xTune: A Formal Methodology for Cross-Layer
Tuning of Mobile Embedded Systems

MINYOUNG KIM, MARK-OLIVER STEHR, and CAROLYN TALCOTT, SRI International
NIKIL DUTT and NALINI VENKATASUBRAMANIAN, University of California, Irvine

Resource-limited mobile embedded systems can benefit greatly from dynamic adaptation of system param-
eters. We propose a novel approach that employs iterative tuning using lightweight formal verification at
runtime with feedback for dynamic adaptation. One objective of this approach is to enable trade-off analysis
across multiple layers (e.g., application, middleware, OS) and predict the possible property violations as the
system evolves dynamically over time. Specifically, an executable formal specification is developed for each
layer of the mobile system under consideration. The formal specification is then analyzed using statistical
property checking and statistical quantitative analysis, to determine the impact of various resource man-
agement policies for achieving desired timing/QoS properties. Integration of formal analysis with dynamic
behavior from system execution results in a feedback loop that enables model refinement and further op-
timization of policies and parameters. We demonstrate the applicability of this approach to the adaptive
provisioning of resource-limited distributed real-time systems using a mobile multimedia case study.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems|—Real-time
and embedded systems

General Terms: Design
Additional Key Words and Phrases: Cross-layer optimization, iterative tuning, formal methods

ACM Reference Format:

Kim, M., Stehr, M.-O., Talcott, C., Dutt, N., and Venkatasubramanian, N. 2012. xTune: A formal methodology
for cross-layer tuning of mobile embedded systems. ACM Trans. Embedd. Comput. Syst. 11, 4, Article 73
(December 2012), 23 pages.

DOI = 10.1145/2362336.2362340 http://doi.acm.org/10.1145/2362336.2362340

1. INTRODUCTION

The next generation mobile embedded applications are highly networked and involve
end-to-end interactions among multiple abstraction layers (application, middleware,
OS, hardware architecture) in a distributed real-time environment. An overarching
characteristic of these applications is that they are often data-intensive and rich in
multimedia content with images, video, and audio data that is fused together from
disparate distributed information sources. The content-rich data is expected to be
obtained from, delivered to, and processed on resource-constrained devices (sensors,
PDAs, cellular handsets) carried by users in the distributed network. Clearly, in such
a scenario, the dual goals of ensuring adequate application QoS (quality of service)

Preliminary versions of this article appeared in Kim et al. [2007a, 2007c].

This work was partially supported by NSF grants 0615438, 0615436, and 0932397.

Authors’ addresses: M. Kim, M.-O. Stehr, and C. Talcott, Computer Science Laboratory, SRI International,
Menlo Park, CA 94025; email: {mkim, stehr, clt}@csl.sri.com; N. Dutt and N. Venkatasubramanian, School
of Information and Computer Sciences, University of California, Irvine, Irvine, CA 92697; email: {dutt,
nalini}@ics.uci.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2012 ACM 1539-9087/2012/12-ART73 $15.00

DOI 10.1145/2362336.2362340 http://doi.acm.org/10.1145/2362336.2362340

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

73:2 M. Kim et al.

and optimizing resource utilization at all abstraction layers of the system presents
significant challenges. A unified framework is needed to derive, analyze, and validate
cross-layer polices/parameters while proving various properties pertaining to energy
usage, delays, and so on for any given configuration of policies/parameters as the system
evolves dynamically over time.

A holistic approach to understand cross-layer interaction in such systems is essential
since policies made at one layer can (sometimes adversely) affect behavior at other
layers. Our prior experience (FORGE [Mohapatra et al. 2005], DYNAMO [Mohapatra
et al. 2007]) in developing algorithms for managing QoS/energy trade-offs in distributed
mobile multimedia applications has given us valuable insights into the issues to be
addressed. GRACE [Yuan et al. 2006] also aims to trade off multimedia quality against
energy by introducing a hierarchy of global (i.e., coordinating all layers) and internal
(i.e., within the individual layers) adaptation. PACE [Lorch 2001] investigated the
OS role in processor energy management by inferring task information from user
interface events to consider application workloads. While existing work has shown
the effectiveness of cross-layer adaptation, many of these efforts try to address the
average case behavior without verifiable guarantees on their solutions. Our hypothesis
is that a comprehensive design methodology based on a formal reasoning framework
can provide an effective basis for tuning mobile embedded systems under a multitude
of constraints.

More specifically, policy selection and parameter tuning during system operation re-
quires a procedure to determine if it has a significant impact on timing/QoS/resource
provisioning. The analysis of certain properties of the multilayer system enables the de-
velopment of optimized strategies for composite objectives (e.g., to optimize energy, con-
serve timing, improve quality). Intricate trade-offs across layers need to be addressed
to achieve timing/QoS/resource provisioning. This problem becomes even more complex
if we consider that the system and environment may keep evolving, requiring dynamic
adaptation. Given a current configuration and a set of changes (e.g., new applica-
tion/task; parameters for existing tasks such as frame rate/resolution/synchronization;
device residual power level; network delay/jitter), we need to support cross-layer adap-
tation in a quantifiable manner (e.g., bound/sensitivity analysis on the impact of the
selected policy).

It is important to have a rigorous semantic model of the system: the resources,
the application behaviors, the interactions among layers. Using such a formal model,
we can specify and perform reasoning about cross-layer adaptation within a unified
framework for integrated treatment combining formal methods, monitoring of system
dynamics, and adaptation strategies. The problem we address here is the following.

How does one decide what policies and parameters to assign to each layer at runtime to minimize
the overall energy consumption while providing a sufficient level of QoS with verifiable/quantifiable
solution quality? This must be achieved for an energy-constrained mobile embedded device delivering
delay-sensitive multimedia data over a lossy network.

In this context, the ability to compensate on-the-fly for property violations at differ-
ent layers of abstraction is of paramount importance since there are several sources
of unpredictability (e.g., delay, packet drop) in a distributed network that introduce
nondeterminism. Furthermore, system-level optimizations for effective utilization
of distributed resources can interfere with the properties of executing applications.
Many applications have flexible QoS needs that dictate how tolerant they are to delays
and errors; the lack of stringent timing needs can be adaptively exploited for better
end-to-end resource utilization. In Kim et al. [2006], we demonstrated the need for
integration of formal methods with experimentally, based cross-layer optimizations
to ensure that corner-cases are covered, and we provided a means to determine

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

xTune: A Formal Methodology for Cross-Layer Tuning of Mobile Embedded Systems 73:3

bounds for critical performance parameters. Recently, we proposed statistical formal
methods for the analysis of given cross-layered optimization policies with quantifiable
confidence [Kim et al. 2007c].

To leverage these prior efforts, we propose an iterative tuning approach for mobile
multimedia systems that couples two important facets:

(1) alightweight formal verification that can be used at runtime to evaluate the impact
of various policies for achieving cross-layer timing/QoS properties; and

(2) a system realization that enables feedback of additional information on system
execution behaviors to enhance our lightweight formal modeling and analysis.

The integration of formal analysis with observed system execution behavior permits
adaptation with some notion of guarantees on cross-layer timing/QoS properties for
mobile embedded systems that employ resource-constrained devices. In our current ap-
proach, we assume that all nondeterminism can be probabilistically quantified, mean-
ing that it can be modeled by probabilistic choice with regard to a suitable distribution
(not necessarily uniform), which we will see is possible in our particular case study.
Some ideas on how this approach can be generalized to systems that exhibit both
nondeterministic and probabilistic choices will be discussed in Section 3.1.

Hence, we propose a unified framework for iterative system tuning to support adap-
tations. Initially, our framework performs property checking and quantitative analysis
of candidate policy/parameter settings via formal executable specifications followed by
statistical techniques. Iterative tuning allows model refinement from up-to-date and
continuous observations of system execution behavior. Furthermore, this can be used
to improve adaptation by verifying given system properties or by relaxing constraints.

This article provides the following contributions.

—We propose a methodology to address iterative system tuning of mobile embedded
systems by integrating two synergistic approaches: lightweight formal verification
and model refinement based on feedback from a system realization. Lightweight
formal verification provides degrees of confidence in the feasible solutions satisfying
multidimensional constraints. The system realization enables dynamic adaptation
by refining the model of the system and the environment.

—Within the framework, we provide a notion of quantifiable guarantee. We attempt to
ensure the quality of selected cross-layer policies/parameters by applying statistical
formal methods (e.g., statistical property checking and quantitative analysis) on
executable formal models specifying a space of possible behaviors.

—We propose model refinement as a way of reflecting dynamics when the system
evolves over time. We use a feedback loop between formal specifications and observed
system execution behavior to obtain information on system dynamics under selected
policies/parameters in order to improve the formal model.

—Our work is validated and tested via a specific case study with a simulation in the
context of mobile multimedia applications, which demonstrates interesting opportu-
nities for tradeoff analysis in highly dynamic changing environments.

2. XTUNE UNIFIED FRAMEWORK FOR ITERATIVE SYSTEM TUNING

Figure 1 illustrates how we position our framework, named xTune, within the bigger
picture. Here the observation system monitors the current status of target devices
and environment. The tuning module decides the strategies that will be deployed
for each device. The tuning module may consult the verification engine to ensure its
solution quality. The xTune framework supports a methodology for a tuning module
that attempts cross-layer adaptation and a verification engine that performs formal
analysis for quantification.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

73:4 M. Kim et al.

il A, Formal Executable Specification
Verification] | : [System Specification | | Observer i
Engine i 4 =
| i Formal Verification H
| : Control Observables
Monitoring Tuning ‘ B Controller
System Module i . @@
] Policy/Parameter Selection
R i | Pre-testing Execution i
. i Comtrol H
el Dg?;?;mg i v Model Refinement Dynamics
: - ::-. i C System Realization
Q F?_-ﬁ (5 Mol i Modie [Emvironment oduie)

Fig. 1. xTune cross-layer system tuning framework.

