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Abstract—Energy harvesting from environments such as solar 

energy are promising solutions to tackle energy sustainability in 
embedded systems. However, uncertainties in energy availability, 
non-ideal characteristics of harvesting circuits, energy storage 
(battery or supercapacitor), and application demand dynamics add 
more complexity in the system. We present a unified model based on 
discrete-time Finite State Markov Chain to capture the dynamicity 
and variations in both the energy supply from solar irradiance and 
the energy demand from the application. In this paper, we exploit 
the temporal and spatial characteristics of solar energy and propose a 
deterministic profile with stochastic process to reflect the fluctuation 
due to unexpected weather condition. Optimal policy to maximize 
expected total QoS is derived from the presented model using a 
probabilistic dynamic programming approach. Compared to a state-
of-the-art deterministic energy management framework, our 
proposed approach outperforms in term of QoS and energy 
sustainability (with less shutdown time) of the system. 

I. INTRODUCTION 

To achieve energy sustainability in embedded systems, 
energy harvesting technology is emerging as a promising 
solution. However, design and operation of such systems have 
faced various challenges. Renewable energy sources such as 
solar energy often exhibit both temporal and spatial 
variations, which cause uncertainty in energy availability. 
Furthermore, an energy harvesting system requires dedicated 
components including harvesters (e.g., solar panel), MPPT 
circuits, and energy storage (supercapacitor or rechargeable 
battery). Energy harvesting/storage management schemes 
need to account for energy efficiency and the significant loss 
in energy harvesting storage and circuitry [10]. On the other 
hand, there is also variation in energy consumption (or load) 
due to the unpredictable behavior of physical phenomenon 
applications are monitoring or interacting with. For example, 
in smart camera systems or sensor platforms for monitoring 
smart spaces, energy management tools should account for 
more computation and data processing/transfer in case of 
event processing (vs. monitoring). In this paper, we present a 
unified model to enable the orchestration and tight integration 
between energy harvesting/storage management and energy 
consumption management in solar-powered systems. 

The proposed unified model is based on discrete-time 
Finite State Markov Chain and captures the dynamicity and 
variations in both the energy supply from solar irradiance and 
the energy demand from the applications. System states 
enclose the energy harvesting rate (Energy Harvesting 
process), the energy status of the system (Energy Storage 

process), and the energy consumption required to meet the 
current application QoS (Application process). In Energy 
Harvesting process, we consider patterns in solar energy and 
propose a model based on a deterministic profile integrated 
with a stochastic process to characterize the energy harvesting 
rate in the system. The model is a multi-layer parameterized 
Markovian model capturing the dynamics of solar energy 
behavior due to weather changes. In the Energy Storage 
process, we consider the non-linear leakage in the 
supercapacitor as well as the varying efficiency of DC-DC 
converters. For Application process, we determine various 
states of application in response to physical phenomenon 
(e.g., event monitoring vs. event processing), the transition 
probabilities among states, and model the energy consumption 
in system depending on the current state and the desired 
application QoS. Our proposed unified model enables to fuse 
and capture the variations in solar energy and application QoS 
together with complex characteristics of energy harvesting 
circuitry and storage.  

Based on our proposed stochastic model, we develop a 
dynamic-programming-based algorithm to find an optimal 
policy in order to stochastically maximize expected 
performance, measured by reward associated with application 
QoS levels and states. We apply our model and optimal 
policy on a solar-powered smart camera system (cameras with 
built-in embedded processors for image processing). 
Compared to deterministic methods [12] using prediction of 
solar energy, our proposed method quickly responds to 
variation in energy availability more effectively and provides 
a higher QoS with significantly shorter shutdown time. 

