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Abstract— Open WiFi access points (APs) are demonstrating
that they can provide opportunistic data services to moving
vehicles. We present CrowdWiFi, a novel system to look
up roadside WiFi APs located outdoors or inside buildings.
CrowdWiFi consists of two components: online compressive
sensing (CS) and offline crowdsourcing. Online CS presents an
efficient framework for the coarse-grained estimation of nearby
APs along the driving route, where received signal strength (RSS)
values are recorded at runtime, and the number and location of
the APs are recovered immediately based on limited RSS readings
and adaptive CS operations. Offline crowdsourcing assigns the
online CS tasks to crowd-vehicles and aggregates answers on a
bipartite graphical model. Crowd-server also iteratively infers
the reliability of each crowd-vehicle from the aggregated sensing
results, and then refines the estimation of the APs using weighted
centroid processing. Extensive simulation results and real testbed
experiments confirm that CrowdWiFi can successfully reduce
the computation cost and energy consumption of roadside WiFi
lookup, while maintaining satisfactory localization accuracy.

Index Terms— Localization, crowdsensing, vehicular networks.

I. INTRODUCTION

ROADSIDE WiFi networks are increasingly being tapped
into by end users with WiFi interfaces in vehicular

networks opportunistically for a broad range of applications
including ad hoc data dissemination and low-cost Internet
access [1], [2]. These networks use fixed access points (APs)
that provide improved higher bandwidth connectivity due to
better signal propagation characteristics and their ability to
exploit spare spectrum. This is especially the case in locations
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with limited cellular coverage and/or in environments vulner-
able to the obstruction of satellite signals by buildings and
is typical in both urban environments (with significant built
infrastructure) and in rural areas (where cellular connectivity
may be sparse) [3], [4].

With the growing popularity of open WiFi community,
people could turn their home or business WiFi APs into open
WiFi APs on their own by installing third-party firmware such
as OpenWrt [5] or DD-WRT [6], and then create a private WiFi
sale store for surrounding users to access the guest network.
The alternative to set up open WiFi is to share wireless
connections via an intermediary company such as Fon [7] or
BT [8]. The company’s members agree to share a part of their
WiFi bandwidth, so that they can connect to other members’
open WiFi. For consumers who choose not to share their WiFi
connection, they can buy WiFi access passes or credit from the
company. The company’s members whose open WiFi APs are
used by the paying customers can receive part of the revenue.
Fon claims to have the largest open WiFi network in the world,
with over 17 million APs as at August 2015. Given such a
successful development of open WiFi community, it is possible
for a moving vehicle to have shared Internet connection via
roadside WiFi networks with the assistance of on-board mobile
systems, such as recently launched GM OnStar [9] services
in commercial vehicles. In comparison with dedicated short-
range communication (DSRC) as defined in IEEE 1609 for
safety-related messaging between infrastructure and vehicles
in a secure manner [10], roadside WiFi presents a ubiquitous
infrastructure for vehicles to achieve high-quality data trans-
mission in vehicular networks.

To support smooth continuous Internet operation in the
presence of dynamics caused by vehicle mobility, we argue
that a mobile system that supports accurate real-time identifi-
cation/localization of roadside WiFi APs is critical; something
which current open WiFi community and vehicular devices
cannot offer (with errors in tens of meters). Since APs are
deployed in a dynamic and unregulated manner, the efficient
in-network lookup of roadside APs is key to mobile vehicles
seamlessly finding WiFi connections. The desired service
must support multiple functionalities including lookup of APs,
identification of APs in near range, their number and location;
the design of such system presents unique opportunities and
challenges.

The AP lookup feature has multiple benefits in roadside
WiFi networks. For example, in conditions where a popular AP
is congested, the mobile vehicle can switch to other candidate
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APs in its communication range [11], [12]. Accurate lookup
of roadside APs, deployed outdoors or inside buildings, is
also an important step towards understanding the topologies
and network characteristics of large scale WiFi networks,
e.g. network density, connectivity, interference properties, etc,
in urban areas [13]. Furthermore, the lookup of APs may reveal
interesting social aspects of vehicular networks so that mobile
vehicles can be involved in location based services [14], [15]
and mobile cloud support [16].