2.1. Overview of xTune Framework

The right of Figure 1 presents the overall flow of our approach. Box A represents
the formal modeling. The core of our formal modeling approach is to develop formal
executable models of system components at each layer of interest. These models ex-
press functionality, timing, and other resource considerations at the appropriate level
of detail and using appropriate interaction mechanisms (clock ticks, synchronous or
asynchronous messages). Models of different layers are analyzed in isolation and com-
posed to form cross-layer specifications. We use the Maude system for developing and
analyzing formal specifications (see Section 3.1 for details). One advantage of formal
executable models is that they can be subjected to a wide range of formal analysis,
including single execution scenarios, search for executions leading to states of interest,
and model checking to understand properties of execution paths.

The controller (Box B in Figure 1) performs the evaluation phase of given specifica-
tions to generate statistics for properties and values of interest. Specifically, we have
developed new analysis techniques (statistical property checking and statistical quan-
titative analysis) that combine statistical and formal methods, and applied them to a
multimedia case study. The main ideas are presented in Section 3.2.

Using such models and analysis, tools can be developed to achieve adaptive refine-
ment of a system specification into appropriate policy/parameter settings. We propose
an iterative tuning strategy that combines formal methods (verification) with dynamic
system execution behavior (obtained by either simulation or implementation). The
execution behavior from system realization (Box C in Figure 1) is fed back into the
formal modeling to refine the executable specification (model refinement). In addition,
we can assure the quality of a new policy/parameter constructed by the controller.
In Figure 1, Pretesting on a system realization can lead to improvements because
typically the formal model cannot cover all possible implementation details of a real
system. We explain iterative tuning in Section 3.3.

2.2. Applying xTune to a Mobile Multimedia Case Study

Since the design space of mobile real-time embedded systems is extremely large, we
pick certain facets of our target system, that is, we narrow down specific applications,
layers, policies, and parameters of interest to effectively demonstrate our proof of con-
cept. Multimedia applications operated on battery-powered mobile devices are viewed
as one of the key application drivers for next generation distributed systems. Such
mobile multimedia applications provide a rich set of QoS/power issues at multiple
abstraction levels. Thus, although we intend our approach to be widely applicable, we
begin by developing and evaluating formal specification models in the context of mobile

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

xTune: A Formal Methodology for Cross-Layer Tuning of Mobile Embedded Systems 73:5

Application (power-aware video codec)
e.g., proactive PBPAIR

Mability
Network status

= Middleware (network related p_nlicy)
e.g., traffic shaping, transcoding

08 (task level power management)
e.g., Greedy, Cluster, DVS

Residual energy

\'. Hardware (device level power management)
\ e.g., timeout-based shutdown

Fig. 2. Layer interaction.

multimedia applications. This type of application requires frequent policy and param-
eter tuning based on user input and/or node/network conditions (e.g., residual power
level, packet drop rate, noise level). As an example, a high-end videophone would be
able to better meet its timing constraints at maximum CPU performance while re-
ceiving packets via a reliable channel. However, if the residual power level dropped or
packet loss rate increased significantly, then we might need to save energy by reducing
QoS or suspending some tasks.

2.2.1. Cross-Layer Modeling for Our Target Application. Figure 2 illustrates how policies
determine decisions made at different layers: a specific video encoding/decoding algo-
rithm at the application layer, network monitoring at the middleware layer, and DPM
(dynamic power management) and/or DVS (dynamic voltage scaling) at the OS layer
[Kim and Ha 2001]'. Network traffic shaping and/or transcoding at the middleware
layer can be also utilized. Each policy has parameters that can be used to fine-tune the
behavior. In addition, hardware parameters can be set.

For instance, we consider PBPAIR (Probability-Based Power-Aware Intra Refresh)
[Kim et al. 2006] as an application layer policy. The PBPAIR scheme inserts intra-
coding (i.e., coding without reference to any other frame) to enhance the robustness
of the encoded bitstream at the cost of compression efficiency. Intracoding improves
error resilience, but it also contributes to reducing encoding energy consumption since
it does not require motion estimation?® (which is the most power-consuming operation
in a predictive video compression algorithm). An additional proactive feature means
that we can use a priori information on the user’s mobility (e.g., current zone, speed,
and trajectory) and network situation (e.g., packet loss rate, delay) that later will be
used for selection among policies and related parameter tuning before the user enters
a new zone. If PBPAIR is selected as an application layer policy, then algorithm-specific
parameters such as the intra-threshold value must be chosen for the appropriate execu-
tion (see Figure 7(b) for the impact of different intra-threshold selection). Note that the
parameter selection at one layer affects other layers. For example, PBPAIR increases
intracoding by lowering the intra-threshold parameter when there is high network

1DPM puts a device into a low-power/performance state to save energy when the device is not serving any
request during a suitably long time period determined by the shutdown and wake-up overhead of the device.
DVS aims at saving energy by scaling down the supply voltage and frequency when the system is not fully
loaded.

21n predictive coding, motion estimation eliminates the temporal redundancy due to high correlation between
consecutive frames by examining the movement of objects in an image sequence to try to obtain vectors
representing the estimated motion.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

73:6 M. Kim et al.

packet loss (monitored at the middleware layer), which impacts the DVS decision at
the OS layer since the execution profile of the application is changed.

2.2.2. Specific Policies and Parameters in Our Target Application. We explain which features
of our case study will be formally modeled at each layer.

—Application Layer—Video Codec. At the application layer, PBPAIR takes the user’s
QoS expectation, the network packet loss rate, and raw video sequences as inputs to
generate a bitstream robustly encoded against network transmission errors. There-
fore, our formal specification needs to generate the execution profile (e.g., when
does encoding start/end?). Particularly, we specify an encoding workload profile as
a distribution function. For example, we model actual execution time by a uniform
distribution between best-case execution time (BCET) and worst-case execution time
(WCET). We also consider a Gaussian distribution with the average and a boundary
value [Im et al. 2004; Lorch 2001].

—Middleware Layer—Network Monitoring. This layer deals with the distributed as-
pects of the system by modeling network status to enable the proactive® control. In
our model, other nodes are abstracted into the zone information. Zone information
includes network delay and packet drop rate within the particular zone. Network de-
lay is modeled as exponential inter-arrival time (Poisson process) with mean. Packet
drop due to lossy network is modeled as a uniform distribution with given packet loss
rate. Then, we define mobility as a triple (current zone, speed, trajectory) to identify
the network situation in the current zone and to anticipate the next zone based on
user’s speed and trajectory.

—OS Layer—Power Management. Various DPM and DVS power management schemes
assuming a worst-case scenario are modeled at the OS layer. The OS layer generates
slack time information based on workload from the application layer. This slack time
is used later to reduce energy consumption while guaranteeing QoS requirements
for the next frame. Since we are targeting multitask environments, we also specify
various (real-time) scheduling algorithms such as EDF (Earliest Deadline First) and
RM (Rate Monotonic).

—Hardware Layer—Enabling Technology. To support a DPM and DVS strategy at the
OS layer, we assume that the enabling technology (e.g., voltage-scalable processor,
power-state controllable network card) is available at the hardware layer. In the case
of a microprocessor, wakeup/sleep delay and power overhead for a state transition,
DVS characteristics (i.e., power consumption for different operating mode, voltage, or
frequency) are modeled. As a result of execution, the hardware layer reports residual
energy to upper layers.

3. ITERATIVE TUNING IN XTUNE: COMBINING FORMAL VERIFICATION
WITH SYSTEM REALIZATION

Our approach combines the following.

(1) Modeling, specification and reasoning about cross-layer properties. We propose a
novel approach based on concurrent rewriting logic to formally specify and reason
about timing/QoS issues across layers and study their interrelationships.

(2) Design of policies and mechanisms for addressing trade-offs based on the cross-
layer analysis. Our work examines the impact of various resource management
techniques on timing/QoS properties and enables informed selection of resource
management policies along with rules for instantiation of parameters of the policies.

3Qur iterative system-tuning approach is not restricted to proactive systems. The same technique can
essentially be applied to reactive systems.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

xTune: A Formal Methodology for Cross-Layer Tuning of Mobile Embedded Systems 73:7

(3) Model refinement and proactive control. We enhance our lightweight formal model-
ing and analysis by integrating it with observations of system execution behavior
to achieve adaptive reasoning and proactive control by providing more precise in-
formation on current execution and future state.

We begin by articulating the roles of formal methodology for adaptation strategies.
First, a formal specification supports a powerful model of abstraction at different lay-
ers; a formal model is capable of describing QoS needs, exposing uncertainties, and
enables systematic analysis of properties and subsequent optimization. Second, a for-
mal framework based on sufficiently well-defined languages with well-defined seman-
tics (functional logic and nonfunctional needs such as timing) enables reasoning about
properties at different abstraction layers, including multidimensional QoS properties
and the relationships among them. Third, statistical formal analysis provides a quan-
tifiable solution quality in the cross-layer tuning. The formal specification is analyzed
using statistical property checking and statistical quantitative analysis to determine
the impact of various resource management policies for achieving desired properties.
Last, an iterative tuning process based on model refinement enables adaptation and val-
idates the correctness of the adaptation decisions. The formal specification itself can be
refined to reflect the system dynamics, which is crucial to adapting cross-layer policies
and to predicting the possible property violations as the system evolves dynamically
over time.

