
Formal Specification of Multisimulations using Maude 
 

Leila Jalali1                  Carolyn Talcott2                  Nalini Venkatasubramanian1                   Sharad Mehrotra1 
       jalali@uci.edu                clt@csl.sri.com                           nalini@ics.uci.edu                             sharad@ics.uci.edu                            

1 University of California, Irvine, Department of Computer Science                          
2 SRI International, Computing Science Lab 

  
 

Keywords: Formal Specifications, Dependency, Maude, 
Integration, Reflection. 
 
Abstract 
 Simulation models are typically developed by domain 
experts who have an in-depth understanding of the 
phenomena being modeled and are designed to be executed 
and evaluated independently. A grand challenge is to 
facilitate the process of pulling all of independently created 
models together into an integrated simulation environment 
wherein we can model and execute complex scenarios 
involving multiple simulators. In this paper, we describe the 
use of the rewriting logic based Maude tool to specify and 
analyze such an integrated simulation environments 
(multisimulations). We discuss the representation of the 
underlying multisimulation concepts and describe the use of 
Maude capabilities to analyze multisimulations. We also 
discuss the use of Maude’s reflective capability. The idea of 
multisimulations specifications using Maude opens up an 
exciting new world of challenging applications for formal 
methods in general and for rewriting logic based formalisms 
in particular. 
 
1. INTRODUCTION 
 Building complex simulations to understand the joint 
effect of multiple phenomena (spread of hazardous material 
as a result of an earthquake, impact of obesity on health 
issues in a society) is very useful. A variety of simulators; 
e.g., loss estimation tools (HAZUS [13], INLET [14], 
CAPARS [15], CFD [12]), fire spread simulators (CFAST 
[10], CCFM [19]), activity simulators (Drillsim [9], SDSS 
[11]), transportation simulators (VISIM [17], PARAMICS 
[18]) etc., that model different aspects of disasters, their 
impacts, and response processes have been developed. For 
example, in domains such as emergency response where 
response plans and methods are validated by simulating 
disasters and their impact on people and infrastructure. 
Since these simulators are typically developed by domain 
experts who have an in-depth understanding of the 
phenomena being modeled and their evolution, they are 
designed to be executed and evaluated independently. 
Consider a fire simulator, CFAST, that simulates the impact 
of fire and smoke in a specific region and calculates the 
evolving distribution of smoke. Since fire and smoke can 
affect health conditions of individuals in the region of fire, 

one may wish to study its impact on the evacuation process 
as captured within an evacuation simulator, e.g. Drillsim. 
Similarly, the progress of fire (captured by CFAST) may 
create infeasible paths/exits for evacuation (as captured by 
Drillsim). An integrated and concurrent execution of the two 
simulators is essential to understand the adverse impacts 
caused such as increase in evacuation times or increased 
exposure to undesired particulates. Such what-if analyses 
can enable intelligent decision making to improve the 
outcome of the response. 

A grand challenge is to facilitate the process of pulling 
all of independently created simulators into an integrated 
simulation environment wherein we can model and execute 
complex scenarios involving multiple simulators. We refer 
to such an integrated simulation environment as a 
multisimulation [21], [22], [23]. To enable a system 
designer to reason about the overall correctness of a 
multisumilation, it becomes more important to have clear 
formulation and semantic modelling and to be able to carry 
out a variety of analyses based on these modelling in order 
to increase assurance of correct and expected behaviour. In 
this paper, we propose specifications to formally specify 
multisimulations and to enable a system designer to reason 
about the overall correctness of multisumilations. We 
describe the use of the rewriting logic based Maude tool 
[16] to specify and analyse multisimulations. Formulation 
and modeling as presented here can serve as a valuable form 
of documentation of systems designs and implementation 
decisions. It also provides a systematic mechanism to relate 
multisimulation requirements and the 
design/implementation descriptions.  

In section 2, we discuss some background efforts in the 
area of simulation integration. In Section 3, we explain the 
need for formal specifications of multisimulations. In 
Section 4, we explain how the rewriting logic based Maude 
language can formalize multisimulations and we illistrate 
the multisimulations specifications in Maude. We use the 
relationship between smoke level and health conditions as a 
running example. In sections 5, we discuss a case study that 
integrates multiple real world simulators using our proposed 
approach and techniques. Finally we draw conclusions. 
 
2. RELATED WORKS 

To best of our knowledge, simulation integration has 
been studied in two domains – (a) military command-and-



control [4] and (b) games and virtual environments [6]. At 
present, the universal framework for simulation integration 
is mainly referred to the high level architecture (HLA) 
standard [4]. The informal description of the HLA standard 
brings a lot of problems and limitations for not only the 
comprehension of system documentation, but also for 
developing new applications [5]. Recently, there are efforts 
intend to bridge the gap between HLA and current modeling 
formalisms [2], [3], [8]. The formal description of the HLA 
permits to highlight its key characteristics and limitations.  

