
Formal Specification of Multisimulations using Maude

Leila Jalali1 Carolyn Talcott2 Nalini Venkatasubramanian1 Sharad Mehrotra1
 jalali@uci.edu clt@csl.sri.com nalini@ics.uci.edu sharad@ics.uci.edu

1 University of California, Irvine, Department of Computer Science
2 SRI International, Computing Science Lab

Keywords: Formal Specifications, Dependency, Maude,
Integration, Reflection.

Abstract
 Simulation models are typically developed by domain
experts who have an in-depth understanding of the
phenomena being modeled and are designed to be executed
and evaluated independently. A grand challenge is to
facilitate the process of pulling all of independently created
models together into an integrated simulation environment
wherein we can model and execute complex scenarios
involving multiple simulators. In this paper, we describe the
use of the rewriting logic based Maude tool to specify and
analyze such an integrated simulation environments
(multisimulations). We discuss the representation of the
underlying multisimulation concepts and describe the use of
Maude capabilities to analyze multisimulations. We also
discuss the use of Maude’s reflective capability. The idea of
multisimulations specifications using Maude opens up an
exciting new world of challenging applications for formal
methods in general and for rewriting logic based formalisms
in particular.

1. INTRODUCTION
 Building complex simulations to understand the joint
effect of multiple phenomena (spread of hazardous material
as a result of an earthquake, impact of obesity on health
issues in a society) is very useful. A variety of simulators;
e.g., loss estimation tools (HAZUS [13], INLET [14],
CAPARS [15], CFD [12]), fire spread simulators (CFAST
[10], CCFM [19]), activity simulators (Drillsim [9], SDSS
[11]), transportation simulators (VISIM [17], PARAMICS
[18]) etc., that model different aspects of disasters, their
impacts, and response processes have been developed. For
example, in domains such as emergency response where
response plans and methods are validated by simulating
disasters and their impact on people and infrastructure.
Since these simulators are typically developed by domain
experts who have an in-depth understanding of the
phenomena being modeled and their evolution, they are
designed to be executed and evaluated independently.
Consider a fire simulator, CFAST, that simulates the impact
of fire and smoke in a specific region and calculates the
evolving distribution of smoke. Since fire and smoke can
affect health conditions of individuals in the region of fire,

one may wish to study its impact on the evacuation process
as captured within an evacuation simulator, e.g. Drillsim.
Similarly, the progress of fire (captured by CFAST) may
create infeasible paths/exits for evacuation (as captured by
Drillsim). An integrated and concurrent execution of the two
simulators is essential to understand the adverse impacts
caused such as increase in evacuation times or increased
exposure to undesired particulates. Such what-if analyses
can enable intelligent decision making to improve the
outcome of the response.

A grand challenge is to facilitate the process of pulling
all of independently created simulators into an integrated
simulation environment wherein we can model and execute
complex scenarios involving multiple simulators. We refer
to such an integrated simulation environment as a
multisimulation [21], [22], [23]. To enable a system
designer to reason about the overall correctness of a
multisumilation, it becomes more important to have clear
formulation and semantic modelling and to be able to carry
out a variety of analyses based on these modelling in order
to increase assurance of correct and expected behaviour. In
this paper, we propose specifications to formally specify
multisimulations and to enable a system designer to reason
about the overall correctness of multisumilations. We
describe the use of the rewriting logic based Maude tool
[16] to specify and analyse multisimulations. Formulation
and modeling as presented here can serve as a valuable form
of documentation of systems designs and implementation
decisions. It also provides a systematic mechanism to relate
multisimulation requirements and the
design/implementation descriptions.

In section 2, we discuss some background efforts in the
area of simulation integration. In Section 3, we explain the
need for formal specifications of multisimulations. In
Section 4, we explain how the rewriting logic based Maude
language can formalize multisimulations and we illistrate
the multisimulations specifications in Maude. We use the
relationship between smoke level and health conditions as a
running example. In sections 5, we discuss a case study that
integrates multiple real world simulators using our proposed
approach and techniques. Finally we draw conclusions.

2. RELATED WORKS

To best of our knowledge, simulation integration has
been studied in two domains – (a) military command-and-

control [4] and (b) games and virtual environments [6]. At
present, the universal framework for simulation integration
is mainly referred to the high level architecture (HLA)
standard [4]. The informal description of the HLA standard
brings a lot of problems and limitations for not only the
comprehension of system documentation, but also for
developing new applications [5]. Recently, there are efforts
intend to bridge the gap between HLA and current modeling
formalisms [2], [3], [8]. The formal description of the HLA
permits to highlight its key characteristics and limitations.

While HLA is suited to developing new simulators that
can be easily integrated, its broader applicability to combine
pre-existing simulators is questionable [20]. It is a complex
standard designed specifically for the military domain and is
not transparent enough – too much low level knowledge is
needed from the practitioner. HLA forces developers to
provide a particular functionality or to conform to specific
standards in order to participate in the integration process;
the rigid assumptions and limitations on participants makes
it difficult to integrate pre-existing simulators without
significant modification (especially in non-military
domains).