In the following sections, we explain technical details of our approach: modeling
effort toward formal executable specification (Section 3.1), statistical evaluation for
verifiable/quantifiable solution (Section 3.2), iterative tuning by model refinement from
dynamic execution behavior (Section 3.3).

3.1. Formal Modeling

As our first step, we formally specify the environmental changes as well as the poli-
cies/parameter settings that can be made at each of the layers in isolation and for
the combined layers. Our formal modeling approach uses rewriting logic [Meseguer
1992], a simple logic well suited for distributed system specification. The state space
of a distributed system is formally specified as an algebraic data type by a set of sorts
(types), operations, and equations. The dynamics of such a distributed system can then
be specified by rewrite rules of the form

t—>t ifec,

where ¢, t' are terms (patterns) that describe the local, concurrent transitions possible
in the system, and c is a condition constraining the application of the rule. Specifically,
when a part of the distributed state matches the pattern ¢ and satisfies ¢, then this
part can change to a new local state ¢. Rewriting logic specifications are executable,
as proofs in rewriting logic are carried out by applying rewrite rules that can also be
viewed as steps of a computation.

We use the object-oriented specification style supported by Maude [Clavel et al.
2007]. The Maude system is based on an efficient rewriting engine, supporting the use
of executable models as prototypes. It also provides the capability to search the state
space reachable from some initial state by the application of rewrite rules. This can be
used to find reachable states satisfying a user-defined property.

We develop abstract formal models of the aforementioned application, middleware,
0OS, and hardware layers as well as the corresponding policies and parameters. Using
formal executable specifications in Maude, we model PBPAIR as an application layer
policy as well as various power management schemes (Greedy, Cluster, DVS) as OS
layer policies. In the Greedy scheme, the power manager shuts down whenever the

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

73:8 M. Kim et al.

device is idle, while the Cluster scheme tries to aggregate idle periods to maximize
energy efficiency. The DVS scheme lowers supply voltage as long as the deadline
constraint is satisfied. The arrival of incoming processing requests from the network is
modeled as a Poisson process with an average arrival rate. When the processor runs at
full speed, the execution times of the tasks are modeled as a normal (Gaussian) distri-
bution. It should be noted that our approach is not restricted to a specific distribution.
If the characteristics of task execution times, hardware components, or environmental
factors such as network status (e.g., transmission time, inter-arrival time) have been
changed, we are able to refine the corresponding models by simply modifying the Maude
operator for other types of distributions. However, finding the exact formula for such
distributions is beyond the scope of this article. Video encoder and decoder tasks for
videophone are modeled with the workload variation of a PBPAIR encoder [Kim et al.
2006] and an H.263 decoder [TMN 10 1998]. The network zone information is assumed
to be given and the hardware implementation is for the PPC440GP processor?.

In Maude syntax, the system state (configuration) is represented as a multiset of
objects and messages. The objects have the general form

< ObjectName : ClassName | Attribute_1 : Value_1, ... , Attribute_n : Value_n >

where ObjectName is an object identifier, ClassName is a class identifier, and each
Attribute : Value pair specifies an attribute identifier and its value.

The Maude representation of the application layer using PBPAIR has the following
form.

< PBPAIR : Application | WCET : worst_case_execution_times, BCET : best_case_execution_times,
Intra_Th : 0.73, Qsize : 4, deadlineMiss : 2, lostReq : 1, ... >

The preceding object PBPAIR has attributes like WCET, BCET for generating the
worst-case and best-case workload profiles, respectively. The Intra_Th attribute is an
algorithmic parameter for the PBPAIR policy. Attributes deadlineMiss and lostReq
contain total number of deadline misses and lost requests due to buffer overflow when
the encoding queue size is @size.

Models of the different layers are composed using multiset union, which is written
as juxtaposition. The following represents the composition of the layers modeled.
PBPAIR : Application | lostReq : 1, ... >
Zonelnfo : Middleware | PacketLossRate : 10, ... >

PowerManager : 0S | ... >
CPU : Hardware | residualEnergy : 100, ... >

A AN AA

The dynamic behavior of concurrent object systems is axiomatized by rewrite rules.
For example, the rule

rl [wakeup]:
< CPU : HW | PowerStatus : deepsleep, Timer : O, Sched : idle, ... >
=>
< CPU : HW | PowerStatus : sleep, Timer : WakeupTime(sleep), Sched : transit, ... >.

defines a transition where the CPU object updates its attributes when it needs to be
woken up from the deep sleep mode with the overhead of WakeupTime(sleep) defined
as a function in Maude.

4We use the PPC440GP processor (http:/www.ibm.com/chips/techlib/techlib.nsf/products/Powerpc-440_
Embedded_Core) since there exists a corresponding full system simulation model. However, the PPC440GP
is not capable of DVS. For the experiments, we use synthetic values of frequency-power pairs as 400MHz-
1000mW, 200MHz-292mW, 100MHz-105mW with 20 micro-seconds voltage regulating overhead. These val-
ues are based on the characteristics of a similar processor PPC405LP [Zhu and Mueller 2005] that is capable
of DVS. We believe the exact formula for the hardware component such as nonlinear scaling of voltage fre-
quency is beyond the scope of this approach. More accurate data can be provided from outside to refine the
model.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

xTune: A Formal Methodology for Cross-Layer Tuning of Mobile Embedded Systems 73:9

Passage of time is modeled by functions that update the configuration appropriately,
for example, decrementing timers or decreasing remaining power. As proposed in Real-
Time Maude [Olveczky and Meseguer 2007], rules can be either instantaneous or tick
rules of the form

C — delta(C,T)intime T if T < mte(C),
where C is a term representing the system configuration. This tick rule advances time
by a time T less than or equal to mte(C), the maximal time allowed to elapse in one
step in configuration C, and alters the system state C using the function delta. For
example, the delta function decreases timer value, and the mte function specifies the
next moment when some instantaneous rule must be applied (e.g., timer expiration).

eq delta(< 0id : Cid | Timer : T, ... >, T’) = < 0id : Cid | Timer : T - T?, ... >.
eq mte(< 0id : Cid | Timer : T, ... >) = T.

For the system state, the function delta distributes over the objects and messages in
a configuration, and the function mte computes the maximum time elapsed by taking
the minimum over all parts of the configuration [Olveczky and Meseguer 2007].

eq delta(Config_1 Config_2, T) = delta(Config_1, T) delta(Config_2, T).
eq mte(Config_1 Config_2) = min(mte(Config_1), mte(Config_2)).

To execute a certain scenario, we use the rewrite command in Maude with a random
seed and given setting of policies/parameters. For example,

rew init(seed, dvs, th, battery, t, ...).

describes an initial configuration generated by the init function to examine the DVS
policy and PBPAIR policy with an Intra_Th parameter. The residual energy is set to
battery, and the rewrite command executes up to time ¢. A random seed is used to
generate various distributions to replace all nondeterminism with probabilistic choices
and time advances using a stochastic model (e.g., exponential distribution with rate)
in the tick rule. Nondeterminism that is not probabilistic in nature would require
the exhaustive exploration of all possibilities and is currently not supported in our
approach. Hence, we use sufficient conditions similar to those of Agha et al. [2006] to
guarantee the absence of this form of nondeterminism.

At the end of each execution, we examine the final configuration of a Maude speci-
fication that has several objects and messages. We refer to this execution as a sample
trace generation in the following discussion. From those objects and messages, we need
to extract meaningful data, observables. Observables can be properties or values. For
example, to check whether or not the battery expires at the end of the execution, we
need to check the residualEnergy attribute in CPU object at the hardware layer. If
the value for the residualEnergy attribute is positive, then the battery is not empty.
Otherwise, the batteryEmpty property returns true, meaning that the system used up
the battery. We encode the check of properties into the model so that the result contains
true or false, depending on whether or not a property holds. On the other hand, if we
want to have the energy consumption rather than the boolean value of the property,
we can utilize an observer such as the one shown in Figure 3. The observer replaces
each object with suitable messages that have values for the observables. For example,
deadlineMiss and lostReq in PBPAIR object are observables for this kind.

3.2. Statistical Evaluation

Once we extract observables from runs of a formal executable specification, the con-
troller performs formal verification as illustrated in Figure 1. In particular, we perform
Monte Carlo simulation by the rewrite command in Maude that generates one possible
behavior of the system, starting from a given initial state using a user-specified seed

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

73:10 M. Kim et al.

**% Property checker
op batteryEmpty : Configuration $->$ Bool .
eq batteryEmpty(< CPU : HW | residualEnergy : F, atts > C:Configuration)
= (if (F <= 0.0) then true else false fi) .
*x*x Observer
msg Obs : Bool -> Msg .
msg EnergyConsumption : Float -> Msg .
msg BatteryEmpty : Bool -> Msg .
rl [cpulbs] :
< CPU : Hardware | consumedEnergy : F, policy : P, atts >
=>
EnergyConsumption(F)
BatteryEmpty(batteryEmpty(< CPU : HW | consumedEnergy : F, atts >)) .

Fig. 3. Maude specification: property checker and observer.

for sampling from distributions. The sample traces from Monte Carlo simulation are
used for the subsequent statistical techniques that we explain in this subsection.

To evaluate feasible design points, we adapt and improve two statistical evalua-
tion methods: statistical property checking and statistical quantitative analysis. For
statistical property checking, probabilistic properties such as

Probability that a system can survive with given residual energy for ¢ time units is more than a threshold
6 %).

will be checked. In the case of statistical quantitative analysis, we estimate the expected
value of certain observables such as

Average energy consumption for ¢ time units within a confidence interval (§) and an error bound («).

3.2.1. Statistical Theory Background and Implementation. The analysis of stochastic systems
is typically carried out using either numerical or statistical techniques [Younes et al.
2006]. To solve probabilistic model checking problems, one can attempt to compute the
probability measure of a set of paths using numerical techniques, but this is infeasible
for systems with complex dynamics or large state spaces. Therefore, we use statistical
techniques.