II. RELATED WORK 

There are several related works in harvesting-aware 
communication systems, wireless sensor networks, and body 
area networks [1-3]. In these work, the harvesting process is 
modeled as a fully random process or a stationary Markov 
Chain for a short period of time. Furthermore, the model of 
the energy storage and underlying hardware components are 
too simplistic or simply neglected. There are approaches for 
energy management in harvesting systems that do not rely on 
stochastic models but prediction of harvesting in the future 
[16]. Deterministic approaches [4-8, 12] that are based on 
long-term harvesting prediction will suffer from misplanning 
because of prediction inaccuracy, either resulting in system 
shutdown or energy harvesting under-utilization. 
Instantaneous approaches which rely on near future prediction 
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Fig. 1. Overview of Energy Management Framework for Solar-Powered Supercapacitor-based 

Embedded Systems 

 

 

Fig. 2. System State Evolution in a harvesting period 

 

Fig. 3. An example of non-stationary Markov Chain 
with System States and Transition Edges 

 

 

 

[9] often involve optimization techniques at runtime with high 
overhead [10]. Such runtime techniques might not obtain 
optimal result due to its local optimization nature. 

III. OVERVIEW OF PROPOSED ENERGY MANAGEMENT 

FRAMEWORK 

Fig. 1 shows the overview of a solar-powered embedded 
system with proposed energy management middleware 
framework which is a software component running on top of 
the processor. As illustrated in the lower half of Fig. 1, the 
embedded system is powered by solar energy harvested 
through a solar panel. An energy harvesting circuit controls 
the operation of the solar panel and maximizes its efficiency 
by setting the optimal solar panel operating voltage according 
to MPPT methods [13]. The generated energy is stored in a 
supercapacitor and its terminal voltage varies according to its 
energy storage status. To avoid degrading solar panel 
efficiency, a DC-DC converter isolates solar panel from the 
supercapacitor. Similarly, another DC-DC converter is used to 
match supercapacitor voltage with the required operating 
voltage of the embedded system’s processor. Since terminal 
voltage of the supercapacitor changes according to its energy 
storage status, the efficiency of DC-DC converters can vary 
widely. 

The upper half of Fig. 1 shows the main components of 
our proposed energy management framework. A unified 
model for solar-powered embedded systems is built from a 
probabilistic model for energy harvesting, a probabilistic 
model for application state, and a model for the harvesting 
circuit and energy storage. The probabilistic models for 
energy harvesting and application state capture the variations 
of physical environment which the embedded system interacts 
with through a set of Finite State Markov Chains, enabling a 
complete cyber physical model and closed loop control. It 
also models the non-ideal behaviors of hardware components 
such as DC-DC converters and supercapacitor.  

The proposed system performance optimization algorithm 
is based on Markov Decision Process. The goal is to 

maximize the expected performance in the next harvesting 
period (which is a day for solar-powered systems) given the 
dynamics of harvesting, application, and characteristics of 
circuit and energy storage. The system performs actions 
subject to available QoS levels and application state. Each 
completed action earns a reward, representing system 
performance. The output of the optimization algorithm is an 
optimal policy lookup table which guides the system to take 
the right action once the actual harvesting state, application 
state, and energy storage state are detected at runtime. As 
opposed to deterministic approaches [12], our framework 
does not assume that energy harvesting availability or 
application state is known a priori. The best action is selected 
at every control time unit to quickly adapt to variations in 
harvesting and application state. The optimal policy 
guarantees to maximize the expected total system 
performance in the long run.  

IV. A UNIFIED MODEL FOR SOLAR-POWERED EMBEDDED 

SYSTEMS 

The proposed model is a Finite State Markov Chain 
defining system states and transition probabilities among 
states. Each system state contains information about the 
current states of harvesting process, application process, and 
energy storage. Formally, we define a system state as a tri-
tuple <Hk,Sk,Qk> where Hk is the harvesting state, Sk is the 
energy storage state of supercapacitor, and Qk is the 
application state at time k. Harvesting period is divided into N 
equal time epochs. The duration of each time epoch (T) is 
small enough for the system state to be stable. Therefore, it 
depends on the time granularity of harvesting process, 
application process, and energy storage which altogether 
determine how often the system should react. After each 
duration T, the system may evolve in to a new system state 
and a new action must be taken to respond to system state 
changes. System state evolves over time as illustrated in Fig. 
2. 