In contrast to prior work on simulation integration, in our
architecture we do not need to integrate simulations tightly
into a common framework, but we make it feasible to semi-
automatically compose simulation models via a looser
coupling approach which can hinder leveraging prior work.
Unlike the significant code rewrite required in other
approaches, our framework permits individual simulators to
maintain their autonomy (i.e. retain their internal
representations of time/state etc.), thereby avoiding the need
for rigid common interfaces across simulators.

In particular, in this paper, we explore the use of Maude
as a formal specification framework for writing
multisimulatins specifications. Maude is an executable
rewriting logic language which is well suited for
specification of object oriented and distributed systems. We
show how Maude can be used as a simple and accurate way
of modeling multisimulations concepts which allows the
specifications produced and offers a support for reasoning
about multisimulations. The level of specification is detailed
enough to capture essential operational aspects of
multisimulations and to allow rapid prototyping and
debugging by directly executing the specifications.

3. MULTISIMULATIONS FORMAL

SPECIFICATION
We address the challenges in multisimulations by

developing a middleware to achieve integration of multiple
simulators. A major advantage of developing a middleware
for multisimulations is that it hides the details of the
underlying autonomous simulators and platform specific
issues. A reflective architecture [1] is well suited for this
task since it provides mechanisms to: (i) observe changes in
desired attributes of independently executing simulations
at runtime (reification), (ii) analyze and evaluate whether
changes in the observed attributes impact parameters in
other simulators and, (iii) adapt the execution of the
multisimulation by enforcing the changes back into the
impacted simulators (reflection). Such an observe-analyze-
adapt approach is at the crux of a reflective architecture for
integrated simulation environments.

Figure 1 shows pyramid of specifications. The first level
is a detailed base-level view that specifies simulators

Fig. 1. Pyramid showing summary of specifications. The three levels indicates (a) a detailed base-level view that specifies simulators,
(b) a multisimulation wide view with integration modules and abstract properties extracted from the underlying base-level simulators,

and (c) the end view point from the perspective of the complex analysis using underlying multisimulations.

including each simulator’s specific platform, source code,
databases and parameter models. The second level (meta-
level) describes a multisimulation wide view with abstract
properties extracted from the underlying components (e.g.
inter-simulator’s dependencies) and modules need for the
integration. Meta-level is built on top of base-level entities
to describe the base-level entities and the relationships
between them (e.g. a simulator tuple to describe simulators
properties, and a dependency descriptor to specify a
dependency between simulators). Meta-level entities are
captured in a pre-processing step using the base-level
simulators. A variety of coordination and interaction
mechanisms can be modeled using meta-level entities
including synchronization and data exchange. We call these
mechanisms meta-level modules. Meta-level modules are
part of the run time system which ensure the correctness of
multisimulation and controls the run-time behavior of base-
level simulators. The third level specifies the end view point
from the perspective of the services and tools provided on
top of multisimulations for what-if analysis and smart
decision making using multiple simulators and data sources.

Why use formal specification in Maude? To assure
correct observe-analyze-adapt cycle in dynamically
changing simulation models, it is important to have a
rigorous semantic model of multisimulations: the base-level
simulators, the data sources, the middleware that provide the
coordination among multiple simulators (e.g. meta-level
entities and modules), and the sharing and interactions
among these elements. Using such a formal model, designs
can be analyzed to clarify assumptions that must be made
for the correct integration, and to establish consistent
multisimulations based on assumptions.

In this paper, we specifically deal with the formulation
and modeling that describe different components of
multisimulation. In our approach, we describe a semantic
model for specifying and reasoning about multisimulations
and we show how different meta-level modules (e.g.
synchronizer) can be used to coordinate the consistent flow
of information between multiple simulators. From a higher
level point of view, we specify the end to end relationship to
provide a service in response to a request from a simulator
(e.g. a request to get input parameters). From a low-level
point of view we specify the properties of the dependencies
between simulators (e.g. to reflect the updates from one
simulator into another simulator).

Although our framework has been developed in Java, we
used the rewriting logic language Maude for formal
specification of multisimulations, because a logic-based
language is better suited to deal with constraints, reflection,
and the planning process. The reflective capability of Maude
makes it well suited to programming simulators’
interactions in multisimulations that has been crucial in our
studies to date. Maude specifications can be executed using
the Maude rewrite engine which allows their use for system

prototyping and debugging of specifications. In the
following sections, we discuss the representation of the
underlying multisimulation concepts and describe the use of
model checking and reasoning capabilities of Maude to
analyze multisimulations. The idea of multisimulations
specifications using Maude opens up an exciting new world
of challenging applications for formal methods in general
and for rewriting logic based formalisms in particular.

4. FORMAL SPECIFICATION USING MAUDE
 In this section, we provide some fundamental concepts
to specify simulators and components of multisimulation
and describe how the concepts can be presented in Maude.
We want to provide a formalism that gives us the structure
to have simulation knowledge without committing to a
particular simulator or its internal properties (e.g. time
advancement). Our formalism provides a semantic model
for specifying and reasoning about multisimulations.

4.1. Rewriting Logic and Maude

 Maude is a language and a system based on rewriting
logic that supports membership equational logic and
rewriting logic specification and programming of systems
[16]. Rewriting logic is a flexible and expressive logical
framework that can naturally deal with state and with highly
nondeterministic concurrent computations.