Statistical Property Checking. We use statistical property checking, a form of hypoth-
esis testing based on Monte Carlo simulation results, to verify probabilistic properties.
In hypothesis testing, we test whether the probability p of a property under examina-
tion is above or below the threshold 6. We can formulate this as the problem of testing
the hypothesis H : p > 0 against the alternative hypothesis K: p < 6. We implemented
two statistical property checking techniques in our framework: sequential testing [Wald
1945] and black-box testing [Sen et al. 2004]. Sequential testing generates sample ex-
ecution paths until its answer can be guaranteed to be correct within the required
error bounds. Black-box testing instead computes a quantitative measure of confidence
for the given samples. Here, black-box means that the system cannot be controlled to
generate execution traces, or trajectories, on demand starting from arbitrary states.
The implementation of sequential testing and black-box testing can be found as part
of the Ymer [Younes et al. 2006] and VeStA [Sen et al. 2004] tools, respectively.

Statistical Quantitative Analysis. Statistical evaluation can be performed with a
large quantity of data that follows a normal distribution, and hence allows the esti-
mation of the expected value and a confidence measure. To ensure the mathematical
soundness of the approximation, we perform a Jarque-Bera (JB) normality test [Jarque
and Bera 1987]. The normality is determined by testing the null hypothesis (that the
sample comes from a normal distribution with unknown mean and variance) against
the alternative (that it does not come from a normal distribution). The JB test com-
putes the p-value (the smallest level of significance at which a null hypothesis may be

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

xTune: A Formal Methodology for Cross-Layer Tuning of Mobile Embedded Systems 73:11

rejected) from the JB test statistic and the x? (chi-square) distribution. One rejects the
null hypothesis if the p-value is smaller than or equal to the significance level. With
5% significance level, a p-value = 0.05 indicates that the probability of getting a value
of test statistics as extreme as or more extreme than that observed is at most 5% if
the null hypothesis is actually true. Once normality of the data is ensured with high
confidence for a large enough number of sample traces n, the approximate average falls
inside a (1 - ®)100% confidence interval (¥ — Z% % x4+ Z% %L), where % is the average
of the sample variables, s is the samples’ standard deviation, and Z. is a standard
score (also called Z-score or normal score) of the normal distribution [Hogg and Craig

1995]. To obtain the desired confidence, we want the size of this (1 - ®)100% confidence
interval to be less than or equal to §, that is, 2Z. % < 8, where o and § are given.

3.2.2. Our Approach: Simplified Formulae and On-demand Sample Generation.

Statistical Property Checking. We note that both the Ymer and VeStA tools target
complex properties of stochastic systems. For instance, those tools take properties spec-
ified in a temporal logic, namely, Continuous Stochastic Logic (CSL) [Aziz et al. 1996;
Baier et al. 1999], for Continuous Time Markov Chain (CTMC) system specifications.
The reason is that they want to support complex property checking (e.g., nested tem-
poral/probabilistic operators, and also a form of hybrid model checking in between
numerical and statistical methods). This can be overkill when it comes to analyzing
practical optimization problems if we test only simple properties such as “Probability
that a system can survive with a given residual energy for ¢ time units is more than 6
%”. Those formulae are essentially a restricted version of CSL without nesting. Indeed,
we found no need for nested formulae or an exact numerical solution for our applica-
tion domain. Hence, we use hypothesis testing based on Monte Carlo simulation, which
does not need to be tied to any particular specification model or temporal logic.

ALGORITHM 3.1: Statistical Quantitative Analysis

Inputs: error bound «, confidence interval §,
observable under consideration
Output: Expected value E[observable]
Procedure:
do {
trace generation until normality test succeeds;
d = 27« i;
2 J/n
} while (d > 9);
return the average of observable;

Statistical Quantitative Analysis. Algorithm 3.1 shows pseudocode for the statistical
quantitative analysis. As we mentioned earlier, to approximate the expected value by
the mean of n samples such that the size of the (1 - @)100% confidence interval is
bounded by 3§, the sample data should follow a normal distribution [Hogg and Craig
1995]. For the normality test, we need to have a sufficiently large dataset. Since the
trace generation takes most of the evaluation time, we generate sample traces only
if more samples are required (i.e., JB test cannot accept the normality of data.). We
also use the bootstrap distribution (e.g., resampling by the average of the randomly
chosen original samples with replacement) [McCabe and Moore 2005] for the normality
test and the subsequent analysis, which leads to further evaluation time reduction
without loss of accuracy in a statistical sense. By generating traces on demand, we can

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

73:12 M. Kim et al.

policy/
parameter

policy/

parameéter pre-

selection testing
system sy‘_sterjn
model realization

model refinement

Fig. 4. Iterative tuning cycle.

significantly reduce the evaluation time since it is proportional to the trace generation
time.

We implement these two statistical formal techniques, statistical property checking
and statistical quantitative analysis, in our framework to formally verify the given
policies/parameters and to enable informed selection of them. The experimental results
in Section 5.1 from both theoretical analysis and Monte Carlo simulation followed by
statistical methods demonstrate the applicability of our approach to the design of
mobile embedded systems.

3.3. Iterative Tuning

Modeling with formal executable specifications, rather than implementing simulators
of distributed systems under consideration, enables us to carry out formal analysis
(e.g., statistical property checking and quantitative analysis). However, there exist op-
portunities at runtime to improve the formal model to better represent the system
dynamics. For this purpose, we perform model refinement using observed system ex-
ecution behavior by equipping the controller with a feedback loop to interact with
the system realization. Note that a system realization can be implemented with a
simulator, an emulator, or a real implementation. In our case, we used a realistic sim-
ulator as described in Section 4.1. As depicted in Figure 1, the controller interacts with
system realization to obtain information on dynamic system behavior under selected
policies/parameters in order to improve the formal model. We call this pretesting.

3.3.1. Model Refinement. Within our framework, feedback from the observation of
system execution behavior can be used to improve the model (to make it more
accurately match the real environment), and hence it can be used to indirectly improve
the policy. As illustrated in Figure 4, our iterative tuning cycle consists of three phases:
(i) policy/parameter selection, (ii) pre-testing, and (iii) model refinement. For instance,
the formal specification initially models the execution times of the tasks as a normal
(Gaussian) distribution with the average of (MET’;M and the boundary value of
35, where § represents the standard deviation, based on profiled BCET and WCET
from sample runs. This model is refined, in turn, by replacing BCET and WCET by
observations from dynamic system execution in order to more realistically reflect the
actual executions characterizing the system in practice.

Figure 5 illustrates model refinement based on the dynamic system execution
behavior from a system realization. Using the formal specification, the controller
performs verification/evaluation of the given policies based on the initial model (phase;
in Figure 5). Statistical quantitative analysis is performed on Maude traces up to time
t; to determine the best policies/parameters. These are used to configure the system
realization (eventy in Figure 5). Since obtaining execution behavior from the system
realization usually takes a much longer time than formal analysis (e.g., in our case, it
is of the order of hundreds of times slower than formal analysis), it is beneficial to find
the best policy by initial formal analysis first. At time ¢, the system realization starts

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

xTune: A Formal Methodology for Cross-Layer Tuning of Mobile Embedded Systems 73:13

Optimization for zone 1 Optimization for zone 2
D D event:: mobility update

Sys{em_ [Hireoe [HiEEDe Sstart formal analysis
realization Model refinement event2: done initial formal analysis
event 1 2 s - events: observation from system realization

even even Model refinement start model refinement
Formal N N events: done iterative tuning
analysis phase 1 phase 3 phase 1 phase 3| events: proactive control

‘event 2 ‘event 4 ‘

hase 1: initial formal analysis

Controller P y

- phasez: running system realization
Proactive Control phase s: enhanced formal analysis
event5 event6 |event7 by model refinement
Device * time (phase 2) >> time (phase 113)

0 o TR 5 © 0 W ume” |20Ne 1 : Zone with a% packet loss rate
zone 2: zone with b% packet loss rate

A user resides in zone 1 zone 2

Fig. 5. Model refinement and proactive control.

generation of the BCET and WCET that reflect the actual executions as described by
events in Figure 5. Then, the formal model is refined by updating BCET and WCET to
enhance the analysis results as shown between ¢, and #3 (phases in Figure 5).

3.3.2. Proactive Control. As mentioned in Section 2.2, we exploit given information on
a user’s mobility (e.g., current zone, speed, and trajectory) and network situation (e.g.,
packet loss rate, delay) to select among policies and related parameters before the
user enters a new zone. The mobility information is used to identify the network
situation in the current zone and to anticipate the next zone based on a user’s speed
and trajectory. Currently, we assume that the next zone information is forecast by the
system realization (event;). As mentioned in Section 4.1, prediction of future trends in
network traffic based on user mobility information from a device is beyond the scope of
this article.

Figure 5 also illustrates proactive control initiated by network status update. At time
tp, the middleware layer is informed about the next zone information that a user will
reach, zone; with packet loss rate a% at time #4. Our framework performs the iterative
tuning process, formal execution followed by statistical analysis (phase;) with subse-
quent model refinement (phases and phases), for the next zone. As a result, our frame-
work can generate proactive controls (events) to the device before the user enters the
new zone (any time between #3 and ¢4). Similarly, at time ¢;, the formal model is informed
that a user will be in a zone with packet loss rate 6% at time #;. In the case of zoney, the
extended analysis results (event;) are available at time #3 and can be immediately for-
warded to the device. Therefore, by time #; (when a user enters zoneg), our framework
delivers eventg from the initial formal analysis to the device as shown in Figure 5.