However, enabling accurate lookup in dynamic settings is
not straightforward.

1) War-driving [17] techniques proposed for AP lookup in
mobile scenarios assume relatively low moving speeds.
With fast-moving vehicles, lookup results based on
fingerprinting WiFi beacons usually yield rough location
estimates with errors in tens of meters - this is often
due to the fact that only a small number of beacons can
be collected by fast-moving vehicles. Accurate location
estimates of roadside APs are critical for the mobile
vehicle being able to associate with the best-available
AP. We require solutions to improve AP location esti-
mates by an order of magnitude in highspeed vehicular
networks, given sparse signal collection opportunity.

2) High mobility in vehicular networks also impacts
the connection between mobile vehicles and roadside
APs [18]. Ideally, vehicles can obtain a list of APs
from the server along its path – such lookup results
from existing war-driving databases, e.g. Skyhook [19],
are simplistic and error-prone since the server side
lacks efficient methods to evaluate the accuracy of the
information contributed by various mobile users from
the same geographic area. Meaningful learning schemes
are needed to generate more accurate lookup results
by fusing multiple estimates and inferring the overall
reliability of each mobile user.

To address the above challenges, we propose CrowdWiFi,
a crowdsensing system (See Section III) specifically designed
for vehicular networks. It consists of two major components to
enable efficient lookup on roadside WiFi networks: an online
compressive sensing component and an offline crowdsourcing
component. The online compressive sensing component run-
ning at the vehicle end coarsely localizes nearby APs in real-
time while driving, using sparse signal collection capabilities.
The Offline crowdsourcing component running at the server
end assigns online compressive sensing tasks to some mobile
vehicles, then aggregates the online sensing results uploaded
by these vehicles, and produces a fine-grained estimation of
AP distribution.

In-network localization algorithms require a large number
of RSS (Received Signal Strength) readings [20]; this is
impractical with fast-moving vehicles. We exploit the use of
compressive sensing (CS [21]) techniques to reduce com-
plexity since they allow the recovery of sparse signals with
far fewer noisy measurements than that predicted by the
Shannon-Nyquist sampling theorem. Unlike several existing
solutions [22], [23], we aim to provide an online CS scheme
to recover sparse signals by reading and handling dynamic
amounts of noisy measurements at runtime in vehicular

networks. Feng et al. [22] used CS to localize only one mobile
target from multiple stable reference nodes, which is vastly
simpler than the problem we attempt to solve, which
requires looking up multiple targets from a single mobile
vehicle.

Our scheme implements CS using ℓ1-minimization [21],
which can be solved in polynomial time, to online localize
APs in a sparse network. We apply our CS scheme in a
situation where RSS values are recorded by an RSS-collector
online, and the number and location of APs must be recovered
immediately based on only a few noisy RSS readings and
adaptive CS operations, so that efficient estimations with
less computation cost and energy consumption can be made
in the presence of network dynamics. Upon receiving the
measurements, the number of nearby APs can be recognized
from their node identifiers (e.g. the extended service set
identification (ESSID)in 802.11b networks) encapsulated in
the measurements (e.g. beacon message), and the coarse-
grained locations of these APs can be recovered on a grid
by CS operations of the RSS values, which are also included
in these measurements.

Crowdsourcing [24] refers to the outsourcing or sharing
of tasks among loosely defined resources, typically workers,
crowd-vehicles, in our case. CrowdWiFi uses geographical
participation allowing servers to assign AP lookup tasks to
crowd-vehicles to run the online CS component, and gain
information from aggregated answers. A major problem of this
crowdsoucing scenario is that the answers are often unreliable
and diverse, mainly because it is difficult to monitor the
performance of a large collection of crowd-vehicles under
various communication environments and mobility situations.
In the extreme, there may exist “spammers”, who submit
random rather than good-faith answers.

