models
via a looser coupling approach that avoids the need to adhere to a rigid common
interface, which can hinder leveraging prior work. We explore a reflective
architecture to address challenges of integrated simulation environments in which
interoperability of different simulators can be ultimately achieved in a flexible and
efficient manner while preserving the autonomy of the individual simulators.

3 Integration Methodology

In this section, we describe the general structure of our methodology and its
relevant issues. The complex process of integration is decomposed in several phases,
and for every phase several tasks are specified, with the strategies to be followed. We
describe step by step, different phases, making use of an example to make it easy to
understand.

Figure 2 demonstrates the basic steps of methodology for simulation integration.
The first step is to extract metadata from basic simulators and to describe it using
metamodels. Next is to analyze metamodels to discover inter-dependencies between
simulators. The first two steps are pre-processing steps that are human-in-loop
process. When federation runs, meta-level modules ensure the correctness until the
end of simulation. In the following we describe each step in details.

3.1 Preprocessing Steps: Extract Simulators’ Metadata and Dependencies

The first step is to extract simulator-related meta-data and describe it at meta-level
using metamodels. Metamodels are abstracts of lower-level details of integration and
interoperability which make the underlying simulator more understandable. Figure 3
shows our meta-model. There are several key classes in the metamodel: model type,
actions, model elements (data items) which could be local data or shared data, input
or output parameters, actions, and constraints. We construct our metamodel using
UML (Unified Modeling Language).

Model type includes information about the type of simulation model. In general
simulators can be categorized into Discrete-event, Agent-based, System dynamics.
They also can be categorized based on the time management mechanism that they
employ as time stepped simulators or event based simulators [1, 7]. In time stepped

simulators, for each execution of the main control loop the simulation time is
incremented by one quantum of time Δt. In the case of event based simulators,
execution is driven by an event list, each event has a time stamp (usually causality
preserving) and the simulation time jumps from one event time stamp to the next
without representing all the values in between. For example for Drillsim [9] we have
agent-based and time-step as model type.

Model elements are the main elements of a simulation and can be captured from
the interfaces, the source code, or databases. We develop a set of tools to extract the
simulator information as metamodels from the base-level simulators. Model elements
consist of simulation model features. Since we are interested in structural reflection,
currently we only use structural features which include classes and attributes. We may
also take behavioral features into account to represent operations and associations in
future. We implemented a parser using a tool for large scale code repositories search
to extract the entities and attributes from a complex and large simulators using the
simulator’s source code, interfaces, and databases. Then we group extracted
information into features to capture the structure of the simulator. The features are put
into the same class if they are considered equivalent.

Since our metamodel needs to take several domain expert simulators into account,
the metamodel should be comprehensive, yet extensible. In our metamodel, we also
consider input and output parameters. The careful examination of the features in

Fig. 3. Basic Metamodel.

Fig. 2. The Basic Steps of Methodology.

various simulators of the different domains has allowed us to identify and categorize
common features using key classes. Finally, constraints are the number of limits for
the simulation parameters in the simulation model. We will discuss complete
examples of metamodels in our case study later.

In the second step, we analyze the metamodels to discover the interdependencies
between simulators. We use dependency descriptors to specify the dependency
between a data item ݀ in simulator ௜ܵ and a data item ݀′ in simulator ௝ܵ when updates
on ݀′ need to be reflected into ݀: ௜ܵ ՚ ௝ܵ ൌ൏ ݀ א ,௜ܦ ݀′ א ,௝ܦ ݂ ൐. Note that
dependency notion is directional. ௜ܵ is the supplier simulator, ௜ܵ is the consumer
simulator. Here, ݀ and ݀′ are interdependent data items. In general, there can be more
than one dependency between two simulators describing multiple aspects of their
relationships. A dependency function, f, defines the relationship between two data
items values. At each iteration, the new value of ݀ is determined by the dependency
function ݂:݉݋ܦሺ݀ᇱሻ ՜ ݒ ሺ݀ሻ, that is݉݋ܦ ൌ ݂ሺݒᇱሻ. For each dependency between
simulators such a dependency function is defined at meta-level.