In Maude, object-oriented systems are specified by
object-oriented modules in which classes and subclasses are
declared. A class definition ܥ|ܽଵ: ଵܵ, … , ܽ௡: ܵ௡ defines a
class of name ܥ with attribute name ܽ௜ and their
corresponding sorts ௜ܵ. Objects of a class ܥ are record-like
structures of the form ൏ ܱ: :ଵܽ|ܥ ,ଵݒ … , ܽ௡: ௡ݒ ൐, where O
is the name of the object, and ݒ௜ are the values of its
attributes. Objects can interact in a number of different
ways, including messages. Messages are declared in Maude
in Msg clauses, in which the syntax and arguments of the
messages are defined.The concurrent state of a system is
called a configuration that has the structure of a multiset
made up of objects and messages that evolves by concurrent
rewriting using rules that describe the effects of the
communication events of objects and messages. The general
form of such rewrite rules is:
 :ሿݎሾ݈ݎܿ
ଵܯ … ௠ܯ ൏ ଵܱ: ଵݏݐݐܽ|ଵܥ ൐ ڮ ൏ ௡ܱ: ܥ௡|ܽݏݐݐ௡ ൐
ൌ൐ ൏ ௜ܱభ: Ԣ௜భݏݐݐԢ௜భหܽܥ ൐ ڮ ൏ ௜ܱೖ

: Ԣ௜ೖܥ
หܽݏݐݐԢ௜ೖ

൐

 ൏ ܳଵ: ᇱᇱܥ
ଵหܽݏݐݐᇱᇱ

ଵ ൐ ڮ ൏ ܳ௣: ᇱᇱܥ
௣หܽݏݐݐᇱᇱ

௣ ൐
ᇱܯ

ଵ … ᇱܯ
௤

 . ݀݊݋ܥ ݂݅
where ݎ is the rule name, ܯଵ … ᇱܯ ௠ andܯ

ଵ … ᇱܯ
௤ are

messages, ଵܱ … ௡ܱ and ܳଵ … ܳ௣ are object identifiers,
ଵܥ … Ԣ௜భܥ ,௡ܥ … Ԣ௜ೖܥ

 and ܥᇱᇱ
ଵ … ᇱᇱܥ

௣ are classes, ݅ଵ … ݅௞ is a
subset of 1 … ݊, and ݀݊݋ܥ is a Boolean condition. The result
of applying such a rule is that the messages are consumed

and the state and possibly the classes of objects ௜ܱభ … ௜ܱೖ

may change and new messages ܯᇱ
ଵ … ᇱܯ

௤ and new objects
ܳଵ … ܳ௣ are created.

4.2. Modeling Multisimulations in Maude
 In this section we describe how multisimulations can be
presented in Maude. A multisimulation, ܵܯ, consists of a
set of autonomous pre-existing simulators, ଵܵ, ܵଶ,…, ܵ௡ that
execute concurrently in an integrated environment. Before
we develop the multisimulation model, we first need to
define the concept of a simulator and develop it using
Maude. We consider each simulator as a simulator template.
Simulator templates will be presented by Maude classes. In
Maude, each class is defined by a name and a set of
attributes (of certain sort) that describe the simulators. Each
simulator will be then represented by Maude objects. Each
object belongs to a class and it may change during its
lifetime. All simulator templates will inherit from class
Sim-Oid, which described the common features that any
simulator exhibits.
Class Sim-Oid | conf : configuration .

Predefined sort configuration allows us to store
configuration of Maude objects and messages. Attribute
conf store a set of Maude objects representing the
properties of multisimulation. Each simulator is modeled as
a three tuple ௜ܵ ൌ൏ ௜ܶ, ,௜ܣ ௜ܦ ൐ where ௜ܶ is the type of the
simulator, ܦ௜ is the data items that the simulator reads or
updates, and ܣ௜ is the set of actions executed by the
simulator. We consider the type of the simulator based on
the time management mechanism that they employ as time
stepped or event based [7]. In time stepped simulators, for
each execution of the main control loop the simulation time
is incremented by one quantum of time Δt. In the case of
event based simulators, execution is driven by an event list,
ܧ ൌ ሼ݁௠|݉ ൌ 1,2, … ሽ, each event has a time stamp (usually
causality preserving) and the simulation time jumps from
one event time stamp to the next. For every two events ݁௔
and ݁௕ we have the following property: ݌݉ܽݐݏ݁݉݅ݐሺ݁௔ሻ ൑
ܽ ሺ݁௕ሻ when݌݉ܽݐݏ݁݉݅ݐ ൑ ܾ. In our notation, ௜ܶ א
ሼܶܵ, ሽ, where TS and EB correspond to time stepped andܤܧ
event based simulators respectively. We represent ௜ܶ by an
operation clock which incremented using Maude rules.
 ௜ is the data items that the simulator reads or updates. Forܦ
each data item ݀ א ,ሺ݀ሻ denotes the domain of d݉݋ܦ ,௜ܦ
which is a set of values that can be assigned to d. In the
following example, smokeHigh represents the smoke level
in the activity simulator, ACS with a specific assigned value
using Maude variables.

sort Sim-Oid .
op ACS : -> Sim-Oid . *** Activity Simulator
op clock:_ : Int -> Attr [ctor] .
op smokeHigh:_ : Bool -> Attr [ctor] .
op f1 : Int Int -> Bool .

vars n t c : Int .
var b : Bool .
rl[TS] :
[acs : ACS | smokeHigh: b, clock: c]
=> [acs : ACS | smokeHigh: f1(n,t), clock:
(c + Δt)] .
rl[EB] :
[acs : ACS | smokeHigh: b, clock: c]
=> [acs : ACS | smokeHigh: f1(n,t), clock:
(c + timestamp(e)] .