While HLA is suited to developing new simulators that 
can be easily integrated, its broader applicability to combine 
pre-existing simulators is questionable [20]. It is a complex 
standard designed specifically for the military domain and is 
not transparent enough – too much low level knowledge is 
needed from the practitioner. HLA forces developers to 
provide a particular functionality or to conform to specific 
standards in order to participate in the integration process; 
the rigid assumptions and limitations on participants makes 
it difficult to integrate pre-existing simulators without 
significant modification (especially in non-military 
domains).  

In contrast to prior work on simulation integration, in our 
architecture we do not need to integrate simulations tightly 
into a common framework, but we make it feasible to semi-
automatically compose simulation models via a looser 
coupling approach which can hinder leveraging prior work. 
Unlike the significant code rewrite required in other 
approaches, our framework permits individual simulators to 
maintain their autonomy (i.e. retain their internal 
representations of time/state etc.), thereby avoiding the need 
for rigid common interfaces across simulators.   

In particular, in this paper, we explore the use of Maude 
as a formal specification framework for writing 
multisimulatins specifications. Maude is an executable 
rewriting logic language which is well suited for 
specification of object oriented and distributed systems. We 
show how Maude can be used as a simple and accurate way 
of modeling multisimulations concepts which allows the 
specifications produced and offers a support for reasoning 
about multisimulations. The level of specification is detailed 
enough to capture essential operational aspects of 
multisimulations and to allow rapid prototyping and 
debugging by directly executing the specifications. 
 
3. MULTISIMULATIONS FORMAL 

SPECIFICATION 
We address the challenges in multisimulations by 

developing a middleware to achieve integration of multiple 
simulators. A major advantage of developing a middleware 
for multisimulations is that it hides the details of the 
underlying autonomous simulators and platform specific 
issues. A reflective architecture [1] is well suited for this 
task since it provides mechanisms to: (i) observe changes in 
desired attributes of independently executing simulations 
at runtime (reification), (ii) analyze and evaluate whether 
changes in the observed attributes impact parameters in 
other simulators and, (iii) adapt the execution of the 
multisimulation by enforcing the changes back into the 
impacted simulators (reflection). Such an observe-analyze-
adapt approach is at the crux of a reflective architecture for 
integrated simulation environments.  

Figure 1 shows pyramid of specifications. The first level 
is a detailed base-level view that specifies simulators 

 

Fig. 1.  Pyramid showing summary of specifications. The three levels indicates (a) a detailed base-level view that specifies simulators, 
(b) a multisimulation wide view with integration modules and abstract properties extracted from the underlying base-level simulators, 

and (c) the end view point from the perspective of the complex analysis using underlying multisimulations. 



including each simulator’s specific platform, source code, 
databases and parameter models. The second level (meta-
level) describes a multisimulation wide view with abstract 
properties extracted from the underlying components (e.g. 
inter-simulator’s dependencies) and modules need for the 
integration. Meta-level is built on top of base-level entities 
to describe the base-level entities and the relationships 
between them (e.g. a simulator tuple to describe simulators 
properties, and a dependency descriptor to specify a 
dependency between simulators). Meta-level entities are 
captured in a pre-processing step using the base-level 
simulators. A variety of coordination and interaction 
mechanisms can be modeled using meta-level entities 
including synchronization and data exchange. We call these 
mechanisms meta-level modules. Meta-level modules are 
part of the run time system which ensure the correctness of 
multisimulation and controls the run-time behavior of base-
level simulators. The third level specifies the end view point 
from the perspective of the services and tools provided on 
top of multisimulations for what-if analysis and smart 
decision making using multiple simulators and data sources. 

Why use formal specification in Maude? To assure 
correct observe-analyze-adapt cycle in dynamically 
changing simulation models, it is important to have a 
rigorous semantic model of multisimulations: the base-level 
simulators, the data sources, the middleware that provide the 
coordination among multiple simulators (e.g. meta-level 
entities and modules), and the sharing and interactions 
among these elements. Using such a formal model, designs 
can be analyzed to clarify assumptions that must be made 
for the correct integration, and to establish consistent 
multisimulations based on assumptions.  

In this paper, we specifically deal with the formulation 
and modeling that describe different components of 
multisimulation. In our approach, we describe a semantic 
model for specifying and reasoning about multisimulations 
and we show how different meta-level modules (e.g. 
synchronizer) can be used to coordinate the consistent flow 
of information between multiple simulators. From a higher 
level point of view, we specify the end to end relationship to 
provide a service in response to a request from a simulator 
(e.g. a request to get input parameters). From a low-level 
point of view we specify the properties of the dependencies 
between simulators (e.g. to reflect the updates from one 
simulator into another simulator).  

Although our framework has been developed in Java, we 
used the rewriting logic language Maude for formal 
specification of multisimulations, because a logic-based 
language is better suited to deal with constraints, reflection, 
and the planning process. The reflective capability of Maude 
makes it well suited to programming simulators’ 
interactions in multisimulations that has been crucial in our 
studies to date. Maude specifications can be executed using 
the Maude rewrite engine which allows their use for system 

prototyping and debugging of specifications. In the 
following sections, we discuss the representation of the 
underlying multisimulation concepts and describe the use of 
model checking and reasoning capabilities of Maude to 
analyze multisimulations. The idea of multisimulations 
specifications using Maude opens up an exciting new world 
of challenging applications for formal methods in general 
and for rewriting logic based formalisms in particular.  