3.2 Run Federation

We consider each simulator’s execution as a sequence of actions (time steps in
time stepped simulators or events in event based simulators). Typically simulators
execute their set of actions independently from the beginning to the end of simulation
in an uncoordinated way. To participate in a federation, each of these simulators
needs to be modified, i.e. the introduction of synchronization points at which the
simulations needs to stop processing its actions and communicate with the meta-level
in order to be synchronized with other simulators.

Simulators are interfaced with met-level by using wrappers. The wrapper
determines the external actions for which the simulator needs to communicate with
meta-level and sends them to meta-level. External actions are those actions that access
at least one data item which is an interdependent data item (there exists a dependency
between this data item and another data item in another simulator). Upon receiving
such actions from a simulator, the meta-level generates meta-actions to notify its

Fig. 4. Base-level federates, wrapper, and meta level interactions (step 3).

dependent simulators.
Figure 4 shows the details of Step 3 in our methodology. First, the wrapper sends a

request for connection to the meta-level. The meta-level confirms the connection and
sends information about interdependent data items and dependencies to the wrapper.
Once simulation starts, the wrapper determines the external actions and sends
corresponding requests to the meta-level. Upon receiving a request, the meta-level
modules evaluate the dependencies and respond to the wrapper with a decision (allow,
rollback, or delay) based on the scheduling approach used (which will be discussed in
the next section). It also sends to the wrapper meta-actions that contain the updates by
other simulators. The wrapper reflects the received meta-actions on the execution of
the underlying simulator. This loop is continued until the end of simulation.

4 Challenges

There are several challenges in integrating multiple autonomous simulation
models. The first challenge arises from modeling complex scenarios using multiple
simulation models and the analysis of cause-effect relationships between those
models. Given the potential black-box nature of simulators developed by experts in
diverse domains we believe that achieving a completely automated plug-and-play
integration of simulators is a very difficult, if not infeasible challenge. Our goals are
more modest – we intend to develop enabling tools that will simplify the task of
simulation integration with a wide range of simulators that vary in the degree to
which they expose their interfaces and implementations. We do not want to require
simulator developers to adhere to a strict programming interface or conform to
particular design styles - the ability to flexibly interoperate with multiple simulators is
our goal. Another challenge arises from the fact that each simulator uses its own
models and entities; these must now be integrated in the context of a single
simulation. The simulators need to exchange the data and have a correct
interpretation of the data they send and receive. Time synchronization is yet another
challenge. When integrating simulators, there is a need for synchronization of time
between the different models. In the following we discuss the details:
(a) Managing Complexity of Interoperating Systems. Integration of independently
created models can lead to a complex interoperating system of systems that need to be
managed efficiently. Understanding the interoperability issues that arise in this
context is the main aim of multisimulations. In our proposed approach, we use meta
models to describe simulator-related meta-data; a way to infer data transformations,
and a means of specifying and automatically executing orchestration. Metamodels can
make the underlying simulator more understandable. Additionally, metamodels are
abstracts of lower-level details of integration and interoperability. Other challenges
arise from heterogeneity of the data that simulation models need to exchange. Since
we are working with existing simulation models, it is necessary to analyze the data
types used internally by the simulators. It might be possible to adapt prior work on
data transformation and integration [26]. We plan to investigate whether such
techniques can be extended to account for or detect potential data exchange issues that
will arise.

(b) Correctness. Another challenge in integrated simulation environments is to
ensure the correctness of multisimulations (e.g. preserving causality among different
simulation models). In particular, we focus on time synchronization and data
consistency as critical problems that must be addressed to ensure the correct
interoperability of the concurrently executing simulators. The simulation clock that
controls simulation time during execution of a simulation resides within each
simulator itself. Time synchronization mechanisms are needed to ensure causal
correctness for models that use different time advancement mechanisms. Most of
available synchronization methods need the participants to agree on a common
interpretation of time and a common time advancement method. Our goal is to
leverage existing simulators, as is, while enabling data interchange between them and
to accommodate multiple time management and advancement mechanisms
implemented internally in participating simulators, preserving the autonomy of the
individual simulators. We need to describe the semantics of the internal time
advancement in different simulation models (e.g., whether it is a continuous-time
model with observations made at regular time intervals, a discrete-time model with
observations only at “ticks,” or a discrete-event model with observations only at
irregularly spaced event-occurrence times). The spatial coordinate system must also
be specified so that different models can be spatially aligned. We came across both
issues in our exercise and resolved them with appropriate interpolations of data and
transformations to overcome mismatches.
(c) Scalability. Accurate modeling and analysis of large scale and complex scenarios
presents a scalability challenge. Modeling such complex scenarios places
considerable stress on the system resources. Such scenarios involve a lot of entities,
e.g. agents with complex behavior operating on dynamic environments. In this paper
we focus on interoperability and correctness issues. Scalability is currently another
ongoing topic of research on multisimulations [25]