4. SYSTEM IMPLEMENTATION

As explained in Sections 2.1 and 3, the integration of formal analysis with a system
realization (as illustrated in Figure 1) results in a feedback loop that includes the formal
models, simulation, and monitoring of running systems for analysis of the system
behavior and for optimizing the choice of policies and parameters. Figure 6(a) illustrates
our evaluation platform that is composed of the (1) formal executable specification,
(2) controller, and (3) system realization, which we describe in the following text.

4.1. System Realization

The system realization takes policies/parameters and returns the dynamic system
execution behavior at each layer as seen in Figure 6(b). For instance, if the controller
selects PBPAIR (with appropriate Intra_Th parameter) as the application layer policy
and DVS as the OS layer policy, the system realization executes using the appropriate

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

73:14 M. Kim et al.

’ Maude Formal Executable Specification ‘
Controller System Realization Contr°|1 10bservables

Policy/parameter - SW Modu W Moduter Refined system behaviol
lection g Encodor/Decoder task ower
Monitoring & 3 EDF scheduling cna.mnsn’és Controller
Analysis H
H . i Interface
L ‘ C Socket communication; Polssen network dela - .)
over the network Uniform packet drop Control Dynamic system execution behavic
Call as Target Operating System Policies/parameters Application_profile
a dynamic librar - PBPAIR as the application layer poli - Timing (deadline miss, BCET/WCET)
V! Y (e.g.,, Linux 2.4) with DVS as the OS layer policy - QoS (PSNR, frame drop, buffer overflow)
lated n - Intra_thparameter for the PBPAIR Middleware_profile
Layered system model Simulated Target Hardware Simulation _information - Network status (packet loss/delay pattern)
- (e.g., Ebony board) - Debugging purposes - Mobility (current zone, speed, trajectory)
0s profile
. Simics Full System Simulator - CPU utilization
aude System Hardware profile
N « - Energy consumption
Formal Executable ‘ Host Operating System ‘
Specification ‘ Host Hardware ‘ ’ System Realization

(a) (b)

Fig. 6. (a) Evaluation platform, (b) Interactions between controller and system realization.

settings and reports profiled information like consumed energy and timing/QoS aspects,
illustrated as pretesting and model refinement in Figure 1.

For this purpose, we need a full system simulation, meaning that our system realiza-
tion should have an implementation for a target system at the level that an operating
system acts with arbitrary workloads. Thus, we define a collection of library routines
and their arguments that can be used to implement a system realization. The library
routines allow users to create and manage applications on top of a mobile device while
controlling network status, OS scheduling, and power management schemes.

As explained in Section 3.3, the execution profile from the system realization is fed
back into the formal model to enhance the solution quality. We use the Simics full
system simulation platform,® capable of simulating target systems that include a real
network connection and run operating systems and workloads. Specifically, we use
the Simics model of a PowerPC-based Ebony board® with a PPC440GP processor that
boots Linux 2.4 as in Figure 6(a). On top of the Simics target OS, we extend the system
realization to accommodate the SW, HW, and Environment modules as we describe in
the following text. In our case study, we model two tasks (video encoder/decoder) within
an energy-constrained device. The network status is modeled separately.

—SW Module. A task set is created at the application layer. As an example, a video-
phone has two tasks; video encoder/decoder with its own parameters (e.g., PBPAIR
has the Intra_Th parameter). Also, the input/output data structure is task specific.
For instance, an H.263 encoder with PBPAIR policy takes the Intra_Th parameter,
the network packet loss rate, and raw video sequences as inputs and generates a bit-
stream robustly encoded against network transmission errors. In addition, there are
encoder QoS-related parameters (e.g., quantization value, IP ratio, frame rate, buffer
size). At the OS layer, the module includes OS-level power management schemes (e.g.,
DPM, DVS) and an EDF scheduling algorithm for energy-efficient real-time multi-
tasking. As a result, application profile information such as QoS (peak signal to noise
ratio (PSNR), frame drops) and timing (deadline misses, BCET, WCET) aspects are
reported.

—HW Module. The HW module simulates the target hardware platform including its
power states and characteristics of a voltage-scalable processor associated with each
state. For example, the power consumption of mobile SoC (system-on-a-chip) pro-
cessors for idle state is in the order of milliwatts, and transition overhead is less
than 0.1 microsecond [Olsen and Narayanaswami 2003]. The transition overhead is

Shttp://www.simics.net.
6http://www.amcc.com/Embeded.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

xTune: A Formal Methodology for Cross-Layer Tuning of Mobile Embedded Systems 73:15

PBPAIR WCET

200000

3 2]00

Intra_Th (%)

PBPAIR encoding time

Packet Loss Rate (%)

1 29 57 85 113 141 169 197 225 253 281
n-th frame ‘D(}ZOOOO H20000-40000 O 40000-60000 O 60000-80000

H 80000-100000 @ 100000-120000m 120000-1400003 140000-16000!
= 160000-180000m 180000-200000

—e— garden.qcif —#— akiyo.qcif foreman.qcif ‘
(a) (b)

Fig. 7. PBPAIR Timing Information from System Realization (a) Frame Encoding Time for Different Video
Clips (Intra_-Th = 0.73, Packet Loss = 10%), (b) Worst-Case Encoding Time Per Frame Varying Intra_Th
under Different Packet Loss Rate (FOREMAN.QCIF 300 Frames).

represented by the minimum idle time of a device that compensates for state tran-
sition (or frequency change) overhead. This device-dependent parameter is typically
referred to as the break-even time (Ty.). As a result of execution, the energy profile is
reported.

—Environment Module. As briefly mentioned, we define mobility as a triple (current
zone, speed, trajectory) to identify the network situation in the current zone and to
anticipate the next zone based on the user’s speed and trajectory. Ideally, we need
prediction techniques like time series analysis [Han and Venkatasubramanian 2001]
to forecast the future trends in network traffic with some defined level of confidence.
This is, however, beyond the scope of this article. Currently, our system realization
randomly generates the next zone information such as network delay and packet
drop rate within the particular zone.

The two most important observations from our system realization are timing (BCET,
WCET) and network-related information. The framework uses timing information to
refine the model and network-related information to generate proactive control. There-
fore, in the experiments (Section 5.2), we demonstrate how the framework can achieve
iterative system tuning for proactive control using those two pieces of feedback from
system execution behavior.

5. EXPERIMENTAL RESULTS

To demonstrate the applicability of our framework to QoS/energy trade-off manage-
ment, we explore several aspects of the system optimization. Our formal executable
specification (Maude) and evaluation method can serve as a simulation study as well
as a statistical guarantee for the design. The outcome of the formal analysis helps
us determine the right blend of policies and parameter settings that enable better
QoS and better energy efficiency. Our framework can guide more informed resource
management in the context of both static instantiation and dynamic tuning of system
policy/parameter. In the following sections, we present our experimental results on
each aspect, beginning with static analysis.

5.1. Policy/Parameter Instantiation: Static Analysis

To evaluate the effect of cross-layer optimization, first we need to quantify the
impact of the optimization at each layer and their composition. Currently, we model
energy optimization policies (e.g., DVS, DPM) to reduce energy consumption while
satisfying the QoS requirements even in the worst case scenario. However, as shown

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

73:16 M. Kim et al.

Energy Consumption

[2 greedy m chuster mavs]

Fig. 8. Effect of cross-layer optimization: Energy perspective on varying OS layer policy and application
policy/parameter (packet loss rate = 10%, buffer size = 2 frames).

in Figure 7(a) there is data dependency in the encoding time of each frame as well
as significant variation from frame-to-frame. Typical multimedia applications finish
execution much earlier than the worst-case execution time in most of the situations
as shown in Figure 7(a), which leads to slack time for the next frame with proper
buffering. Figure 7(b) shows that the worst-case execution time per-frame of PBPAIR
encoding for the same video sequence depends on the network status as represented
by the packet loss rate and on the parameter setting of the algorithm.

Interestingly, the PBPAIR parameter can be manipulated to cover large trade-off
space as shown in Figure 7(b): from Intra_Th = 1 (meaning a user wants to encode
whole frames as intracoding for maximum error resilience) to Intra_Th = 0 (indicating
that a user wants to encode with maximum compression efficiency without considering
any error resiliency). Without any packet loss, Intra_Th has no impact as shown in
Figure 7(b). Through Figure 7, we are able to observe that PBPAIR can coordinate with
the DPM or DVS policy by controlling its parameter based on the trade-off between the
error resilience level and encoding energy consumption. In the following sections, we
explain experimental results that illustrate the effect of this cross-layer optimization.

5.1.1. Monte Carlo Simulation. Figure 8 presents the energy profiles according to the
different policies and their parameter selection with given packet loss rate (10%) and
buffer size (two frames). Recall that Inéra_Th = 0 indicates DVS without PBPAIR
policy. DVS with PBPAIR outperforms other policies from the perspective of relative
energy consumption with respect to Always-on (i.e., without any policy). However, the
effect of energy reduction incurred from the application layer parameter setting is
much higher than from the OS layer policy selection, as shown by the decreasing trend
in Figure 8. On another note, energy consumption needs to be carefully considered
with QoS aspects. For example, Cluster consumes more energy than other policies
in Figure 8, and yet it performs better in QoS aspects (see the case with buffer size
equals 2 in Figures 9(a) and 9(c)).