 
4. FORMAL SPECIFICATION USING MAUDE 
 In this section, we provide some fundamental concepts 
to specify simulators and components of multisimulation 
and describe how the concepts can be presented in Maude. 
We want to provide a formalism that gives us the structure 
to have simulation knowledge without committing to a 
particular simulator or its internal properties (e.g. time 
advancement). Our formalism provides a semantic model 
for specifying and reasoning about multisimulations. 
  
4.1. Rewriting Logic and Maude 

 Maude is a language and a system based on rewriting 
logic that supports membership equational logic and 
rewriting logic specification and programming of systems 
[16]. Rewriting logic is a flexible and expressive logical 
framework that can naturally deal with state and with highly 
nondeterministic concurrent computations. 

In Maude, object-oriented systems are specified by 
object-oriented modules in which classes and subclasses are 
declared. A class definition ܥ|ܽଵ: ଵܵ, … , ܽ௡: ܵ௡ defines a 
class of name ܥ with attribute name ܽ௜ and their 
corresponding sorts ௜ܵ. Objects of a class ܥ are record-like 
structures of the form ൏ ܱ: :ଵܽ|ܥ ,ଵݒ … , ܽ௡: ௡ݒ ൐, where O 
is the name of the object, and ݒ௜ are the values of its 
attributes. Objects can interact in a number of different 
ways, including messages. Messages are declared in Maude 
in Msg clauses, in which the syntax and arguments of the 
messages are defined.The concurrent state of a system is 
called a configuration that has the structure of a multiset 
made up of objects and messages that evolves by concurrent 
rewriting using rules that describe the effects of the 
communication events of objects and messages. The general 
form of such rewrite rules is: 
 :ሿݎሾ݈ݎܿ
ଵܯ … ௠ܯ ൏ ଵܱ: ଵݏݐݐܽ|ଵܥ ൐ ڮ ൏ ௡ܱ: ܥ௡|ܽݏݐݐ௡ ൐ 
ൌ൐ ൏ ௜ܱభ: Ԣ௜భݏݐݐԢ௜భหܽܥ ൐ ڮ ൏ ௜ܱೖ

: Ԣ௜ೖܥ
หܽݏݐݐԢ௜ೖ

൐ 

       ൏ ܳଵ: ᇱᇱܥ
ଵหܽݏݐݐᇱᇱ

ଵ ൐ ڮ ൏ ܳ௣: ᇱᇱܥ
௣หܽݏݐݐᇱᇱ

௣ ൐ 
ᇱܯ       

ଵ … ᇱܯ
௤ 

 . ݀݊݋ܥ ݂݅
where ݎ is the rule name, ܯଵ … ᇱܯ ௠ andܯ

ଵ … ᇱܯ
௤ are 

messages, ଵܱ … ௡ܱ and ܳଵ … ܳ௣ are object identifiers, 
ଵܥ … Ԣ௜భܥ ,௡ܥ … Ԣ௜ೖܥ

 and ܥᇱᇱ
ଵ … ᇱᇱܥ

௣ are classes, ݅ଵ … ݅௞ is a 
subset of 1 … ݊, and ݀݊݋ܥ is a Boolean condition. The result 
of applying such a rule is that the messages are consumed 



and the state and possibly the classes of objects ௜ܱభ … ௜ܱೖ
 

may change and new messages ܯᇱ
ଵ … ᇱܯ

௤ and new objects 
ܳଵ … ܳ௣ are created. 
 
4.2. Modeling Multisimulations in Maude 
 In this section we describe how multisimulations can be 
presented in Maude. A multisimulation, ܵܯ, consists of a 
set of autonomous pre-existing simulators, ଵܵ, ܵଶ,…, ܵ௡ that 
execute concurrently in an integrated environment. Before 
we develop the multisimulation model, we first need to 
define the concept of a simulator and develop it using 
Maude. We consider each simulator as a simulator template. 
Simulator templates will be presented by Maude classes. In 
Maude, each class is defined by a name and a set of 
attributes (of certain sort) that describe the simulators. Each 
simulator will be then represented by Maude objects. Each 
object belongs to a class and it may change during its 
lifetime. All simulator templates will inherit from class 
Sim-Oid, which described the common features that any 
simulator exhibits. 
Class Sim-Oid | conf : configuration . 