Efficient aggregation methods should take into account the
differences in the reliabilities of crowd-vehicles’ answers.
A common strategy to improve aggregation is to add redun-
dancy. CrowdWiFi uses a bipartite graph to assign each task
to multiple workers and then aggregate the resulting answers.
In addition, we address offline crowdsourcing by transforming
the aggregation problem into an iterative inference problem
on the graphical model, and obtain the reliability of each
crowd-vehicle. The reliability value presents a probabilistic
view of the trustworthy level of a crowd-vehicle on per-
forming crowdsourcing tasks. Therefore, crowd-vehicle with
a higher reliability can present more accurate estimation of
AP locations. In CrowdWiFi, the reliability information is
used to refine the estimation of APs using weighted centroid
processing. The crowdsourced result can be further used for
WiFi topology analysis, or downloaded and shared by other
vehicles that will move into these road segments and need
Internet access, data dissemination or other infrastructural
supports.

To the best of our knowledge, CrowdWiFi is the first
mobile system using the concept of crowdsensing to local-
ize roadside APs in vehicular networks. The rest of this
paper is organized as follows. Section II presents the related
work on localization. Section III gives a system overview of
CrowdWiFi. Section IV describes the online compressive
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sensing in CrowdWiFi. Section V addresses the offline
crowdsourcing issues in CrowdWiFi. Section VI evaluates
CrowdWiFi performance using simulations and real testbed
experiments. Section VII concludes our paper.

II. RELATED WORK

In this section, we summarize the most relevant exist-
ing research on the two research problems: RSS-based
Localization and Crowdsourcing-based Localization.

A. RSS-Based Localization

Because RSS is easy to collect in wireless environments
and has no extra hardware requirements, many researchers
have explored different in-network localization solutions based
on RSS information [25]. A grid-based target lookup algo-
rithm [26] uses a gaussian mixture model and expectation-
maximization method to derive the location of wireless
sensors, by enumerating probabilities associated with each
estimated grid point. Multidimensional scaling (MDS) [27]
was designed to analyze the dissimilarities between pairs
of WiFi APs from radio scans, and produces a geometric
configuration of WiFi APs. Place Lab [28] presents a ranking
scheme to sort RSS collected from Wardriving, then apply
k-nearest neighbor (KNN) based fingerprinting to local-
ize WiFi infrastructure. Other research activities have
been carried out to design robust RSS-based localiza-
tion algorithms using probabilistic models and calibration
enhancements [29], [30]. Compressive sensing based local-
ization has been addressed in [22] and [23] for sparse target
estimation via ℓ1-minimization program.

B. Crowdsourcing-Based Localization

In recent years, research on crowdsourced WiFi finger-
print localization systems has been attracting much atten-
tion. Zee [31] is an indoor localization system that makes
the calibration zero-effort, by enabling training data to be
crowdsourced without any explicit user effort. FreeLoc [32]
can extract accurate indoor fingerprint values from short RSS
measurement times and achieve calibration-free positioning
across devices in crowdsourcing based systems. Zhu et al. [33]
propose a crowdsourcing localization system that uses both
WiFi scene analysis and Bluetooth beacons to address the
issues in the bootstrapping stage. The accuracy of crowd-
sourced answer can be improved via redundancy, such as
assigning each task to multiple workers, and aggregate
the workers’ answers by some method such as majority
voting [34]. This problem also can be addressed by building
probabilistic models to assign tasks and process answers using
standard inference tools. Karger et al. [35] give a message-
passing style algorithm for deciding which tasks to assign
to which workers and for inferring correct answers from the
workers’ answers.

Note most RSS-based localization approaches have been
primarily designed for localizing wireless client nodes, and
not the infrastructure. In this paper, we consider the opposite –
localization of infrastructure nodes (APs). This is especially

Fig. 1. Crowdsensing system in the lookup of roadside WiFi.

useful for roadside WiFi lookup, because of the dynamic
nature of APs. In addition, due to the sensing capabilities
of fast-moving vehicles, we use crowdsourcing to achieve
more accurate lookup results, where we focus on analysis of
crowd-vehicles’ reliabilities and effective aggregation models
for fine-grained estimation of roadside APs.