QoS measures such as average deadline miss ratio and average frame drop ratio are
also examined. Figure 9(a) shows that PBPAIR combined with any OS layer policy de-
livers more timely decoding than any OS layer policy without PBPAIR. As the buffering
capacity grows, however, the decoder deadline miss ratio is not continuously decreasing
as we expect. This can be interpreted with Figure 9(c). The decoder drops fewer video
frames with a larger buffer. As a result, more frames in the buffer may lead to overload.
Proper buffer size estimation and/or buffering techniques (e.g., skip decoding/encoding
some frame when buffer overflow occurs) can balance between frame drops (due to lim-
ited buffering capacity) and deadline misses (timing violation due to system overload)

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

xTune: A Formal Methodology for Cross-Layer Tuning of Mobile Embedded Systems 73:17

Decoder Average Deadline Miss Ratio Decoder Average Deadline Miss Ratio
04 04 -
.
——Intra_Th =0
0.35 0.35 N\ e
—4— always-on w/o pbpair Inira_Th =0.1
N\ WAYSTOI WO PP Intra_Th =0.2]
03 N “1“\“‘]" wo ":"“" 0.3 —— Intra_Th = 0.3
_.5 ; uster w f popair % ”-\ —*— Intra_Th = 0.4]
Z 025 —— 8 w/o pbpair 2025 SN —e—Intra_Th = 0.5
2 N —x— always a 2 - .
= \ —n always-on w/ pbpair(0.7 = _ N\—4\—4 Intra_Th = 0.6
0z — Eixcdy w p:pmm 7) 02 N Intra_Th=0.7
— || N— _ n _
- Z"S“' “b P ”2"‘” 7 — — —— Intra_Th = 0.8
——dvs air(0.7 =
015 \ — vs wi pbpalr(0.7) 015 Intra_Th = 0.9
Y\" e ——Intra_Th=1
04 P e J 01 J
12 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Buffer Size (Frame) Buffer Size (Frame)
(a) (b)
Decoder Average Frame Drop Ratio Decoder Average Frame Drop Ratio
0.18 0.18
0.16 a - 0.16 = —e—Intra_Th=0
—=—Intra_Th =0.1
014 —s— always-on w/o pbpair 0.14
S\ oty o b R\ Intra_Th = 0.2
0.12 \ - 5’;“““3 who "b"““ 0.12 \ ——Intra_Th =03
£ oa \N C("S‘” W :P par £ o1 — ——Intra_Th = 0.4
% \ \ (Ih o popa opain(0.7 z \\ —e—Intra_Th=0.5
5 \ \ —%— always-on w/ pbpa g -
£ 008 \N ~ always-on w/ pbpair(& 0.08 = —+— Intra_Th = 0.6|
\\ —e— greedy w/ pbpair(0.7) —
0.06 e > st onai(0.7 0.06 “h ——Intra_Th =0.7]
—+— cluster w/ pbpa —
\\\\\ “—\'\ Zuc ”b pbpair(0.7) N ntraTh=0.
0.04 \ \‘\. vs i pbpair(0.7) 0.04 \Q Intra_Th = 0.9
0.02 \:S_ 0.02 ——Intra_Th~= |
0 s 0 '
12 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Buffer Size (Frame) Buffer Size (Frame)
(c) (d)

Fig. 9. Effect of cross-layer optimization: QoS perspective (packet loss rate = 10%) on varying (a), (c) policy
and buffer size (Intra_-Th = 0.7); (b), (d) Intra_Th and buffer size (greedy policy).

[Qiu et al. 2001; Wu et al. 2009]. This is, however, beyond the scope of this article.
In Figure 9(c), Cluster policy outperforms DVS and Greedy from the perspective of
average frame drops because Cluster policy attempts to finish decoding/encoding for
buffered frames as soon as possible. The effect of parameter setting within the same
policy selection (e.g., Greedy) is presented in Figures 9(b) and 9(d). It should be noted
that the comparative evaluations such as Figures 8 and 9 can guide informed tuning
of a system. In Figure 9(b), with Intra_Th, parameter 1 and larger buffer sizes possi-
bly miss more deadlines since more intracoding could lead to higher decoding energy
consumption to the point where encoding energy reduction cannot compensate for it.
More detailed experimental results on QoS aspects can be found in Kim et al. [2007b].

Note that runtime is linearly proportional to the single trace generation time (i.e.,
Maude rewriting time from initial state). If we consider the rate of 50 frames each
(5 frames per-second) for both encoding and decoding, single trace generation takes
around 400 to 500ms on a 2.8GHz Pentium 4 processor running Linux. Therefore, it is
infeasible to produce all possible traces to evaluate policy and parameter changes in dy-
namic situations. This led us to use statistical approaches with quantifiable confidence
for our evaluation/decision.

5.1.2. Statistical Property Checking. As explained in Section 3.2, we implemented suitable
forms of sequential testing and black-box testing for our purposes. Statistical property
checking enables quick detection of problematic situations (e.g., battery expiration) that
can arise due to the selection of policy/parameter settings. As an example of sequential
testing, we checked the formula

Py [battery Empty]

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

73:18 M. Kim et al.

1: decoderAvgConsecutiveLost =

2: [nTrace=100] Reject Ho (PValue=0.042)

3 [nTrace=110] Fail to reject Ho (PValue=0.702)
4: [nTrace=110] (4 0.01094) > (delta = 0.01)
5: [nTrace=121]1 (d
6:
7
8
9

0.01077) > (delta = 0.01)
[nTrace=133] (d = 0.01059) > (delta = 0.01)
[nTrace=146] (4 0.01020) > (delta = 0.01)

[nTrace=160] (d

: 0.00997) <= (delta = 0.01)
: Expected value =

.56061 with error bound 5.0%, confidence interval 0.997%

[l (I | I (|

Fig. 10. Statistical quantitative analysis (Hy: null hypothesis on data normality, §: confidence interval, «:
error bound).

by testing if the probability p that the path formula batteryEmpty holds is less than
the threshold 6. We use arguments o = 0.05 (false negative), 8 = 0.05 (false positive),
6 = 0.1 (threshold), and § = 0.01 (indifference region), respectively. Sequential testing
accepts the hypothesis H; : p <« 6 — § with 133 traces, that is, the batteryEmpty
property checker in Figure 3 gives false for all traces. With the same 133 traces that
were generated for sequential testing, black-box testing also confirms the formula with
an error of 8.20E-7. Further explanation for sequential testing [Wald 1945] and black-
box testing [Sen et al. 2004] can be found in our technical report [Kim et al. 2007b].
The runtime for either method of statistical property checking is 10 to 20ms (on a
2.8GHz Pentium 4 processor running Linux) in addition to the sample generation,
which indicates that this is a feasible proposition for the on-the-fly adaptation.

5.1.3. Statistical Quantitative Analysis. Figure 10 shows our statistical quantitative anal-
ysis results with arguments of @ (error bound) and § (confidence interval) as 5% and
1%, respectively. In Figure 10, the observable decoderAvgConsecutiveLost can not pass
the normality test with 100 initial samples since its p-value (0.042) is lower than signif-
icance level (0.05). Hence, we need to generate more samples (10% in this experiment)
as shown in line 3. Even if the sample data follows a normal distribution, we may need
more samples for limiting the confidence interval by §. Line 4-8 in Figure 10 present
such a case. Finally, the resulting confidence interval d (0.997%) is less than the desired
value § (1%).

The aforementioned static analysis based on a statistical approach allows an in-
formed selection of policy/parameter when a user resides in the same zone.

5.2. Policy/Parameter Tuning: Dynamic Analysis

As depicted in Figure 1, the controller interacts with the system realization to pretest
selected policies/parameters and to obtain information on dynamic system behavior for
iterative tuning of policies/parameters. Here, we explain the experimental results on it-
erative tuning by model refinement (Section 3.3.1) and proactive control (Section 3.3.2).

Let us take an example. At time #y, the formal specification models PBPAIR execution
with [BCET, WCET] as [109ms, 202ms]’, and provides the analysis results for four
different policy/parameter selections (A, B, C, D) to encode FOREMAN.QCIF video
clip (S; to Ss in Figure 11). Since our system realization reports dynamic execution
of PBPAIR as shown in Figure 7, we can refine [BCET, WCET] to be [66ms, 125ms],
leading to formal analysis results S5 to Sg in Figure 11. Furthermore, we adjust the

"These profiled values are from Kim et al. [2006] for various video inputs. We also use 0.73 as Intra_Th to
generate a similar compression ratio with other error-resilient coding schemes when the packet error rate
is 10%. In Kim et al. [2006], the amount of possible energy reduction affected by communication overhead is
very small compared to that of the encoding tasks running on a PDA, since the wakeup time of the network
interface on the PDA is not short enough to apply DPM for real-time multimedia applications. Increased
length of bitstreams due to intracoding may result in higher communication overhead on some devices, which
is not modeled in our current specification. However, we believe that our model can be extended to cope with
other devices without affecting the core approach.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

xTune: A Formal Methodology for Cross-Layer Tuning of Mobile Embedded Systems 73:19

‘ @ Formal Analysis B System Realization ‘

A: Greedy + PBPAIR B: Greedy + NO
100 - S2 S C: Cluster + PBPAIR D: Cluster + NO
90 HHH - 1]
80 HHH 4
70 tHHH

iE 10 Ss i S So 5”7777 10l
40 FHHH —— HHH
30 M 1 HHH
20 FHHH HHH
i
0

ABCDAABCDAABCD ABCDAABCD ABCDAABCD

update adjust update update

[beet, weet] distribution [beet, weet] [beet, weet]
phase 1 phase 2&3 phase 1 phase2&3 phase1 phase 2&3
iterative tuning for iterative tuning for iterative tuning for

zone 1(10% PLR (Packet Loss Rate)) zone 2(20% PLR) zone 3 (5% PLR)

Relative Energy Consumption Compared with Always-on (%)

time

Fig. 11. Dynamic analysis (buffer size = 2 frames, Intra_Th = 0.73).

parameter of the frame encoding time distribution model in the formal specification
since many frame encoding times are close to BCET as shown in Figure 7(a). Instead
of simply providing simulated [BCET, WCET] as the parameter of the normal
distribution model explained in Section 3.1, we use the actual average execution time
observed from the system realization. Formal analysis results Sy to Sy in Figure 11
show a better approximation (i.e., closer to the estimation based on dynamic execution
behavior from the system realization) due to this adjustment.