We focus on time synchronization and data consistency as critical problems that
must be addressed to ensure the correct interoperability of the concurrently executing
simulation models. In the following we discuss the details of our approach for
federation time synchronization and data consistency.

4.1 Time Synchronization

Time synchronization services is a research area with a very long history. In
general the time synchronization mechanisms can fall into two different categories: 1)
conservative, and 2) optimistic [16]. A conservative strategy ensures the legality of
simulator actions by delaying the actions such that the dependencies are preserved in
the concurrent execution of actions of different simulators. This approach prevents
action roll-backs. A simulator can proceed if the synchronizer can guarantee that by
executing its external action, no dependencies will be violated. In the optimistic
strategy, we accept the fact that violations occur, but instead of trying to prevent them
by delaying the actions, we simply choose to detect them after the action has executed
and then resolve the violation when it does occur; by aborting the actions that caused
the violation.

We categorize simulators based on the time management mechanism that they
employ as being time stepped or event based (Table 1)[7]. In time stepped simulators,

for each execution of the main control loop the simulation time is incremented by one
quantum of time Δt. In the case of event based simulators, execution is driven by an
event list, ܧ ൌ ሼ݁௠|݉ ൌ 1,2,… ሽ, each event has a time stamp (usually causality
preserving) and the simulation time jumps from one event time stamp to the next
without representing all the values in between. For every two events ݁௔ and ݁௕ we
have the following property: ݌݉ܽݐݏ݁݉݅ݐሺ݁௔ሻ ൑ ܽ ሺ݁௕ሻ when݌݉ܽݐݏ݁݉݅ݐ ൑ ܾ. We
allow different simulators to have different levels of granularity in their events or
timestamps.

Just as in any concurrency controller, the synchronizer can follow a conservative or
optimistic strategy for scheduling actions.
Conservative approach. A conservative strategy ensures the legality of schedules by
delaying the actions such that the dependencies are preserved in the concurrent
execution of actions of simulators. The delay will cause the simulator to freeze until
the synchronizer allows it to proceed. This approach prevents action roll-backs. A
simulator can proceed if the synchronizer can guarantee that by executing its action,
no dependencies will be violated; otherwise, the action will be delayed.
Optimistic approach. In some applications it is quite common to be in a situation
where although simulators are working simultaneously on interdependent data,
violations are infrequent and dependencies continue to be preserved. When this is the
case, an optimistic strategy becomes efficient. In the optimistic approach, we accept
the fact that violations occur, but instead of trying to prevent them by delaying the
actions, we choose to detect them after the action has executed and resolve the
violation when it does occur; by aborting the actions that caused the violation.

Above strategies may become more (or less) effective as a multisimulation
progresses. The efficacy of a specific strategy at a point in time is a factor of the
underlying dependencies and actions taken by the concurrently executing simulators.
Initially, the cost of abort is small, so the optimistic strategy will be preferred.
However, as the simulator proceeds, aborts costs become increasingly high.
Therefore, the conservative strategy becomes more effective. We plan to propose a
hybrid approach that combines the benefits of both the optimistic and conservative
strategies by considering the underlying dependencies and the costs of delays and
aborts to make an informed decision for an action.

4.2 Data Transformation

In general, the data management module provides data transfer that preserves the
meaning and relationships of the data exchanged between two simulators. Since we

Table 1. Time-stepped and Event-based Simulators.
Time-stepped simulator Event-based simulator

while (simulation in progress) do
 for each tick do
 read data;
 modify data;
 time = time + Δt;
 end for
end while

while (simulation in progress)do
 Event e= nextEvent;
 while(e!=null)do
 process(e);
 time= timestampe(e);
 e= nextEvent;
 end while
end while

are working with existing simulators, we cannot use the methods based on the
common representation of data. Each simulator may have its own data representation
which can not be easily modified. We used data translators that work based on the
dependencies between federates. If the data translators are implemented correctly,
they can provide immediate conduits to publish or subscribe to information.