Predefined sort configuration allows us to store 
configuration of Maude objects and messages. Attribute 
conf store a set of Maude objects representing the 
properties of multisimulation. Each simulator is modeled as 
a three tuple ௜ܵ ൌ൏ ௜ܶ, ,௜ܣ ௜ܦ ൐ where ௜ܶ is the type of the 
simulator, ܦ௜ is the data items that the simulator reads or 
updates, and ܣ௜ is the set of actions executed by the 
simulator. We consider the type of the simulator based on 
the time management mechanism that they employ as time 
stepped or event based [7]. In time stepped simulators, for 
each execution of the main control loop the simulation time 
is incremented by one quantum of time Δt. In the case of 
event based simulators, execution is driven by an event list, 
ܧ ൌ ሼ݁௠|݉ ൌ 1,2, … ሽ, each event has a time stamp (usually 
causality preserving) and the simulation time jumps from 
one event time stamp to the next. For every two events ݁௔ 
and ݁௕ we have the following property: ݌݉ܽݐݏ݁݉݅ݐሺ݁௔ሻ ൑
ܽ ሺ݁௕ሻ when݌݉ܽݐݏ݁݉݅ݐ   ൑ ܾ. In our notation, ௜ܶ א
ሼܶܵ,  ሽ, where TS and EB correspond to time stepped andܤܧ
event based simulators respectively. We represent ௜ܶ by an 
operation clock which incremented using Maude rules. 
 ௜ is the data items that the simulator reads or updates. Forܦ
each data item ݀ א  ,ሺ݀ሻ denotes the domain of d݉݋ܦ ,௜ܦ
which is a set of values that can be assigned to d. In the 
following example, smokeHigh represents the smoke level 
in the activity simulator, ACS with a specific assigned value 
using Maude variables.  

 
sort Sim-Oid . 
op ACS : -> Sim-Oid . *** Activity Simulator 
op clock:_ : Int -> Attr [ctor] . 
op smokeHigh:_ : Bool -> Attr [ctor] . 
op f1 : Int Int -> Bool . 

vars n t c : Int . 
var b : Bool . 
rl[TS] :  
[acs : ACS | smokeHigh: b, clock: c]  
=> [acs : ACS | smokeHigh: f1(n,t), clock: 
(c + Δt)] . 
rl[EB] :  
[acs : ACS | smokeHigh: b, clock: c]  
=> [acs : ACS | smokeHigh: f1(n,t), clock: 
(c + timestamp(e)] . 
 

The state, ሼΦ௜ሽ௧௦ of the simulator ௜ܵ is the snapshot of its 
data items ܦ௜ and their values. A state maps every data item 
݀ א ݒ where ,ݒ ௜ to a valueܦ א  ሺ݀ሻ. Thus a state can be݉݋ܦ
expressed as a set of ordered pairs of data items in ܦ௜ and 
their values, ሼΦ௜ሽ௧௦ ൌ ሼሺ݀, ݀ |ሻݒ א ݒ ,௜ܦ א  .{ሺ݀ሻ݉݋ܦ
Associated with each state is a timestamp, ts. Actions trigger 

state change; we use the notation ሼΦ௜ሽ௧௦ 
௔ೖ
ሱሮ ሼΦ′௜ሽ௧௦′ to 

indicate that when an action ܽ௞ in simulator ௜ܵ executes 
from a state ሼΦ௜ሽ௧௦, it results in a stateሼΦ′௜ሽ௧௦′. Therefore, the 
state is changed after the execution of action. ܣ௜ is the set of 
actions that is ܣ௜ ൌ ሼܽ௞|  ݇ ൌ 1, … , ݊ሽ. There is a total 
order ൏௜ on the set of actions of a simulator. Each action, 
ܽ௞, of a simulator is an atomic unit of processing that reads 
and modifies the data and changes simulator’s state. Each 
action captures changes that occur in a tick (or a step) in a 
time-stepped simulator or the execution of an event in an 
event-based simulator. In a time stepped simulator it 

advances by ∆ݐ, ሼΦ௜ሽ௧௦
௔ೖ
ሱሮ ሼΦ′௜ሽ௧௦ା∆௧. In an event based 

simulator it advances to the time stamp of the event ݁௠ that 

is executed, ሼΦ௜ሽ௧௦ 
௔ೖ
ሱሮ ሼΦ௜ሽ௧௦ା௘೘ሺ௧௦ሻ, where ݁௠ሺݏݐሻ is the 

timestamp advanced by ݁௠. Therefore, an action ܽ௞ captures 
changes that occur in a clock tick (or a step) in a time 
stepped simulator or the execution of an event in an event 
based simulator. 
  