It should be noted that phase; (initial formal analysis) and phases (enhanced formal
analysis) take much less time than phases (running a system realization). The goodness
of a policy/parameter selection, however, remains the same through phase; to phases.
This indicates that lightweight formal verification at runtime can be effectively used
in adaptation by rapidly narrowing down the search space of potential policies and
parameters. Furthermore, the quality of adaptation can be improved by combining
formal analysis with observed system execution behavior.

6. PREVIOUS AND RELATED WORK

Previous work on probabilistic model checking for stochastic systems includes PRISM
[Kwiatkowska et al. 2005], SMART [Siminiceanu and Ciardo 2007], MRMC [Katoen
et al. 2009], and RAPTURE [Jeannet et al. 2002]. Jansen et al. [2007] present com-
prehensive experimental results on runtimes and memory consumptions of different
probabilistic model checkers including MRMC, PRISM, Ymer [Younes et al. 2006], and
VeStA [Sen et al. 2004]. Given a formal description of a system (e.g., variants of Markov
chains for PRISM, Petri Nets for SMART), those tools generate the state space, ver-
ify temporal logic properties, and provide efficient numerical solutions for stochastic
analysis. A quantitative approach with detailed models of the system components (e.g.,
kinetic battery model) and a tailored numerical algorithm to compute the battery life-
time distributions has been studied [Cloth and Haverkort 2008]. Unlike these methods,
we focus on statistical, simulation-based methods and black-box testing only aiming at
approximate but sufficiently good results.

Ymer [Younes et al. 2006] implements such a statistical technique, based on discrete
event simulation and sequential acceptance sampling for CSL model checking.
The system is modeled by CTMC or generalized semi-Markov processes (GSMPs).

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

73:20 M. Kim et al.

Properties are expressed using CSL. Ymer also integrates numerical techniques
to solve nested CSL queries by including the hybrid engine of the PRISM tool for
CTMC model checking. A more recent study on statistical model checking using
perfect simulation [Rabih and Pekergin 2009] proposes the combination of perfect
sampling using Markov Chain Monte Carlo methods and statistical hypothesis testing.
Perfect sampling could also be combined with our approach to deal with steady-state
properties. In summary, the expressive power of the Maude language (extended
with probability and time) enables the concise specification of a wide spectrum of
applications that are beyond the scope of Markovian models and thanks to its logical
basis facilitates the use of a variety of formal methods, e.g., for model validation.

Kumar et al. [2003] and Agha et al. [2006] introduce PMaude (Probabilistic Maude),
a rewriting-based specification language for modeling probabilistic concurrent and
distributed systems. The associated tool, VeStA [Sen et al. 2004], was developed to
statistically analyze various quantitative aspects of models such as those specified in
PMaude using a query language QuaTEx [Agha et al. 2006] based on CSL. However,
this approach does not provide any procedure to determine the sample size required to
achieve normality. Moreover, the authors approximate the expected average by apply-
ing Student’s T-distribution. As the sample size n grows, the T-distribution approaches
the normal distribution. Therefore, we extended their approach by an on-demand sam-
ple generation that can compute the sample size sufficient to guarantee the normality
of data and utilize the normal distribution to obtain the error bound and confidence
interval.

Probabilistic model checking (PMC) is used in Norman et al. [2005] to analyze the
problem of DPM. The authors obtain the optimal DPM policy by formulating the opti-
mization problem as a discrete time Markov chain (DTMC) model and solve it using an
equation solver. Once a policy has been constructed, its performance is validated using
the PMC tool PRISM. Even though PMC enables one to experiment with the effective-
ness of a selected DPM algorithm in a quantitative way, the challenge of determining
how to actually implement a good power manager that considers complex system dy-
namics still remains, since their work is essentially a validation process for a specific
policy determined using an equation solver. Their analysis of stochastic systems is car-
ried out using numerical solution techniques that are far more memory intensive. On
the other hand, our approach is to start with an executable formal model specifying
a space of possible behaviors and analyze these possible behaviors using lightweight
statistical techniques.

Model-predictive control approaches also aim to address power management issues.
Abdelwahed et al. [2004] propose predictive learning to shutdown a device by exhaus-
tively searching over a limited look-ahead horizon. In Lu et al. [2002], a closed-loop
feedback control based on queuing theory is presented to optimize CPU frequency. Their
solution quality depends on the future events forecasted by a mathematical model (e.g.,
a filter). The applicability of these approaches, however, is limited to systems having
a small number of control inputs with synthetic workloads. A control-based middle-
ware framework for QoS adaptations [Li and Nahrstedt 1999] has been proposed for
fair resource sharing in a visual tracking application. However, this work focused on
the analysis of the adaptation process itself rather than optimizing the overall system
utility factor.

Acquaviva et al. [2004] propose an incremental methodology to analyze the effect of
a simple time-out-based DPM scheme from a functional model without timing and per-
forms a noninterference check for behavior. Then, the authors extend it to a Markovian
model and the effect of DPM is evaluated by standard numerical techniques. Last, they
extend it to a general model by using profiled information from real-world measure-
ments and simulate it to compare the result with that of the Markovian model. Our

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

xTune: A Formal Methodology for Cross-Layer Tuning of Mobile Embedded Systems 73:21

framework can be seen as a generalization of their work. First, since we use Maude
formal executable specifications that can have any distribution in timing by controlling
the tick rule, our formal model corresponds to their general model. Their mathematical
soundness is guaranteed only when the model follows an exponential timing distribu-
tion. More importantly, our primary focus is online adaptation based on abstract formal
models complemented by a system realization, not the validation at design time.

7. CONCLUSIONS

We have presented a unified framework, xTune, to develop formal analytical meth-
ods for understanding cross-layer optimization issues in highly distributed systems
that incorporate resource-limited devices, and we have shown how to integrate these
methods into the design and adaptation processes for such systems. We propose itera-
tive system tuning for mobile embedded systems and apply it in a case study treating
multimedia communication. The integration of formal analysis with the observation
of dynamic system execution for analysis of system behavior and optimizing choice of
policies and parameters results in a feedback loop that includes the formal models,
simulation, and monitoring of running systems. On another note, this article substan-
tially complements our previous work on experimentally based cross-layer strategies
Forge Project® and conclusively shows that xXTune provides a uniform methodology for
deriving, analyzing, and validating cross-layer adaptation.

As a next phase of this project, we investigated the impact of compositions be-
tween application and OS layers [Kim et al. 2008]. This effort aims to provide a pol-
icy/parameter selection mechanism by coordinating among local optimizers through
constraint refinement. As an example, if the application layer optimizer refines its
parameter, the OS layer optimizer refines its parameter by taking the application
layer parameter ranges as constraints. Then the OS layer results are again trans-
mitted to the application layer optimizer for further refinement. Thus, the constraint
language serves as a common interface among different local optimizers, leading to im-
provements of solution quality, robustness, and speed of convergence. Compositional
optimization through constraint refinement enables a controller to coordinate existing
local optimizers, which can accommodate different objectives by treating them as black
boxes.

The formal rewriting logic specification underlying our case study satisfies the con-
ditions of Agha et al. [2006], which guarantee the absence of nondeterminism. An
interesting question is if our approach can be generalized to support uncertainty in
probabilities/parameters and true nondeterministic choices, a more dynamic form of
uncertainty. Formally, the case of uncertain probabilities/parameters can be treated by
using a parameterized rewriting logic specification along the lines of a probabilistic
specification in the sense of Jonsson and Larsen [1991], which constrains probabilities
to a set (typically an interval). Runtime monitoring can help to narrow down the choice
of such parameters. True nondeterminism, which is arbitrarily resolved by the environ-
ment/adversary at system runtime, would, in the general case, require the exhaustive
exploration of all possibilities. An interpretation of a rewriting logic specification as a
Markov decision process (instead of a Markov chain) would provide a possible formal
setting. State space exploration is supported by the Maude engine, but due to the re-
sulting state space explosion the degree of nondeterminism that can be handled in this
way is limited.

The problem of model checking in the presence of uncertainties and nondeterminism
has been studied on the basis of interval-valued discrete-time Markov chains [Sen et al.
2006], but model checking for an expressive logic such as probabilistic computational

Shttp://forge.ics.uci.edu.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

73:22 M. Kim et al.

tree logic (PCTL) might be unnecessary and too expensive for runtime use. A more
practical way to deal with both uncertain parameters and nondeterminism is to perform
the probabilistic analysis under a specific subset of possible environments/adversaries,
for example, to explore best/worst-case behavior. Clearly, the justification for utilizing
such a subset needs to be established independently based on the formal specification.
Tools support for this process would be another interesting direction for future work.

REFERENCES

ABDELWAHED, S., Kanpasamy, N., AND NEEMA, S. 2004. Online control for self-management in computing sys-
tems. In Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS’04). 368.

Acquaviva, A., ALDINI, A., BERNARDO, M., BogLioLo, A., BonTa, E., aAND LatTanzI, E. 2004. Assessing the impact
of dynamic power management on the functionality and the performance of battery-powered appliances.
In Proceedings of the International Conference on Dependable Systems and Networks (DSN’04). 731.