The transition probability from state <Hk,Sk,Qk> to 
<Hk+1,Sk+1,Qk+1> is 
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(1) 

 

The harvesting process and the application process evolve 
independently. However, the evolution of energy storage 
process depends not only on the other two processes but also 
on the energy storage characteristics, converter efficiency, 
and the action taken at each time unit T. It is reflected in the 
transition probabilities. This model is a non-homogeneous 
Markov Chain as the state transition probability is a function 
of time index k. Fig. 3 shows an example of system states at 
time k moving to other states at time k+1 with different 
probabilities, assuming there are two possible system states.  

A. Harvesting Process 

The solar irradiance profile is composed of a deterministic 
profile with fluctuations due to weather as illustrated in Fig. 4. 
The deterministic profile is based on astronomical model (for 
e.g., [14]) considering solar panel efficiency, orientation, 
longitude, latitude, air/pollution attenuation level, daily 
shadow effects from static objects such as building, trees, and 
under typical weather condition and temperature. This 
deterministic profile is represented as {I1, I2,…IN} where Ik is 
the typical solar irradiance at time index k.  

 

Fig. 4. Solar Profile combined of a deterministic curve and fluctuations 

The dynamic fluctuations in the harvesting profile is 
captured by a weather process which models weather 
condition such as sunny, cloudy, and rainy. This weather 
process is denoted as {Wk}. Each weather state is associated 
with an attenuation level (A(Wk)). The Markov Chain model 
for the weather process (see Fig. 5) is non-stationary as the 
transition probability Pr

k
{ Wk+1 | Wk } can change over time. It 

is possible to have multiple such Markov Chains, e.g., one for 
normal days and one for rainy days. Selection of the right 
Markov Chain on a given day is based on weather forecast or 
another stochastic process. These Markov Chains for the 
weather process can be trained and built from the harvesting 
history at a location and be updated each day [1]. 
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Fig. 5. Weather Process Markov Chains 

Given a weather state at time k, the harvesting irradiance 
is computed as  

(2) 

Given the solar irradiance Hk, the output voltage                       
and current of the solar panel at its maximum power point can 
be obtained either by profiling the solar panel operation or 
through an analytical model [14].  

B. Application and Action Processes 

Application state changes in response to physical world. 
For example, states of a smart camera system can be regular 
monitoring vs. event processing. The actions (tasks to 
perform) are different in each state. For example, low 
resolution images can be accepted in monitoring state while 
higher resolution images are more desirable after an event 
such as motion is detected. In event processing state, the 
application may need to perform more computation such as 
face detection or object contour detection. The QoS levels 
and energy consumption in each mode are therefore different.  

The application process has a stochastic nature because it 
is hard to predict the arrival time and duration of events. 
Therefore, we use a Finite State Markov Chain model to 
capture the application process which is denoted as {Qk}. This 
model captures the correlation over time that is typical of the 
physical event dynamics. Fig. 6 shows an example of such 
model where the system has two states: event monitoring and 
event processing. The transition edges from one state to 
another state are associated with probabilities of event 
occurrence leading to application state changes.  

 

Fig. 6. Application Process Markov Chain 

In each application state i, we assume the system have a 
list of available QoS levels {QoSi1, QoSi2,....QoSiM(i)}. Each 
QoS level represents a different set of actions to take in 
response to physical environment in the current state i. 
Furthermore, each QoSij level is associated with a required 
operating voltage and current Vload(QoSij), Iload(QoSij) of the 
embedded processor, and a reward R(QoSij). We assume 
higher QoS level has higher energy consumption and higher 
reward as it improves the application accuracy or quality. 