4.2.1. Inter-simulator Dependencies 

There are several challenges in building multisimulations 
by integrating multiple autonomous simulation models. 
Given the potential black-box nature of simulators 
developed by experts in diverse domains we believe that 
achieving a completely automated plug-and-play integration 
of simulators is a very difficult, if not infeasible challenge. 
Our goals are more modest – we intend to develop enabling 
tools that will simplify the task of simulation integration 

 
Fig. 2. Inter-simulators dependencies. 



with a wide range of simulators that vary in the degree to 
which they expose their interfaces and implementations. 
One challenge arises from the fact that each simulator in a 
multsimulation uses its own models and entities; these must 
now be integrated in the context of a single simulation. Data 
items in simulators are abstractions of real world entities. In 
order to integrate various simulators, first we need to 
discover and analyze the relationship between multiple 
simulators’ data items. Consider two different simulators ௜ܵ 
and ௝ܵ. As depicted in Figure 2, each simulator abstracts 
some real world entities into its own simulated world data 
items (using a function, തܲሻ. Assume ݀௜ א  ௜ represents theܦ
real-world entity ߙ ( തܲሺߙሻ ൌ ݀௜), and ௝݀ א  ௝ represents theܦ

real-world entity ߙԢ (ܲԢഥ ሺߙԢሻ ൌ ௝݀). There are three possible 
relationships between ߙ and ߙԢ: 
(1) Dependent entities: ߙ and ߙԢ are dependent entities in 
real world where changes in one entity can affect the other 
one (e.g. ߙ represents the amount of smoke in the fire 
simulator and ߙԢ represents the health conditions in the 
activity simulator). 
(2) Exact match entities: ߙ and ߙԢ represent the exact same 
entity in different simulators (both ߙ and ߙᇱ represent 
current temperature).  
(3) No match: ߙ and ߙԢ represent two independent entities 
without any semantic relationship (e.g. ߙ represents the 
individual’s speed of walking in the activity simulator and 
 Ԣ represents the thickness of walls of the building in theߙ
fire simulator). 

In this paper, we consider the first type of relationship, 
dependent entities, and capture it by the concept of inter-
simulator dependency.  
Dependency: Let ߙ and ߙԢ  be two real world entities with 
respect to the data items ݀௜ א ௜ and ௝݀ܦ א  ௝ in twoܦ
different simulators, ݀௜ is dependent on ௝݀ denoted by Θ(݀௜, 

௝݀ሻ if a change to ߙ implies a change to ߙԢ.  
If a change in one entity triggers also changes in the 

dependent one, we observe transformational dependency. 
The integration of various simulators results in the 
introduction of certain inter-simulator dependencies, which 
were not present prior to integration. An example of such a 
relationship is that smoke from fire simulator can affect 
someone’s health in an activity simulator. We use a 
dependency descriptor to specify the transformational 
dependency Θ(݀௜, ௝݀ሻbetween a data item ݀௜ in simulator ௜ܵ 
and a data item ௝݀ in simulator ௝ܵ when updates on ݀௜ need 

to be reflected into ௝݀: ௜ܵ
ௗ
՜ ௝ܵ ൌ൏ ݀௜ א ,௜ܦ ௝݀ א ,௝ܦ ݂ ൐. 

Note that dependency notion is directional. ௜ܵ is the supplier 
simulator,  ௝ܵ is the consumer simulator. In general, there 
can be more than one dependency between two simulators 
describing multiple aspects of their relationships. A 
dependency function, f, defines the relationship between 
two data items values. Each data item has a value at any 

given state, ሺ݀௜, ௜ሻݒ א ሼΦ௜ሽ௧௦ and ൫ ௝݀, ௝൯ݒ א ሼΦ௝ሽ௧௦ᇱ. At each 
iteration, the new value of ௝݀ is determined by the 
dependency function ݂: ሺ݀௜ሻ݉݋ܦ ՜ ሺ݉݋ܦ ௝݀ሻ, that is 
௝ݒ ൌ ݂ሺݒ௜ሻ. For each dependency between simulators such a 
dependency function is defined at meta-level.  
Local data vs. Interdependent data. Dependencies 
described by dependency descriptors enable us to partition 
the set of data items at a simulator, ܦ௜, into local data items, 
௜ܦܮ ௜, such thatܦܵ ,௜, and interdependent data itemsܦܮ ת
௜ܦ and ,׎=௜ܦܵ ൌ ௜ܦܮ ׫  ௜. Furthermore, if there is aܦܵ
ሺ݀ᇱ א ௝ሻܦ ՜ ሺ݀ א ݅ ,௜ሻܦ ്j, then ݀߳ ܵܦ௜ and ݀Ԣ߳ ܵܦ௝. For 
example, smoke level in Fire simulator and health condition 
in an activity simulator are an interdependent data items. 
Internal actions vs. External actions. Partitioning of data 
items at each simulator into local and interdependent data 
allows us to define the notion of internal and external 
actions. Synchronization among simulators in a 
multisimulation is only needed during external action 
processing, and we can eliminate it altogether during 
internal action processing periods.  Internal actions, ܣܫ௜, are 
those actions that read or modify only the portion of data 
that is local to the simulator. External actions, ܣܧ௜, access at 
least one data item which is an interdependent data item. 
Dependency sets. For each simulator, ௝ܵ, we create a 
dependency set that  includes those simulators updating data 
items which are interdependent with the data items of ௜ܵ. 
The dependency set includes all the simulators ௜ܵ for which 

௝ܵ depends upon a data item updated by ௜ܵ. That is: 

൫݌݁ܦ ௝ܵ൯ ൌ ሼ ௜ܵ| ׌ ௜ܵ
ௗ
՜ ௝ܵ ൌ൏ ݀௜ א ,௜ܦ ௝݀ א ,௝ܦ ݂, ܴ ൐ .ݏ  ௜݀  .ݐ א

,௜ܦܵ ௝݀ א  ௝ሽ. Finally, we represent all the dependency setsܦܵ
in the multisimulation by ܲܧܦ ൌ׫௜ୀଵ

௡ ൫݌݁ܦሺ ௜ܵሻ൯. 
 