To integrate a simulator to the multisimulation, adaptors components need to built.
The purpose of developing the adaptors is to provide a descriptor of a simulator to
implement a standard interface that makes the run-time multisimulation capable of
controlling the data exchange between multiple simulators. Adaptors are responsible
for transforming data values of entities of one simulator to the corresponding values
of entities of another simulator. For instance, a traffic simulator provides updates for
other simulators on traffic congestion values for the links in the network geography. If
other simulators use a different geography, a conversion must take place to map a
value on the first geography to one or more values on other geographies.

We plan to adapt prior work on data exchange [26], which infers a default
transformation mapping from a source schema to a target schema. Our goal is to
investigate whether such mapping-generation algorithms can be extended to account
for or detect potential time-management, geometry-management, and unit-conversion
issues that may arise. In any case, there are standard transformations that will be
required for the majority of model mash-ups. These include unit conversions, time
and space interpolations and aggregations, and database join-operations on files.
Future work includes identifying the set of such functions and establishing a standard
library. Such transformation functions will need to be highly scalable. Other non-
standard transformations can be quite challenging (e.g., aligning or combining
different social networks in multiple agent-based simulation models, or allocating
household caloric intake among household members).

5 Prototype System Implementation

In this section we discuss the general structure of our methodology, its relevant
issues, and the implementation of a prototype multisimulation system. Figure 5
shows different modules in the prototype system. Consistent with our

Fig. 5. Multisimulation Framework.

metaarchitecture design philosophy, the design aims to separate the base level aspects
of each simulator (this includes the simulator code, the backend databases and models
stored in domain-specific formats) from the meta-level synchronization and
adaptation mechanisms. Base-meta interactions occur through simulator wrappers that
handle the processing of external actions in each simulator by forwarding requests to
meta-level. There are 3 key modules at meta-level: (a) a Synchronizer which uses the
proposed approaches to monitor and control concurrent execution in the
multisimulation. This module also makes use of a lock manager to coordinate
concurrent access to simulators data items. (b) an Analyzer which analyzes the
interactions between simulators using meta-models to capture the dependencies which
stored in a separate table and indexed by its corresponding interdependent data items.
(c) an Adaptor which manages the data exchange and adapts information that is
passed between simulators through the design of wrapper modules for each simulator.

In the initialization steps the wrapper sends a request for connection to the
synchronizer. The synchronizer confirms the connection and sends information about
interdependent data items and dependencies to the wrapper. Once simulation starts,
the wrapper determines which actions are external actions and sends corresponding
requests to the synchronizer. Upon receiving a request, the meta-level modules
evaluate the dependencies and respond to the wrapper with a decision (allow,
rollback, or delay) based on the scheduling approach used. It also sends to the
wrapper meta-actions that contain the updates by other simulators. The wrapper
reflects the received meta-actions on the execution of the underlying simulator. This
loop is continued until the end of simulation.

The implementation of allow and delay in the wrapper is straightforward; it will
proceed or freeze the simulation respectively. In the case of rollback, associated with
the rollback notification from synchronizer is a time, t, which indicates the time in the
past to which simulation needs to be rolled back. One option is to start the simulation
from time t, initialize all the interdependent and local data items values to the values
that they had in time t, and run the simulation – obviously this involves a high
overhead for storing/checkpointing the data item values at each instance of time,
especially when working with pre-existing simulators. In the case of simulators when
it is not possible to start a simulation from a random time in the past, we will be
required to rerun the simulation from its start time until it reaches time t.

5.1 Integrating Real-World Simulators

To ground our work in reality, we develop a case study for simulation integration
using three pre-existing real world simulators from the emergency response domain –
the primary goal is to validate our approach and synchronization solutions and
understand issues in its realization. The specific simulators are (1) CFAST, a fire
simulator that simulates the effects of fire and smoke inside a building and (2)
Drillsim, an activity simulator that model a response activity evacuation and (3)
LTESim, a communication simulator for the next generation wireless network
infrastructure. Table 1 summarizes the three simulators and their properties. In our
case study, we focus primarily on integrating simulation and models aimed at