The state, ሼΦ௜ሽ௧௦ of the simulator ௜ܵ is the snapshot of its
data items ܦ௜ and their values. A state maps every data item
݀ א ݒ where ,ݒ ௜ to a valueܦ א ሺ݀ሻ. Thus a state can be݉݋ܦ
expressed as a set of ordered pairs of data items in ܦ௜ and
their values, ሼΦ௜ሽ௧௦ ൌ ሼሺ݀, ݀ |ሻݒ א ݒ ,௜ܦ א .{ሺ݀ሻ݉݋ܦ
Associated with each state is a timestamp, ts. Actions trigger

state change; we use the notation ሼΦ௜ሽ௧௦
௔ೖ
ሱሮ ሼΦ′௜ሽ௧௦′ to

indicate that when an action ܽ௞ in simulator ௜ܵ executes
from a state ሼΦ௜ሽ௧௦, it results in a stateሼΦ′௜ሽ௧௦′. Therefore, the
state is changed after the execution of action. ܣ௜ is the set of
actions that is ܣ௜ ൌ ሼܽ௞| ݇ ൌ 1, … , ݊ሽ. There is a total
order ൏௜ on the set of actions of a simulator. Each action,
ܽ௞, of a simulator is an atomic unit of processing that reads
and modifies the data and changes simulator’s state. Each
action captures changes that occur in a tick (or a step) in a
time-stepped simulator or the execution of an event in an
event-based simulator. In a time stepped simulator it

advances by ∆ݐ, ሼΦ௜ሽ௧௦
௔ೖ
ሱሮ ሼΦ′௜ሽ௧௦ା∆௧. In an event based

simulator it advances to the time stamp of the event ݁௠ that

is executed, ሼΦ௜ሽ௧௦
௔ೖ
ሱሮ ሼΦ௜ሽ௧௦ା௘೘ሺ௧௦ሻ, where ݁௠ሺݏݐሻ is the

timestamp advanced by ݁௠. Therefore, an action ܽ௞ captures
changes that occur in a clock tick (or a step) in a time
stepped simulator or the execution of an event in an event
based simulator.

4.2.1. Inter-simulator Dependencies

There are several challenges in building multisimulations
by integrating multiple autonomous simulation models.
Given the potential black-box nature of simulators
developed by experts in diverse domains we believe that
achieving a completely automated plug-and-play integration
of simulators is a very difficult, if not infeasible challenge.
Our goals are more modest – we intend to develop enabling
tools that will simplify the task of simulation integration

Fig. 2. Inter-simulators dependencies.

with a wide range of simulators that vary in the degree to
which they expose their interfaces and implementations.
One challenge arises from the fact that each simulator in a
multsimulation uses its own models and entities; these must
now be integrated in the context of a single simulation. Data
items in simulators are abstractions of real world entities. In
order to integrate various simulators, first we need to
discover and analyze the relationship between multiple
simulators’ data items. Consider two different simulators ௜ܵ
and ௝ܵ. As depicted in Figure 2, each simulator abstracts
some real world entities into its own simulated world data
items (using a function, തܲሻ. Assume ݀௜ א ௜ represents theܦ
real-world entity ߙ (തܲሺߙሻ ൌ ݀௜), and ௝݀ א ௝ represents theܦ

real-world entity ߙԢ (ܲԢഥ ሺߙԢሻ ൌ ௝݀). There are three possible
relationships between ߙ and ߙԢ:
(1) Dependent entities: ߙ and ߙԢ are dependent entities in
real world where changes in one entity can affect the other
one (e.g. ߙ represents the amount of smoke in the fire
simulator and ߙԢ represents the health conditions in the
activity simulator).
(2) Exact match entities: ߙ and ߙԢ represent the exact same
entity in different simulators (both ߙ and ߙᇱ represent
current temperature).
(3) No match: ߙ and ߙԢ represent two independent entities
without any semantic relationship (e.g. ߙ represents the
individual’s speed of walking in the activity simulator and
 Ԣ represents the thickness of walls of the building in theߙ
fire simulator).

In this paper, we consider the first type of relationship,
dependent entities, and capture it by the concept of inter-
simulator dependency.
Dependency: Let ߙ and ߙԢ be two real world entities with
respect to the data items ݀௜ א ௜ and ௝݀ܦ א ௝ in twoܦ
different simulators, ݀௜ is dependent on ௝݀ denoted by Θ(݀௜,

௝݀ሻ if a change to ߙ implies a change to ߙԢ.
If a change in one entity triggers also changes in the

dependent one, we observe transformational dependency.
The integration of various simulators results in the
introduction of certain inter-simulator dependencies, which
were not present prior to integration. An example of such a
relationship is that smoke from fire simulator can affect
someone’s health in an activity simulator. We use a
dependency descriptor to specify the transformational
dependency Θ(݀௜, ௝݀ሻbetween a data item ݀௜ in simulator ௜ܵ
and a data item ௝݀ in simulator ௝ܵ when updates on ݀௜ need

to be reflected into ௝݀: ௜ܵ
ௗ
՜ ௝ܵ ൌ൏ ݀௜ א ,௜ܦ ௝݀ א ,௝ܦ ݂ ൐.