AcHA, G. A., MESEGUER, J., AND SEN, K. 2006. PMaude: Rewrite-based specification language for probabilistic
object systems. Electr. Notes Theor. Comput. Sci. 153, 2, 213-239.

Aziz, A., SanwaL, K., SINGHAL, V., AND Bravron, R. K. 1996. Verifying continuous-time Markov chains. In
Proceedings of the 8th International Conference on Computer Aided Verification (CAV’96). 269-276.
Baigr, C., KATOEN, J.-P., AND HErMANNS, H. 1999. Approximate symbolic model checking of continuous-time

Markov chains. In Proceedings of the International Conference on Concurrency Theory. 146-161.

CraveL, M., DurAN, F., ExER, S., LiINcOLN, P., MART{-OLIET, N., MESEGUER, dJ., AND TaLcotT, C. 2007. All about
Maude, a high-performance logical framework. In Lecture Notes in Computer Science, vol. 4350,
Springer, Berlin.

CrotH, L. AND Haverkorr, B. R. 2008. Quantitative evaluation in embedded system design: Predicting battery
lifetime in mobile devices. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE’08). ACM, New York, NY, 90-91.

HAN, Q. AND VENKATASUBRAMANIAN, N. 2001. AutoSeC: An integrated middleware framework for dynamic
service brokering. I[EEE Distrib. Syst. Online 2, 7.

Hoaa, R. aND CRraIG, A. 1995. Introduction to Mathematical Statistics 5th Ed. Pearson.

Im, C., Ha, S., anp Kim, H. 2004. Dynamic voltage scheduling with buffers in low-power multimedia applica-
tions. Trans. Embedd. Comput. Syst. 3, 4, 686-705.

JanseN, D. N., KaToEN, J.-P., OLDENKAMP, M., STOELINGA, M., AND ZAPRERY, 1. S. 2007. How fast and fat is your
probabilistic model checker? An experimental performance comparison. In Proceedings of the Haifa
Verification Conference. Lecture Notes in Computer Science, vol. 4899, Springer, 69-85.

JARQUE, C. AND BERA, A. 1987. A test for normality of observations and regression residuals. Int. Statist.
Rev. 55, 2, 163-172.

JEANNET, B., D’ArcEnio, P. R., aND LarseN, K. G. 2002. RAPTURE: A tool for verifying Markov decision
processes. In Proceedings of the International Conference on Concurrency Theory.

JonssoN, B. AND LARrseN, K. G. 1991. Specification and refinement of probabilistic processes. In Proceedings of
the Logic in Computer Science Symposium (LICS). IEEE Computer Society, 266—-277.

KaToEN, J.-P., ZaPreRY, 1. S., HanN, E. M., HErmaNNs, H., anD JanseN, D. N. 2009. The ins and outs of the
probabilistic model checker MRMC. In Quantitative Evaluation of Systems (QEST), IEEE Computer
Society, 167-176. www.mrme-tool.org.

K, M., Durt, N., AND VENKATASUBRAMANIAN, N. 2006. Policy construction and validation for energy minimiza-
tion in cross layered systems: A formal method approach. In Proceedings of RTAS’06 (WiP Session).
25-28.

Kim, M. anD Ha, S. 2001. Hybrid run-time power management technique for real-time embedded system with
voltage scalable processor. In Proceedings of the ACM Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES). ACM, 11-19.

K, M., On, H., Durt, N., NicorLau, A., AND VENKATASUBRAMANIAN, N. 2006. PBPAIR: An energy-efficient error-
resilient encoding using probability based power aware intra refresh. ACM SIGMOBILE Mob. Comput.
Comm. Rev. 10, 3, 58—69.

Kim, M., STEHR, M..-O., TaLCOTT, C., DUTT, N., AND VENKATASUBRAMANIAN, N. 2007a. Combining formal verification
with observed system execution behavior to tune system parameters. In Proceedings of FORMATS 07.
Lecture Notes in Computer Science, vol. 4763, 257-273.

Kiv, M., Stenr, M.-O., Tarcort, C., DutT, N., AND VENKATASUBRAMANIAN, N. 2007b. Modeling and exploiting
cross-layer optimization in distributed embedded systems. Tech. rep. SRI-CSL-07-02, SRI International.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

xTune: A Formal Methodology for Cross-Layer Tuning of Mobile Embedded Systems 73:23

Kiv, M., StEHR, M.-O., TarcorT, C., DuTT, N., AND VENKATASUBRAMANIAN, N. 2007c¢. A probabilistic formal analysis
approach to cross layer optimization in distributed embedded systems. In Proceedings of FMOODS’07.
Lecture Notes in Computer Science, vol. 4468, 285-300.

K, M., SteHR, M.-O., TaLcotT, C., DUuTT, N., AND VENKATASUBRAMANIAN, N. 2008. Constraint refinement for
online verifiable cross-layer system adaptation. In Proceedings of the Design, Automation and Test in
Europe Conference and Exposition (DATE’08).

Kumar, N., SEN, K., MESEGUER, J., AND AcHA, G. 2003. A rewriting based model for probabilistic distributed
object systems. In Proceedigs of FMOODS’03. Lecture Notes in Computer Science, vol. 2884, 32—46.
Kwiatkowska, M., NorMAN, G., AND PARKER, D. 2005. Quantitative analysis with the probabilistic model checker

PRISM. Electr. Notes Theor. Comp. Sci. 153, 2, 5-31.

L1, B. aND NaursTEDT, K. 1999. A control-based middleware framework for quality of service adaptations.
IEEE J. Select. Areas Comm. 17, 9, 1632—-1650.

LorcH, J. R. 2001. Operating systems techniques for reducing processor energy consumption. Ph.D. thesis,
University of California, Berkeley.

Lu, Z., He, J., HumpaREY, M., STaAN, M., LAcH, J., AND SkaproN, K. 2002. Control-theoretic dynamic fre-
quency and voltage scaling for multimedia workloads. In Proceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems. 156-163.

McCagE, G. P. aAND Moorg, D. S. 2005. Introduction to the Practice of Statistics 5th Ed. W.H. Freeman.

MESEGUER, dJ. 1992. Conditional Rewriting Logic as a unified model of concurrency. Theor. Comput. Sci. 96, 1,
73-155.

MOoHAPATRA, S., CorNEA, R., On, H., LEg, K., Kim, M., Durt, N. D., Gupta, R., NicoLAy, A., SHUKLA, S. K., AND
'VENKATASUBRAMANIAN, N. 2005. A cross-layer approach for power-performance optimization in distributed
mobile systems. In Proceedings of IPDPS’05.

MoHAPATRA, S., Durt, N., NicorLau, A., AND VENKATASUBRAMANIAN, N. 2007. DYNAMO: A cross-layer frame-
work for end-to-end QoS and energy optimization in mobile handheld devices. IEEE J. Select. Areas
Comm. 25, 4, 722-7317.

NorMaN, G., PARKER, D., KwiaTkowska, M., SHUKLA, S., AND GUPTA, R. 2005. Using probabilistic model checking
for dynamic power management. Formal Aspects Comput. 17, 2, 160-176.

OLsEN, C. M. anD Naravanaswami, C. 2003. A work dependent OS timing scheme for power management:
Implementation in Linux and modeling of energy savings. Internet draft, IBM.

OwvECzKY, P. C. AND MESEGUER, J. 2007. Semantics and pragmatics of real-time Maude. Higher-Order Symbol.
Comput. 20, 1-2, 161-196.

QIu, Q., Wu, Q., AND PEDRAM, M. 2001. Dynamic power management in a mobile multimedia system with
guaranteed quality-of-service. In Proceedings of DAC’01. 834-839.

Ragsm, D. E. aND PEKERGIN, N. 2009. Statistical model checking using perfect simulation. In Proceedings of
ATVA. Lecture Notes in Computer Science, vol. 5799, Springer, 120-134.

SEN, K., VISWANATHAN, M., AND AcHA, G. 2004. Statistical model checking of black-box probabilistic systems.
In Proceedings of CAV’04. 202-215.

SEN, K., ViswaNATHAN, M., AND AcHA, G. 2006. Model-checking Markov chains in the presence of uncertainties.
In Proceedings of TACAS. Lecture Notes in Computer Science, vol. 3920, Springer, 394-410.

SimiNicEANT, R. I. AND C1arpo, G. 2007. Formal verification of the NASA runway safety monitor. Int. J. Softw.
Tools Technol. Transf. 9, 1, 63-76.

TMN 10. 1998. TMN 10 (H.263+), ver. 3.2.0. Image Process. Laboratory, University of British Columbia.

WaLp, A. 1945. Sequential tests of statistical hypotheses. Annals Mathem. Statis. 16, 2, 117-186.

Wu, C.-C., CrEN, K.-T., CHaNG, Y.-C., aNDp LE1, C.-L. 2009. An empirical evaluation of VoIP playout buffer
dimensioning in Skype, Google talk, and MSN messenger. In Proceedings of NOSSDAV’09.

Younegs, H., KwiaTkowska, M., NorMAN, G., AND PARKER, D. 2006. Numerical vs. statistical probabilistic model
checking. Int. J. Softw. Tools Technol. Transf. 8, 3, 216—228.

Yuan, W., NaursTEDT, K., ADVE, S. V., JonEs, D. L., anD KraveTs, R. H. 2006. Grace-1: Cross-layer adaptation
for multimedia quality and battery energy. IEEE Trans. Mobile Comput. 5, 7, 799-815.

Znu, Y. AND MUELLER, F. 2005. Feedback EDF scheduling exploiting hardware-assisted asynchronous dynamic
voltage scaling. In Proceedings of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems. 203—-212.

Received February 2010; revised August 2010; accepted November 2010

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 4, Article 73, Publication date: December 2012.