informing emergency response policy decision making, but we expect our framework
and methods will be applicable to other complex problem domains.
1) Fire simulator: CFAST, the Consolidated Model of Fire and Smoke Transport, is a
simulator that simulates the impact of fires and smoke in a specific building
environment and calculates the evolving distribution of smoke, fire gases, and
temperature [10]. CFAST has several interfaces to input the parameters that contain
information about the building geometry, fire properties, and etc. The simulator
produces outputs that contain information about temperatures, ignition times, gas
concentrations, and etc.
2) Activity simulator: Drillsim is a multi-agent that plays out the activities of a crisis
response process, e.g. building evacuation in response to an evolving fire hazard.
Drillsim simulates human behavior in a crisis at fine granularities [9] - agents
represent an evacuee, a building captain, etc. Every agent has a set of properties
associated with it, such as physical perceptual profile (e.g., range of sight, speed of
walking) and the current health status of the agent (e.g. injured, unconscious).
3) Communication simulator: LTEsim, the communication simulator in our case
study, is a LTE System Level simulator [20] which abstracts the physical layer and
performs network level simulations of 3GPP Long Term Evolution with lower
complexity. We chose LTEsim because the LTE standard has several improvements
in capacity, speed, and latency and will be the technology of choice for most existing
3GPP mobile operators [8]. LTEsim considers several parameters to model the
communication infrastructure (such as number of transmit and receive antennas,
network layout, bandwidth, pathloss, and etc.).

In our integration scenario, the fire simulator, CFAST, is used to simulate the
impact of fire and smoke in a specific region and calculates the evolving distribution
of smoke; fire and smoke can affect evacuation process, e.g. people’s health
condition, in the evacuation simulator, Drillsim, which has impacts on communication
patterns in communication simulator, LTEsim. Such integration is useful to conduct
better what-if analyses and understand various factors that can adversely delay
evacuation times or increase exposure and consequently used to make decisions that
can improve safety and emergency response times. The first step is to specify meta-
models for the three base level simulators and dependencies across them (see
Appendix). The following are the examples of information interchanged among
simulators:
 A harmful condition in CFAST can affect an individual’s health in Drillsim.

Table 2. Three Real-World Simulators.
Evacuation Simulator Communication Simulator Fire Simulator

 DrillSim [9],Time stepped
 Open source (in Java)

 Parameters: health profile,
visual distance, speed of
walking, num. of ongoing
call, etc. Output: num. of
evacuees, injuries, etc.

 LTESim [20], Event based
 Open source (in Matlab)

 Parameters: num. of transmit and
receive antennas, uplink delay,
network layout, channel model,
bandwidth, frequency, etc.
Output: pathloss, throughput, etc.

 CFAST [10], Time stepped
 Black-box (no access to source)
 Parameters: bldg geometry,

materials of construction, fire
properties, etc. Output:
temperatures, pressure, gas
concentrations: CO2, etc.

 Smoke in CFAST can decrease an agent’s visual distance in Drillsim.
 The number of ongoing communications in Drillsim can affect network pathloss

and throughput in LTEsim.
 Pathloss in LTEsim can be used to determine connectivity/coverage in Drillsim.
In our current implementation, several such dependencies specified (the actual

number of dependencies required was in the range of 10-50 for most situations).

5.2 Initial Results

Our experiments are based on the case study described above where we integrate 3
real world simulators. In our experiments, we implemented techniques for
synchronization across the three simulators: We implemented three different solutions
for time synchronization across the three simulators: Lock-step approach (LS),
conservative approach (CS), and optimistic approach (OS). Lock-step approach is the
most conservative approach for the purpose of evaluating the other two approaches,
by having a lock step schedule. All simulators advance step by step, and at any step
they synchronize by locking at data item level until the next step. The lock table is
maintained at meta-level. By locking shared data in the beginning of action and
releasing the locks at the end, we can prevent deadlocks. In OS, we consider wait time
before each rollback to be 0.5 s.

We studied the synchronization overhead and the total execution time using

Fig. 6. (a) Average synchronization overhead (b) Total execution time vs. the number

of actions.