4.2.2. Simulators interactions using Maude messages 

Inter-simulator dependencies result in the need for 
sending updates (i.e. Muade messages) from one simulator 
to another simulator in order to preserve dependencies. We 
consider each simulator’s execution as a sequence of actions 
(steps in time stepped simulators or events in event based 
simulators). We introduce synchronizer object that 
coordinates the execution of actions from multiple 
simulators. Thus multisimulation execution state consists of 
set of simulator objects Sim-Oid (actors), synchronizer 
object, and any messages pending delivery. A simulator can 
execute an internal action whenever enabled. However, it 
requests permission to execute an external action and 
executes when a granted message arrives, and sends 
updates. The strategy used in the synchronizer to address the 
synchronization problem in multisimulations is out of the 
scope of this article [23]. Simulators communicate with 
synchronizer by using Maude messages. For the external 
actions (i.e. read or modify interdependent data items) the 
simulator needs to communicate with meta-level and sends 
them synchronizer (reification). Upon receiving such 



external actions from a simulator, the synchronizer 
generates messages to notify dependent simulators 
(reflection). Figure 3 shows the sequence diagram of the 
interactions between simulator templates and synchronizer. 
Consider a simulator ௜ܵ in state ሼΦ௜ሽ௧೔

 performs an external 
action ܽ௞ which changes its state and updates an 
interdependent data item, ݀௜, to its new value, ݒ௜Ԣ, such that 
ሺ݀௜, ௜Ԣሻݒ א ሼΦ௜ሽ௧೔ᇱ. ௜ܵ posts this update and the current 

state’s timestamp to synchronizer. Let ௜ܵ
ௗ
՜ ௝ܵ ൌ൏ ݀௜ א

,௜ܦ ௝݀ א ,௝ܦ ݂ ൐  be a dependency. A meta-action 
<݉ܽ൫݀௜, ௝݀൯, ௜Ԣݐ ൐   is an action generated by the 
synchronizer as the result of an external action, ሼΦ௜ሽ௧೔

 ܽ௞ 
ሼΦ௜ሽ௧೔ᇱ, executed in a supplier simulator, ௜ܵ, performing an 
update on an interdependent data item ݀௜. Associated with 
each meta-action is a timestamp which is the timestamp of 
the state of ௜ܵ that contains the new value of ݀௜ after the 
update performed by ܽ௞. In our reflective architecture, the 
updates are reified from supplier simulators and represented 
at meta-level using meta-actions. A wrapper action, 
൫ܽݓ> ௝݀൯, ௥ݐ ൐, is the action taken by consumer simulator’s 
wrapper ( ௝ܵ’s wrapper), to reflect the update of the 
corresponding meta-action into ௝݀. Associated with a 
wrapper action is a time, ݐ௥, that is the timestamp of the 
state of ௝ܵ when the actual update is applied. 

We describe the set of all messages by ݃ݏܯ which 
includes messages between simulators and synchronizer 
(e.g. request to execute an action, allow). In the following 
example, fire simulator sends the smoke level to activity 
simulator using a Maude operation to create a message 
smokeLevel. This message includes the amount of smoke 
and the time in fire simulator, both defining as integers. 

 
op smokeLevel : Sim-Oid Sim-Oid Int Int -> 
Msg [ctor] .   
rl[FS] :  
[fs : FS | asim: acs, smoke: n, temp: t] 
=> [fs : FS | asim: acs, smoke: n, temp: t] 
smokeLevel(fs,acs,n,t) . 
rl[AS] :  
smokeLevel(fs,acs,n,t) 
[acs : ACS | smokeHigh: b, clock: c]  
=> [acs : ACS | smokeHigh: f1(n,t), clock: 
(c + 1)] . 
 
4.2.3. Multisimulations configuration 

A Multisimulation configuration, ܥ, represents a 
snapshot of the multisimulation state. It includes the states 
of all base-level simulators (ሼΦ௜ሽ௧௦ represents the recent 
state of ௜ܵ), dependency sets of each simulator  (݌݁ܦሺ ௜ܵሻ), 
and a set of messages (݃ݏܯ):  ܥ௫ ൌ ሺڂ ሼΦ௜ሽ௧௦ሻ ௡׫