Action process is denoted as {μk} where μk ϵ 0 ᴜ 
{QoSi1,..QoSiM} given Qk=i, where 0 represent the possibility 
of shutdown due to energy outage or as a controller decision. 
Action is decided by the embedded processor at each time 
epoch. Action can be any of the QoS levels in the current 
application state, provided that the system has sufficient 
energy storage to supply the action’s energy demand. By 
completing an action, the system gains a reward associated 
with that action. 
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C. Energy Storage Process 

In case of battery-less system, the energy storage is a (an 
array of) supercapacitor(s). Given the nominal capacity C, the 
maximum energy that can be stored in a supercapacitor is 

                                              (3)  

where Vmax is the maximum rating voltage of the 
supercapacitor. We choose to represent energy storage 
process of the supercapacitor by its voltage as it has direct 
relation with its energy as shown in (3). Let Sk be the voltage 
of the supercapacitor at time index k. Sk is updated in each 
epoch according to its current value, harvesting process, 
application process, and actions taken. In addition, Sk is 
affected by the supercapacitor leakage and converter losses as 
explained below. 

1) Supercapacitor leakage: The advantages of 
supercapacitors as compared to batteries are higher power 
density and no aging effect. However, supercapacitors have a 
non-ideal behavior which is leakage that grows exponentially 
with its voltage. The leakage of the supercapacitor can be 
approximated using empirical constants α and β [11]. 

(4) 

2) DC-DC converter efficiency: Because the voltage of the 
supercapacitor varies widely according to its energy, the 
circuit needs DC-DC converters to match the supercapacitor 
voltage with the required output voltage and current. These 
converters for charging and discharging could work in either 
buck mode or boost mode, i.e. reducing or increasing the 
voltage output of the supercapacitor to match with an optimal 
voltage for MPPT of the solar panel or a required operating 
voltage of the embedded processor.  

   gcharge (Hk,Sk) = fcharge(Sk, Vsolar(Hk), Isolar(Hk))        (5) 

  gdischarge(Sk,μk) = fdischarge (Sk,Vload(μk), Iload(μk))      (6) 

The power loss due to a converter is a function of input 
voltage, output voltage, and output current. In case of 
charging, it is a function of Sk, Vsolar, and Isolar as in (5). In case 
of discharging, the power loss is a function of Sk, Vload and 
Iload as in (6). The loss due to a converter is significant, 
ranging from 20% to 80% [10]. The larger the gap between 
input and output voltage of a converter, the higher the loss is.  

3) Energy storage update and quantization: Formally, the 
next state Sk+1 is computed according to (7-9) below.  

(7) 

 

(8) 

(9) 

 

To evaluate exactly the next system state and transition 
probability, there is a large amount of information to keep 
track of. Therefore we propose to quantize the energy storage 
state of the supercapacitor, i.e. its voltage to enable a Finite-
State Markov Chain representation. 

The supercapacitor voltage range [0..Vmax] is partitioned 
into K non-overlapping intervals using K-1 thresholds {0, v1, 
v2, .., vK-1, Vmax}. The voltage range [vi,vi+1) is denoted as 
intv(i). Steady state probability of energy storage state i is 

(10) 

 

where f(s) is the probability density function of supercapacitor 
voltage. The transition probability that system is moving from 
state <Hk,Ek,Qk> at time k to state <Hk+1,Ek+1,Qk+1> at time 
k+1, given the action μk  is in (11). Numerical computation of 
this double integral is time consuming. Therefore, we use 
Monte Carlo integration method to obtain the state transition 
probability matrix. 

 

 

 

(11) 

 

 

V. OPTIMAL POLICY TO MAXIMIZE EXPECTED SYSTEM 

PERFORMANCE 

In the previous section, we presented the unified Markov 
Chain model for solar-powered embedded systems. In this 
section, we discuss an optimization framework based on 
dynamic programming to maximize expected rewards. 