Note that dependency notion is directional. ௜ܵ is the supplier
simulator, ௝ܵ is the consumer simulator. In general, there
can be more than one dependency between two simulators
describing multiple aspects of their relationships. A
dependency function, f, defines the relationship between
two data items values. Each data item has a value at any

given state, ሺ݀௜, ௜ሻݒ א ሼΦ௜ሽ௧௦ and ൫ ௝݀, ௝൯ݒ א ሼΦ௝ሽ௧௦ᇱ. At each
iteration, the new value of ௝݀ is determined by the
dependency function ݂: ሺ݀௜ሻ݉݋ܦ ՜ ሺ݉݋ܦ ௝݀ሻ, that is
௝ݒ ൌ ݂ሺݒ௜ሻ. For each dependency between simulators such a
dependency function is defined at meta-level.
Local data vs. Interdependent data. Dependencies
described by dependency descriptors enable us to partition
the set of data items at a simulator, ܦ௜, into local data items,
௜ܦܮ ௜, such thatܦܵ ,௜, and interdependent data itemsܦܮ ת
௜ܦ and ,׎=௜ܦܵ ൌ ௜ܦܮ ׫ ௜. Furthermore, if there is aܦܵ
ሺ݀ᇱ א ௝ሻܦ ՜ ሺ݀ א ݅ ,௜ሻܦ ്j, then ݀߳ ܵܦ௜ and ݀Ԣ߳ ܵܦ௝. For
example, smoke level in Fire simulator and health condition
in an activity simulator are an interdependent data items.
Internal actions vs. External actions. Partitioning of data
items at each simulator into local and interdependent data
allows us to define the notion of internal and external
actions. Synchronization among simulators in a
multisimulation is only needed during external action
processing, and we can eliminate it altogether during
internal action processing periods. Internal actions, ܣܫ௜, are
those actions that read or modify only the portion of data
that is local to the simulator. External actions, ܣܧ௜, access at
least one data item which is an interdependent data item.
Dependency sets. For each simulator, ௝ܵ, we create a
dependency set that includes those simulators updating data
items which are interdependent with the data items of ௜ܵ.
The dependency set includes all the simulators ௜ܵ for which

௝ܵ depends upon a data item updated by ௜ܵ. That is:

൫݌݁ܦ ௝ܵ൯ ൌ ሼ ௜ܵ| ׌ ௜ܵ
ௗ
՜ ௝ܵ ൌ൏ ݀௜ א ,௜ܦ ௝݀ א ,௝ܦ ݂, ܴ ൐ .ݏ ௜݀ .ݐ א

,௜ܦܵ ௝݀ א ௝ሽ. Finally, we represent all the dependency setsܦܵ
in the multisimulation by ܲܧܦ ൌ׫௜ୀଵ

௡ ൫݌݁ܦሺ ௜ܵሻ൯.

4.2.2. Simulators interactions using Maude messages

Inter-simulator dependencies result in the need for
sending updates (i.e. Muade messages) from one simulator
to another simulator in order to preserve dependencies. We
consider each simulator’s execution as a sequence of actions
(steps in time stepped simulators or events in event based
simulators). We introduce synchronizer object that
coordinates the execution of actions from multiple
simulators. Thus multisimulation execution state consists of
set of simulator objects Sim-Oid (actors), synchronizer
object, and any messages pending delivery. A simulator can
execute an internal action whenever enabled. However, it
requests permission to execute an external action and
executes when a granted message arrives, and sends
updates. The strategy used in the synchronizer to address the
synchronization problem in multisimulations is out of the
scope of this article [23]. Simulators communicate with
synchronizer by using Maude messages. For the external
actions (i.e. read or modify interdependent data items) the
simulator needs to communicate with meta-level and sends
them synchronizer (reification). Upon receiving such

external actions from a simulator, the synchronizer
generates messages to notify dependent simulators
(reflection). Figure 3 shows the sequence diagram of the
interactions between simulator templates and synchronizer.
Consider a simulator ௜ܵ in state ሼΦ௜ሽ௧೔

 performs an external
action ܽ௞ which changes its state and updates an
interdependent data item, ݀௜, to its new value, ݒ௜Ԣ, such that
ሺ݀௜, ௜Ԣሻݒ א ሼΦ௜ሽ௧೔ᇱ. ௜ܵ posts this update and the current

state’s timestamp to synchronizer. Let ௜ܵ
ௗ
՜ ௝ܵ ൌ൏ ݀௜ א

,௜ܦ ௝݀ א ,௝ܦ ݂ ൐ be a dependency. A meta-action
<݉ܽ൫݀௜, ௝݀൯, ௜Ԣݐ ൐ is an action generated by the
synchronizer as the result of an external action, ሼΦ௜ሽ௧೔

 ܽ௞
ሼΦ௜ሽ௧೔ᇱ, executed in a supplier simulator, ௜ܵ, performing an
update on an interdependent data item ݀௜. Associated with
each meta-action is a timestamp which is the timestamp of
the state of ௜ܵ that contains the new value of ݀௜ after the
update performed by ܽ௞. In our reflective architecture, the
updates are reified from supplier simulators and represented
at meta-level using meta-actions. A wrapper action,
൫ܽݓ> ௝݀൯, ௥ݐ ൐, is the action taken by consumer simulator’s
wrapper (௝ܵ’s wrapper), to reflect the update of the
corresponding meta-action into ௝݀. Associated with a
wrapper action is a time, ݐ௥, that is the timestamp of the
state of ௝ܵ when the actual update is applied.