௜ୀଵ
ሺڂ ሻܲܧܦ ׫ ௡݃ݏܯ

௜ୀଵ . Figure 4 shows an example of 
multisimulation configuration, ܥ௫. The multisimulation 
includes two simulators ௜ܵ and ௝ܵ each has their own state, 

represented by  ሼΦ௜ሽ௧೔
 and ሼΦ௝ሽ௧೔

 respectively. There exists 
a dependency between smoke level ௜ܵ in and health 

condition ௝ܵ in specified by ௜ܵ
ௗ
՜ ௝ܵ ൌ൏ ݁݇݋݉ݏ א

,௜ܦ ݄ݐ݈݄ܽ݁ א ,௝ܦ ݂ ൐. As a result of an update on smoke 
level by ௜ܵ a message is generated <݉ܽሺ݁݇݋݉ݏ, ,ሻ݄ݐ݈݄ܽ݁ ௜ݐ ൐. 
The message has been sent to ௝ܵ to actually reflect the into 
update health condition. When the update performed an ack 
will be sent to the meta-level synchronizer. In this example, 
the actual update is not performed yet. Therefore the 
message is included in the configuration.  

Configurations change by transitions from one 
configuration to the next configuration. In other word, each 
transition results in a new multisimulation configuration. 

Formally a transition ߬ has the form ߬: ܥ௫  
௟

՜  ݈ ௫ାଵ whereܥ
is the label of the trigger that initiates the transition. We 
define a set of trigger labels, L, for transitions among 
different configurations: 
ܮ ൌ ሼ ࡽࡱࡾሺ ௜ܵ, ܽ௞ሻ, ,ሺܽ௞ࡰࡼࢁ ݉ܽሺ݀௜, ,௜Ԣሻሻݐ ሺࢀࡱࡳ ௝ܵ, ሺࡷ࡯࡭ ,௝ሻݐ ௝ܵ, ൏
൫ܽݓ ௝݀, ௥൯ݐ ൐,  {ሻ݌݁ܦሺࡲࡰࡹ
These labels work as the rules in the multisimulation 
framework:  
ሺࡽࡱࡾ - ௜ܵ, ܽ௞ሻ indicates that ௜ܵ requests to execute an 
external action ܽ௞. (i.e. on an interdependent data item). 

,ሺܽ௞ࡰࡼࢁ - ݉ܽሺ݀௜,  ௜Ԣሻሻ indicates that an external actionݐ
executed by a simulator at time ݐ௜Ԣ which results in the 
change of the state of the simulator and sending the 
updates on an interdependent data item (݀௜ሻ to meta-level. 

ሺࢀࡱࡳ - ௝ܵ,  ,௝ from a simulatorݐ ௝ሻ indicates a request at timeݐ

௝ܵ to receive the updates. 
ሺࡷ࡯࡭ - ௝ܵ, ൫ܽݓ ௝݀,  ௥൯ሻ indicates that ௝ܵ executedݐ
corresponding wrapper-actions to reflect the updates. 

 ሻ indicates the updates on the dependencies݌݁ܦሺࡲࡰࡹ -
among multiple simulators (i.e. remove a dependency, 
add a new dependency). 

We can have sequence of transitions, ߨ, in 

multisimulations: ߨ ൌ ሾ ܥ௫
௟

՜ ݔ|௫ାଵܥ א Գሿ in which each 

 
Fig. 5. Example of a sequence of multisimulation 

configuration transitions. 

 
Fig. 3. Simulators interactions. 



transition has a trigger label. An example of such a sequence 
is (Fig. 5): 

ߨ ൌ ଴ܥ
ோாொሺௌ೔,௔ೖሻ
ሱۛ ۛۛ ۛۛ ሮۛ ଵܥ

௎௉஽ሺ௔ೖ,௠௔ሺௗ೔,௧೔ᇱሻሻ 
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ ଶܥ

ீா்൫ௌೕ,௧ೕ൯
ሱۛ ۛۛ ۛۛ ሮۛ  ଷܥ

஺஼௄ሺௌೕ,௪௔൫ௗೕ,௧ೝ൯ሻ
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛሮ  .ସܥ

The sequence specifies an external action performed at a 
supplier simulator ௜ܵ  which results in sending the updates to 
the consumer simulator ௝ܵ. When the consumer simulator ௝ܵ 

requests to receive the meta-actions, ܶܧܩ ൏ ௝ܵ, ௝ݐ ൐, meta-

actions will be sent to  ௝ܵ which results in generating the 

correspondent message in  ܥଶ to actually reflect the updates 
to the target data. When the updates applied the ack will be 

sent to the meta-level, ܭܥܣሺ ௝ܵ, ൫ܽݓ ௝݀,  ௥൯ሻ, and theݐ

message will be removed from the configuration in ܥସ. 
 