Each time epoch, the system needs to make a decision of 
which action to take. The actions are possible QoS levels in 
the current application state. The selected action dictates the 
embedded processor to perform certain tasks. The cost is the 
corresponding energy consumption of the action that changes 
the energy storage state of the system. In return, the system 
gains an accumulated reward over the harvesting period. 
Since a current action can change the energy storage, a smart 
decision making process is required to avoid energy outage. 
The goal of the optimization is to maximize the expected 
reward associated with actions taken in each time epoch in the 
next harvesting period N. 

(12) 

A. Optimal Policy  

The optimization problem can be solved using a back-
ward probabilistic dynamic programming for finite horizon 
[15]. The result is a policy that maps a system state to an 
action that maximizes the expected total reward given all the 
possible variations in harvesting process or application 
process. 

We denote Jk(Hk, Sk, Qk) as the maximum expected total 
reward from time slot k to N.  

(13) 

(14) 
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The optimal action that maximizes Jk(Hk, Sk, Qk) in (14) is 
saved in a table, called optimal policy look-up table. At run 
time, the system keeps track or detects the current system 
state and picks the right action using this optimal policy look-
up table. As shutdown (μk =0) is undesirable in harvesting 
systems, we associate higher reward to actions the system can 
take and no reward if the energy storage is not sufficient to 
actuate any action. This inherently makes dynamic 
programming to choose actions that lead to minimal shutdown 
time. In addition, at the end of each day, the system needs to 
maintain a certain level of energy storage to start the system at 
the beginning of the next day when harvesting is low. 
Equation (13) encourages the dynamic programming to utilize 
all energy to optimize system performance. Instead, we 
modified (13) to associate some reward incentive π to system 
states whose SN is greater or equal to the minimum energy 
storage at the end of a day, as shown in (15). 

(15) 

The optimal policy lookup table is only needed to be 
computed once and it only needs updates when harvesting 
process or application process changes their states and 
transition probabilities. The overhead is therefore small. 
Furthermore, the optimal policy look-up table enables the 
system to react quickly to dynamic changes in harvesting and 
application processes at runtime, yet maximizes expected 
system performance in the long run. 

VI. EXPERIMENTAL RESULTS 

To demonstrate the effectiveness of our stochastic model 
and optimization framework, we implemented a simulator in 
Matlab to model the solar-powered embedded system. The 
experimental setup is described in section VI.A followed by 
our results in section VI.B. 

A. Experiment Setup 

We assume that the system has two supercapacitors with 
400F capacitance each, Vmax=5V. In the Monte-Carlo 
integration (section IV.C.3), the voltage of the supercapacitor 
is quantized into 10 equal intervals. The empirical constants 
for supercapacitor leakage are α=1.26e-10 and β=10.43 
according to measurement in [11]. The parameters for DC-DC 
converters are obtained from [10] and from the datasheet of 
the corresponding buck-boost converters. The required 
voltage at the end of each day is set to be 3.5V. 

We assume that processor is similar to PXA270 with Vdd 
of 1.55V and load current is set according to QoS level. We 
simulate a smart camera application which captures images by 
a number of frames per second (set by QoS level). For each 
frame, it performs image processing tasks such as background 
subtraction (in event monitoring state) and object contour 
detection (in event processing state). 

We proposed a general model of harvesting process in 
section IV.A. For the experiments, we assume to have a 
harvesting probabilistic model as shown in Fig. 5. Fig. 5a is 
Markov Chain for weather process during a normal day and 
Fig. 5b is Markov Chain for a rainy day. The attenuation in 

each state and the transition probabilities between weather 
states are denoted in each state and on each edge. This 
weather process model can be obtained from training the 
parameters with real data. From this model and a 
deterministic profile in Fig. 4, we randomly generate 
harvesting profiles as shown in Fig. 7a and Fig. 7d.   