We describe the set of all messages by ݃ݏܯ which
includes messages between simulators and synchronizer
(e.g. request to execute an action, allow). In the following
example, fire simulator sends the smoke level to activity
simulator using a Maude operation to create a message
smokeLevel. This message includes the amount of smoke
and the time in fire simulator, both defining as integers.

op smokeLevel : Sim-Oid Sim-Oid Int Int ->
Msg [ctor] .
rl[FS] :
[fs : FS | asim: acs, smoke: n, temp: t]
=> [fs : FS | asim: acs, smoke: n, temp: t]
smokeLevel(fs,acs,n,t) .
rl[AS] :
smokeLevel(fs,acs,n,t)
[acs : ACS | smokeHigh: b, clock: c]
=> [acs : ACS | smokeHigh: f1(n,t), clock:
(c + 1)] .

4.2.3. Multisimulations configuration

A Multisimulation configuration, ܥ, represents a
snapshot of the multisimulation state. It includes the states
of all base-level simulators (ሼΦ௜ሽ௧௦ represents the recent
state of ௜ܵ), dependency sets of each simulator (݌݁ܦሺ ௜ܵሻ),
and a set of messages (݃ݏܯ): ܥ௫ ൌ ሺڂ ሼΦ௜ሽ௧௦ሻ ௡׫

௜ୀଵ
ሺڂ ሻܲܧܦ ׫ ௡݃ݏܯ

௜ୀଵ . Figure 4 shows an example of
multisimulation configuration, ܥ௫. The multisimulation
includes two simulators ௜ܵ and ௝ܵ each has their own state,

represented by ሼΦ௜ሽ௧೔
 and ሼΦ௝ሽ௧೔

 respectively. There exists
a dependency between smoke level ௜ܵ in and health

condition ௝ܵ in specified by ௜ܵ
ௗ
՜ ௝ܵ ൌ൏ ݁݇݋݉ݏ א

,௜ܦ ݄ݐ݈݄ܽ݁ א ,௝ܦ ݂ ൐. As a result of an update on smoke
level by ௜ܵ a message is generated <݉ܽሺ݁݇݋݉ݏ, ,ሻ݄ݐ݈݄ܽ݁ ௜ݐ ൐.
The message has been sent to ௝ܵ to actually reflect the into
update health condition. When the update performed an ack
will be sent to the meta-level synchronizer. In this example,
the actual update is not performed yet. Therefore the
message is included in the configuration.

Configurations change by transitions from one
configuration to the next configuration. In other word, each
transition results in a new multisimulation configuration.

Formally a transition ߬ has the form ߬: ܥ௫
௟

՜ ݈ ௫ାଵ whereܥ
is the label of the trigger that initiates the transition. We
define a set of trigger labels, L, for transitions among
different configurations:
ܮ ൌ ሼ ࡽࡱࡾሺ ௜ܵ, ܽ௞ሻ, ,ሺܽ௞ࡰࡼࢁ ݉ܽሺ݀௜, ,௜Ԣሻሻݐ ሺࢀࡱࡳ ௝ܵ, ሺࡷ࡯࡭ ,௝ሻݐ ௝ܵ, ൏
൫ܽݓ ௝݀, ௥൯ݐ ൐, {ሻ݌݁ܦሺࡲࡰࡹ
These labels work as the rules in the multisimulation
framework:
ሺࡽࡱࡾ - ௜ܵ, ܽ௞ሻ indicates that ௜ܵ requests to execute an
external action ܽ௞. (i.e. on an interdependent data item).

,ሺܽ௞ࡰࡼࢁ - ݉ܽሺ݀௜, ௜Ԣሻሻ indicates that an external actionݐ
executed by a simulator at time ݐ௜Ԣ which results in the
change of the state of the simulator and sending the
updates on an interdependent data item (݀௜ሻ to meta-level.

ሺࢀࡱࡳ - ௝ܵ, ,௝ from a simulatorݐ ௝ሻ indicates a request at timeݐ

௝ܵ to receive the updates.
ሺࡷ࡯࡭ - ௝ܵ, ൫ܽݓ ௝݀, ௥൯ሻ indicates that ௝ܵ executedݐ
corresponding wrapper-actions to reflect the updates.

 ሻ indicates the updates on the dependencies݌݁ܦሺࡲࡰࡹ -
among multiple simulators (i.e. remove a dependency,
add a new dependency).

We can have sequence of transitions, ߨ, in

multisimulations: ߨ ൌ ሾ ܥ௫
௟

՜ ݔ|௫ାଵܥ א Գሿ in which each

Fig. 5. Example of a sequence of multisimulation

configuration transitions.