Table 3. Comparison between HLA and Multisimulation Architecture.
Criterion HLA Multisimulation Architecture
Objective ─ Interoperability

─ Reusability
─ Semantic Interoperability, Reusability
─ Flexibility

Domain ─ Defense ─ Flexible via use of domain ontologies

Complexity
─ Low level knowledge needed
─ Lack of semantic

interoperability

─ No need to conform the internal properties
─ Semantic constraints implemented at the

metalevel
Time
Management

─ Optimistic and conservative
methods

─ Optimistic and conservative methods

Separation of
Concerns

─ Merges domain-specific and
integrated simulation aspects

─ Separate concerns related to simulation domain
to those related to integration mechanisms

different techniques. We measure synchronization overhead by adding the
synchronization overhead in all simulators. In CS, we considered the total delay time,
i.e. the duration a simulator is blocked and the locking overhead, i.e. the time needed
for acquiring or releasing locks, to calculate the synchronization overhead. In OS, we
considered the total rollback time. Figure 6-a and 6-b illustrate the average
synchronization overhead per time step and average execution time for different
numbers of actions. In our base case, the number of dependencies betweens
simulators is 30 (a reasonably large number for our case study). The synchronization
overhead in CS is much lower as compared to OS during later phases of execution.
This is due to the high rollback time in OS.

Table 3 presents a brief comparison of the reflective architecture to HLA. Using
HLA outside the defense domain such as our case study is very complex, if not
impossible. In HLA low level knowledge needed from participants. Each simulator
must use the common data format that leads to simulations that are very closely
coupled to an underlying database. Since the HLA environment is a fully distributed
simulation environment, the simulators must fully conform to the designated features
of the HLA standard. Note that transforming existing simulators to conform to the
standard may not always be feasible. In our reflective architecture each simulator can
have its own data representation, internal time management, and data management.
Therefore, we do not force the simulators to change their internal properties. Another
advantage of our reflective architecture is separation of concerns, that is, separate the
concerns related to the simulation domain from those related to the integration
mechanisms. Additionally it provides a design that is more adaptable, flexible and
easier to extend.

6 Related Work and Conclusions

To best of our knowledge, simulation integration has been studied in two domains
– (a) military command-and-control [4], [2], [5], [27], and (b) games and virtual
environments [3]. The U.S. Department of Defense (DoD) has promoted the
development of standards to provide a common framework in which simulators can
be integrated. These include standards such as SIMulator NETworking (SIMNET)
[27], Distributed Interactive Simulation (DIS) [5], Aggregate Level Simulation
Protocol (ALSP) [2], High Level Architecture (HLA) [4]. These standards provide
specific services for interoperability in niche applications, for example DIS for
human-in-the-loop simulators or ALSP for war games. The recent HLA effort has
become the defacto standard technical architecture for military simulations – it aims
to promote interoperability and reusability between simulators.

While HLA is suited to developing new simulators that can be easily integrated, its
broader applicability to combine pre-existing simulators is questionable [6], [21]. It is
a complex standard designed specifically for the military domain and is not
transparent enough – too much low level knowledge is needed from the practitioner.
HLA forces developers to provide a particular functionality or to conform to specific
standards in order to participate in the integration process; the rigid assumptions and
limitations on participants makes it difficult to integrate pre-existing simulators
without significant modification (especially in non-military domains). As in the case

with the HLA architecture, solutions in the game community are also prescriptive -
they force the developers to provide a particular functionality to participate in the
integration process and have different assumptions/limitations on how participants
interact. Such methods are unsuited to the integration of pre-existing simulators.

In this paper we proposed a reflective middleware architecture for simulation
integration that implements structural reflection to alleviate the flexibility issues in
current simulation integration techniques. In this architecture, the meta-level is
structured as a series of metamodels representing the various simulators. We have
implemented a detailed case study from the emergency response domain by
integrating 3 disparate simulators: a fire simulator (CFAST), an evacuation simulator
(Drillsim) and a communication simulator (LTEsim). Future research will focus on
addressing challenges in the complexity associated with generalizing the meta-models
for simulators, integrating simulators in other domains including earthquake and
transportation simulators, and addressing the challenges of data transformation in
multisimulations.