Since there is no direct related work for comparison, we 
adapt a related work in energy management for 
supercapacitor-based energy harvesting systems [12]. This 
work aims to maximize duty cycling on a harvesting sensor 
node. We adapt it to maximize total rewards of the system. It 
relies on energy harvesting prediction to plan activities for the 
next harvesting period. In order to consider DC-DC converter 
efficiency, it quantizes the voltage of the supercapacitor into 
L intervals (L=100 in our experiments). A dynamic 
programming is then employed to plan duty cycling (QoS and 
reward in our adaptation) for the next harvesting period, 
considering the predicted energy harvesting, supercapacitor 
voltage, and DC-DC converter efficiency in each slot (of 30 
minutes). It however considers single application state (a 
special case of our general application process model in 
section IV.B). We call this Deterministic approach.  

We assume the system actually has two application states. 
The two states are event monitoring (state 1) and event 
processing (state 2). The Markov Chain model for the 
application process is shown in Fig. 6. The system has 7 QoS 
levels with corresponding current (in mA) {51.765, 128.889, 
242.609, 312, 422.222, 515.172, 596.774} in event 
monitoring or state 1. In event processing state, the 
application executes more tasks and consumes 1.5 times the 
load current in state 1 at the same QoS level. The rewards for 
QoS levels are {100, 110, 120, 130, 140, 150, 160} in both 
states. Since the Deterministic approach is not aware of 
different stochastic states of the application process, we 
define two variations, Deterministic 1 and Deterministic 2. 
Deterministic 1 optimistically assumes the application is 
always in state 1 and therefore its plan is aggressive. 
Deterministic 2 assumes the system can be in state 2 at any 
time for safety and hence, the planning is less aggressive.The 
metrics used are total reward which reflects system 
performance and shutdown time which reflects system 
sustainability. Shutdown time is the duration during which the 
supercapacitor voltage falls below the minimum operating 
voltage (2.2V). During the shutdown time, the processor is not 
powered but the supercapacitor is still charged by harvesting 
power if any.  

B. Results 

Fig. 7 shows the result running our approach and two 
Deterministic approach variations for 7 days according to the 
harvesting profiles in Fig. 7a and Fig. 7d (the first 3 days are 
for prediction for Deterministic Approach). The second 
harvesting profile is a series of normal days while the first 
harvesting profile contains one rainy day with significant less 
energy harvesting potential. Our approach has 28% 
improvement in total rewards on average compared to 
Deterministic 1, and 27% improvement compared to 
Deterministic 2. Because Deterministic 2 assumes a less 

1 1 1 1
( , , )

N N N N
J H S Q 
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Fig. 7. Comparison with Deterministic Approach for a week, multiple application states 

 

 

 

 

 

 

 

 

aggressive planning, we would expect it to have lower total 
reward than Deterministic 1. Counter to intuition, 
Deterministic 2 has higher total rewards, thanks to its less 
aggressive planning which reduces the effect of prediction 
inaccuracy, leading to less shutdown time. The system under 
Deterministic 2 therefore provides QoS for a longer time than 
Deterministic 1 and attains higher total rewards.  

Our approach outperforms both Deterministic approach 
variations in both defined metrics, higher total reward and 
lower or no shutdown time. Under rainy condition, it is 
unavoidable that the supercapacitor runs out of energy, our 
approach shuts down for 15 minutes at the end of the rainy 
day and another 60 minutes at the beginning of the next day 
before the supercapacitor recovers above the minimum 
operating voltage.  

VII. CONCLUSION 

In this work, we propose a unified stochastic model based 
on Finite State Markov Chain that captures both energy 
supply and energy demand variations and the complexity of 
harvesting system components. This unified model enables a 
complete cyber physical model and closed loop control for 
solar-powered supercapacitor-based systems. The proposed 
optimization framework aims to maximize the expected 
performance of the systems. Compared to a state-of-the-art 
deterministic energy management framework, our proposed 
approach outperforms in term of system performance (QoS 
reward) and system sustainability (with less shutdown time). 
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