Fig. 3. Simulators interactions.

transition has a trigger label. An example of such a sequence
is (Fig. 5):

ߨ ൌ ଴ܥ
ோாொሺௌ೔,௔ೖሻ
ሱۛ ۛۛ ۛۛ ሮۛ ଵܥ

௎௉஽ሺ௔ೖ,௠௔ሺௗ೔,௧೔ᇱሻሻ
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ ଶܥ

ீா்൫ௌೕ,௧ೕ൯
ሱۛ ۛۛ ۛۛ ሮۛ ଷܥ

஺஼௄ሺௌೕ,௪௔൫ௗೕ,௧ೝ൯ሻ
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛሮ .ସܥ

The sequence specifies an external action performed at a
supplier simulator ௜ܵ which results in sending the updates to
the consumer simulator ௝ܵ. When the consumer simulator ௝ܵ

requests to receive the meta-actions, ܶܧܩ ൏ ௝ܵ, ௝ݐ ൐, meta-

actions will be sent to ௝ܵ which results in generating the

correspondent message in ܥଶ to actually reflect the updates
to the target data. When the updates applied the ack will be

sent to the meta-level, ܭܥܣሺ ௝ܵ, ൫ܽݓ ௝݀, ௥൯ሻ, and theݐ

message will be removed from the configuration in ܥସ.

4.3. Using the Reflective Capability of Maude
There is a variety of metadata associated with the

executable model of a multisimulation. This includes
information justifying or qualifying a rule and rate
information about a rule. Furthermore, as the
multisimulation system grows, consistency checks become
more important and it is useful to be able to answer simple
questions such as “What are all the rule labels?” or “What
constants of sort Sim-Oid have been declared?”. Using the
reflective capability of Maude make it easy to formalize
such metadata and use it to further control experiments or to
answer questions and carry out various meta-analyses.
Rather than giving here a detailed explanation of the
representations of terms and modules for which we refer the
reader to [16] we instead illustrate them with simple
examples. There are a number of important metalevel
functions that has been efficiently implemented in the
META-LEVEL module. For our purposes, we focus on the
functions meta-reduce and meta-apply. The function
meta-reduce returns the representation of fully reduced
from a term using the equations as a parameter. The most
important such function for our purposes is the meta-
apply function, that simulates the application of a given
rewrite rule to a term. We use meta-reduce and meta-
apply as basic strategy expressions and then extend the
module META-LEVEL by additional strategy expressions and
corresponding semantic rules.

In particular, we can analyze the behavior of a module
such as the specification of interactions by writing an
adequate strategy that will explore all the behaviors from an
initial state up to termination. One correctness criterion in
multisimulations is checking that in all execution sequences
all messages arrive to their destinations. One can easily
write a predicate to check this requirement.

5. INTEGRATING REAL-WORLD SIMULATORS

To ground our work in reality, we develop a case study
using three pre-existing real world simulators: Drillsim [9],
CFAST [10], and LTESim [24]. Table 1 summarizes the
three simulators and their properties. In our integration
scenario, the fire simulator, CFAST, is used to simulate the
impact of fire in a specific region and calculates the
evolving distribution of smoke; fire and smoke can affect
evacuation process, e.g. people’s health condition, in the
activity simulator, Drillsim, which has impacts on
communication patterns in communication simulator,
LTEsim. Such integration is useful to conduct better what-if
analyses and understand various factors that can adversely
delay evacuation times or increase exposure and
consequently used to make decisions that can improve
safety and emergency response times. There are 3 key
modules developed at meta-level: (a) a Meta-Synchronizer
which uses the proposed approaches to monitor and control
concurrent execution in the multisimulation, (b) an Analyzer
which analyzes the interactions between simulators using
meta-models to capture the dependencies, (c) which

Table 1. Three Real-World Simulators.

Activity
Simulator

 DrillSim [9],time-stepped, open source (Java)
 Parameters: health profile, visual distance, speed

of walking, num. of ongoing call, etc. Output:
num. of evacuees, injuries, etc.

Communication
Simulator

 LTESim [24], event-based, open source (Matlab)
 Parameters: num. of transmit and receive

antennas, uplink delay, network layout, channel
model, bandwidth, frequency, etc. Output:
pathloss, throughput, etc.

Fire
Simulator

 CFAST [10], time-stepped, black-box (no access
to source)

 Parameters: building geometry, materials of
construction, fire properties, etc. Output:
temperatures, gas concentrations: CO2, etc.

Fig. 4. Multisimulation configuration.

Fig. 5. Example of a sequence of configurations.

manages the data exchange between simulators through the
design of wrapper modules for each simulator. Table 2
presents a brief comparison of our approach to HLA. Our
proposed architecture makes it feasible to semi-
automatically compose simulation models via a looser
coupling approach and provides a design that is more
adaptable, flexible and easier to extend.

6. CONCLUSION

We used the rewriting logic language Maude for formal
specification of multisimulations. We discuss the use of
Maude’s reflective capability for meta modeling and
analyzing multisimulations. To our knowledge this is the
first achieved architecture for simulation integration through
the use of reflection and Maude. Reflection provides the
mechanisms needed to access and modify the environment
of a given simulator and the flexibility provided by the
reflective architecture is a perfect match for the challenges
in simulation integration. The reflective capability of Maude
makes it well suited to programming simulators’
interactions in multisimulations that has been crucial in
multisimulations. Future research will focus on addressing
challenges in the complexity associated with generalizing
the meta-models for simulators, integrating simulators in
other domains including earthquake and transportation
simulators, and addressing the challenges of data
transformation in multisimulations.