References

[1] Kon, F., Costa, F., Blair, G., Campbell, R.H.: The Case for Reflective Middleware,
Communications of the ACM, 45(6), 33–38, (2002)

[2] Weatherly, R., Seidel, D., Weissman, J.: Aggregate Level Simulation Protocol, Summer
Computer Simulation Conference, 953-958 (1991)

[3] Jain, S., McLean, C.R.: Integrated simulation and gaming architecture for incident
management training, Simulation, Proc. of the Winter Simulation, 904-913 (2005)

[4] Kuhl, F., Weatherly, R., Dahmann, J.: Creating Computer Simulation Systems: An
Introduction to the High Level Architecture, New Jersey, Prentice Hall (1999)

[5] Davis, P.K: Distributed Interactive Simulation (DIS) in the Evolution of DoD Warfare
Modeling and Simulation, Proceedings of the IEEE 83(8), 1138-1155, (1995)

[6] Boer, C., Bruin, A., Vebraeck, A.: Distributed simulation in industry- a survey: part 2 --
experts on distributed simulation. Winter Simulation Conference, 1061-1068 (2006)

[7] Fujimoto, M.R.: Parallel and Distributed Simulation Systems, John Wiley Inc. (2000)
[8] Mcqueen, D.: 3GPP LTE: the momentum behind LTE adoption, IEEE communication,

Vol. 47, 44-45 (2009)
[9] Balasubramanian, V., Massaguer, D., Mehrotra, S., Venkatasubramanian, N.: DrillSim: A

Simulation Framework for Emergency Response Drills, ISI, 237-248, (2006)
[10] Peacock, R., Jones, W., Reneke, P., Forney, G: CFAST– Consolidated Model of Fire

Growth and Smoke Transport (Version 6) User’s Guide, NIST Special Publication (2005)
[11] De Silva, F.N., Eglese, R.W.: Integrating Simulation Modeling and GIS: Spatial Decision

Support Systems for Evacuation Planning, JORS 51(4), 423–430 (2000)
[12] Abanades, A., Sordo, F., Lafuente, A.: Martinez-Val, J.M., Munoz, J.: Application of

computational fluid dynamics (CFD) codes as design tools, 5th Int. Conf. on ISFA (2007)
[13] HAZUS-MH: Multi-hazard Loss Estimation Methodology. User Manual (2003)
[14] Cho, S., Huyck, C.K., Ghosh, S. Eguchi, R.T.: Development of a Web-based

Transportation Modeling Platform for Emergency Response. 8th Conf. on Earthquake
Eng. (2006)

[15] CAPARS: http://www.alphatrac.com/PlumeModelingSystem
[16] Jefferson, D.: Virtual Time, ACM Trans. Programming Lang. Sys., No. 3, 404-425, (1985)
[17] Verkehr, A.: VISIM V3.6 Innovative Transportation (2001)

[18] Cameron, G., Wylie, B., McArthur, D.: PARAMICS- Moving Vehicles on the Connection
Machine, Conf. on High Performance Networking and Computer, 291– 300 (1994)

[19] Cooper, L.Y, Forney, G. P.: The consolidated compartment fire model (CCFM) computer
code application CCFM.VENTS - Part I: Physical basis. NISTIR 4342. (1990)

[20] LTE System Level Simulator: https://www.nt.tuwien.ac.at/
[21] Boer, C., Bruin, A., Vebraeck, A.: Distributed Simulation in Industry - a survey, part 3-

the HLA standard in industry, Proc. of the 40th Conf. on Winter Sim, 1094-1102 (2008)
[22] Huang, J., Tung, M., Hui, L.: Ming-Che Lee An Approach for the Unified Time

Management Mechanism for HLA Source Simulation, Vo. 81 , Issue 1, 45-56 (2005)
[23] Ramamritham, K., Calton, P.: A Formal Characterization of Epsilon Serializability, IEEE

Transactions (1995)
[24] Jalali, L., Venkatasubramanian, N., Mehrotra, S.: Reflective Middleware Architecture for

Simulation Integration, ARM’09, Urbana Champaign, Illinois (2009)
[25] Balasubramanian, V., Kalashnikov, D., Mehrotra, S., and Venkatasubramanian, N.:

Efficient and scalable multi-geography route planning, EDBT’10, Switzerland, (2010)
[26] Haas, L. M., Hernández, M.A., Ho, H., Popa, L., Roth, M.: Clio Grows Up: From

Research Prototype to Industrial Tool, Proc. ACM SIGMOD, 805-810 (2005)
[27] Pope, A.: The SIMNET Network and Protocols, Technical Report 7102, MA: BBN (1989)