4.3. Using the Reflective Capability of Maude  
There is a variety of metadata associated with the 

executable model of a multisimulation. This includes 
information justifying or qualifying a rule and rate 
information about a rule. Furthermore, as the 
multisimulation system grows, consistency checks become 
more important and it is useful to be able to answer simple 
questions such as “What are all the rule labels?” or “What 
constants of sort Sim-Oid have been declared?”. Using the 
reflective capability of Maude make it easy to formalize 
such metadata and use it to further control experiments or to 
answer questions and carry out various meta-analyses. 
Rather than giving here a detailed explanation of the 
representations of terms and modules for which we refer the 
reader to [16] we instead illustrate them with simple 
examples. There are a number of important metalevel 
functions that has been efficiently implemented in the 
META-LEVEL module. For our purposes, we focus on the 
functions meta-reduce and meta-apply. The function 
meta-reduce returns the representation of fully reduced 
from a term using the equations as a parameter. The most 
important such function for our purposes is the meta-
apply function, that simulates the application of a given 
rewrite rule to a term. We use meta-reduce and meta-
apply as basic strategy expressions and then extend the 
module META-LEVEL by additional strategy expressions and 
corresponding semantic rules. 

In particular, we can analyze the behavior of a module 
such as the specification of interactions by writing an 
adequate strategy that will explore all the behaviors from an 
initial state up to termination. One correctness criterion in 
multisimulations is checking that in all execution sequences 
all messages arrive to their destinations. One can easily 
write a predicate to check this requirement. 

 
5. INTEGRATING REAL-WORLD SIMULATORS 

To ground our work in reality, we develop a case study 
using three pre-existing real world simulators: Drillsim [9], 
CFAST [10], and LTESim [24]. Table 1 summarizes the 
three simulators and their properties. In our integration 
scenario, the fire simulator, CFAST, is used to simulate the 
impact of fire in a specific region and calculates the 
evolving distribution of smoke; fire and smoke can affect 
evacuation process, e.g. people’s health condition, in the 
activity simulator, Drillsim, which has impacts on 
communication patterns in communication simulator, 
LTEsim. Such integration is useful to conduct better what-if 
analyses and understand various factors that can adversely 
delay evacuation times or increase exposure and 
consequently used to make decisions that can improve 
safety and emergency response times. There are 3 key 
modules developed at meta-level: (a) a Meta-Synchronizer 
which uses the proposed approaches to monitor and control 
concurrent execution in the multisimulation, (b) an Analyzer 
which analyzes the interactions between simulators using 
meta-models to capture the dependencies, (c) which 

Table 1. Three Real-World Simulators. 

Activity 
Simulator 

 DrillSim [9],time-stepped, open source (Java) 
 Parameters: health profile, visual distance, speed 

of walking, num. of ongoing call, etc. Output: 
num. of evacuees, injuries, etc. 

Communication 
Simulator 

 LTESim [24], event-based, open source (Matlab) 
 Parameters: num. of transmit and receive 

antennas, uplink delay, network layout, channel 
model, bandwidth, frequency, etc. Output: 
pathloss, throughput, etc. 

Fire 
Simulator 

 CFAST [10], time-stepped, black-box (no access 
to source) 

 Parameters: building geometry, materials of 
construction, fire properties, etc. Output: 
temperatures, gas concentrations: CO2, etc. 

 
Fig. 4. Multisimulation configuration. 

 
Fig. 5. Example of a sequence of configurations. 



manages the data exchange between simulators through the 
design of wrapper modules for each simulator. Table 2 
presents a brief comparison of our approach to HLA. Our 
proposed architecture makes it feasible to semi-
automatically compose simulation models via a looser 
coupling approach and provides a design that is more 
adaptable, flexible and easier to extend.  

 
6. CONCLUSION  

We used the rewriting logic language Maude for formal 
specification of multisimulations.  We discuss the use of 
Maude’s reflective capability for meta modeling and 
analyzing multisimulations. To our knowledge this is the 
first achieved architecture for simulation integration through 
the use of reflection and Maude. Reflection provides the 
mechanisms needed to access and modify the environment 
of a given simulator and the flexibility provided by the 
reflective architecture is a perfect match for the challenges 
in simulation integration. The reflective capability of Maude 
makes it well suited to programming simulators’ 
interactions in multisimulations that has been crucial in 
multisimulations. Future research will focus on addressing 
challenges in the complexity associated with generalizing 
the meta-models for simulators, integrating simulators in 
other domains including earthquake and transportation 
simulators, and addressing the challenges of data 
transformation in multisimulations. 
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Table 2. Comparison between HLA and Multisimulations.
Criterion HLA Multisimulations 
Objective ─ Interoperability 

─ Reusability 
─ Semantic Interoperability, 

Reusability, Flexibility 
Formal 
Specification ─ DVES/HLA ─ Maude 

Domain 
─ Defense 

─ Flexible via use of  domain 
ontologies [21] 

Complexity ─ Low level 
knowledge 
needed 

─ Lack of semantic 
interoperability 

─ No need to conform the 
internal properties 

─ Semantic constraints 
implemented at the metalevel 
[22] 

Time 
Management 

─ Optimistic and 
conservative 
methods 

─ Optimistic, Conservative, 
and Hybrid methods  

─ Relaxed dependencies [23] 
Separation of 
Concerns 

─ Merges domain-
specific and 
integrated 
simulation aspects 

─ Separate concerns related to 
simulation domain to those 
related to integration 
mechanisms [21] 