References
[1] Kon, F., Costa, F., Blair, G., Campbell, R.H.: The Case for

Reflective Middleware, Communications of the ACM, 45(6),
33–38 (2002)

[2] Bernard P. Zeigler, Steve B. Hall and Hessam S. Sarjoughian,
Exploiting HLA and DEVS To Promote Interoperability and
Reuse in Lockheed's Corporate Environment, SIMULATION,
pp. 73-288 (1999)

[3] Chen, J., Wu, D., Zhang, J., Oquendo, F., Formal modelling
and analysis of HLA architectural style, International Journal
of Modelling, Identification and Control, Vol. 9, (2010)

[4] Kuhl, F., Weatherly, R., Dahmann, J.: Creating Computer
Simulation Systems: An Introduction to the High Level
Architecture, New Jersey, Prentice Hall (1999)

[5] Tolk, A., Diallo, S., Y.: Using a Formal Approach to
Simulation Interoperability to Specify Languages for
Ambassador Agents, Winter Simulation, pp. 359-370 (2010)

[6] Jain, S., McLean, C.R.: Integrated simulation and gaming
architecture for incident management training, Simulation,
Proc. of the Winter Simulation, 904-913 (2005)

[7] Fujimoto, M.R.: Parallel and Distributed Simulation Systems,
John Wiley Inc. (2000)

[8] Fernando J. Barros. Describing the HLA Using the DFSS
Formalism. In Proceedings of AIS'2004. pp.117-127 (2004)

[9] Balasubramanian, V., Massaguer, D., Mehrotra, S.,
Venkatasubramanian, N.: DrillSim: A Simulation Framework
for Emergency Response Drills, ISI, 237-248 (2006)

[10] Peacock, R., Jones, W., Reneke, P., Forney, G: CFAST–
Consolidated Model of Fire Growth and Smoke Transport
(Version 6) User’s Guide, NIST Special Publication (2005)

[11] De Silva, F.N., Eglese, R.W.: Integrating Simulation
Modeling and GIS: Spatial Decision Support Systems for
Evacuation Planning, JORS 51(4), 423–430 (2000)

[12] Abanades, A., et al.: Application of CFD codes as design
tools, 5th Conf. on ISFA (2007)

[13] HAZUS-MH: Multi-hazard Loss Estimation Methodology.
User Manual (2003)

[14] Cho, S., Huyck, C.K., Ghosh, S. Eguchi, R.T.: Development
of a Web-based Transportation Platform for Emergency
Response. 8th Conf. on Earthquake Eng. (2006)

[15] CAPARS: http://www.alphatrac.com/PlumeModelingSystem
[16] Clavel, M., Dur´an, F., Eker, S., Lincoln, P., Mart´ı-Oliet, N.,

Meseguer, J., Talcott, C.: All About Maude- A High-
Performance Logical Framework. Number 4350 in Lecture
Notes in Computer Science. Springer (2007)

[17] Verkehr, A.: VISIM V3.6 Innovative Transportation (2001)
[18] Cameron, G., Wylie, B., McArthur, D.: PARAMICS- Moving

Vehicles on the Connection Machine, Conf. on High
Performance Networking and Computer, 291– 300 (1994)

[19] Cooper, L.Y, Forney, G. P.: The consolidated compartment
fire model (CCFM) computer code application
CCFM.VENTS - Part I: Physical basis. NISTIR 4342. (1990)

[20] Boer, C., Bruin, A., Vebraeck, A.: Distributed Simulation in
Industry - a survey, part 3- the HLA standard in industry,
Proc. of the 40th Conf. on Winter Sim., 1094-1102 (2008)

[21] Jalali, L., Venkatasubramanian, N., Mehrotra, S.: Reflective
Middleware Architecture for Simulation Integration,
ARM’09, Urbana Champaign, Illinois (2009)

[22] Jalali, L., Venkatasubramanian, N., Mehrotra, S.: Middleware
Solutions for Integrated Simulation Environments, The Proc.
of 7th Middleware Doctoral Symposium (2010)

[23] Jalali, L., Venkatasubramanian, N., Mehrotra, S.:
Interoperability of Multiple Autonomous Simulators in
Integrated Simulation Environments, Spring SIW'11 (2011)

[24] LTE System Level Simulator:
http://www.nt.tuwien.ac.at/about-us/staff/josep-colom-
ikuno/lte-simulators/

Table 2. Comparison between HLA and Multisimulations.
Criterion HLA Multisimulations
Objective ─ Interoperability

─ Reusability
─ Semantic Interoperability,

Reusability, Flexibility
Formal
Specification ─ DVES/HLA ─ Maude

Domain
─ Defense

─ Flexible via use of domain
ontologies [21]

Complexity ─ Low level
knowledge
needed

─ Lack of semantic
interoperability

─ No need to conform the
internal properties

─ Semantic constraints
implemented at the metalevel
[22]

Time
Management

─ Optimistic and
conservative
methods

─ Optimistic, Conservative,
and Hybrid methods

─ Relaxed dependencies [23]
Separation of
Concerns

─ Merges domain-
specific and
integrated
simulation aspects

─ Separate concerns related to
simulation domain to those
related to integration
mechanisms [21]