III. SYSTEM OVERVIEW

CrowdWiFi uses node identifiers (e.g. ESSID in 802.11b
networks) to look up the number of roadside WiFi APs,
and consists of two components to look up the locations of
these APs: online compressive sensing which quickly localizes
nearby APs in a coarse-grained way along the driving route;
and an offline crowdsourcing component which evaluates the
reliability of each crowd-vehicle after aggregating sensing
results producing a fine-grained estimation of AP distribution.

As shown in Fig. 1, CrowdWiFi lies between the operating
system (OS) layer and application layer in a distributed
computing system. Its online compressive sensing compo-
nent is running on the client/vehicle OS, and its offline
crowdsourcing component runs on the server OS. Through
interactive operations between client OS and server OS, mobile
vehicles can upload the coarse-grained online sensed results
to the server, and also download the fine-grained offline
crowdsourced results from the server; therefore the online
and offline components are closely related as an organic
crowdsensing system. The AP lookup results generated by
CrowdWiFi system can provide service support to many
software applications in vehicular networks; e.g. WiFi handoff,
WiFi topology analysis, and other location-based applications.

Three crowdsensing parties are actively involved in
CrowdWiFi AP, as shown in Fig. 1, with following specific
functions:

• Crowd-vehicle: this party plays the role of worker in
CrowdWiFi. Crowd-vehicles can be public transporta-
tion, e.g. bus, refuge vehicles, patrol cars; that have
a regular driving route and schedule, that can provide
roadside WiFi sensing services over a given geographical
area. Private cars can also upload roadside WiFi data to
the crowd-server and be rewarded.

• Crowd-server: this component assigns the AP lookup
tasks to crowd-vehicles to run online compressive sens-
ing in road segments, and then aggregates crowdsensed
answers with different reliabilities. The refined result can
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Fig. 2. Workflow (upload case) in CrowdWiFi system.

be further used for WiFi topology analysis, or down-
loaded by user-vehicles that require WiFi access in those
road segments.

• User-vehicle: this downloads fine-grained AP lookup
results from the crowd-server in advance, and uses
this information for opportunistic connection to nearby
WiFi APs.

The workflow of CrowdWiFi system is illustrated in
Fig. 2. We use the upload case from the crowd-vehicle end to
the crowd-server end to explain its operational steps. In order
to enhance the processing speed and derive the location of APs
while the vehicle is moving, we propose an iterative approach
for online CS, based on a sliding window with additional
steps over the RSS data series collected on a driving grid.
The adaptive RSS matrix can further reduce the computation
cost and energy consumption by online operations. Through
online CS, nearby APs will be located at grid points using
coarse-grained estimation. Recall crowd-vehicles data is of
variable reliabilities, due to the communication environments
(e.g. signal interference, malicious attack), and processing
capabilities (e.g. CPU, memory). Besides assigning lookup
tasks to crowd-vehicles for online CS, the crowd-server also
assigns mapping tasks to crowd-vehicles in a bipartite graph to
aggregate AP lookup results, and analyze the reliability of each
crowd-vehicle using an iterative inference approach. Finally,
reliability information is used to refine the estimation of APs
via weighted centroid processing. Components of the system
model in Fig. 2 will be further explained in details in the
following sections.

IV. ONLINE COMPRESSIVE SENSING

We formulate roadside AP lookup tasks on crowd-vehicles
as a compressive sensing problem and propose corresponding
online strategies for efficient estimates in CrowdWiFi.

A. Compressive Sensing in Roadside AP Lookup

1) Fundamentals of Compressive Sensing: Recently,
research has shown that CS can reconstruct a sparse signal
with a much lower sample rate than in the Nyquist’s Shannon
sampling theorem. Let s be a N × 1 column vector. Given an
N × N orthogonal basis Ψ = [Ψ(1), Ψ(2), . . . , Ψ(N)] where
each Ψ(i) being a column vector, s can be expressed by:

s = Ψθ =
N∑

i=1

θiΨ(i), where θ is the sequence of coefficients

needed to represent s in the domain of the basis Ψ. Signal s
is k-sparse if it is a linear combination of k basis vectors.
If k ≪ N , compressive sensing aims to reconstruct s by

Fig. 3. Compressive sensing in roadside WiFi networks.

taking a set of measurements M much smaller than N by
finding a minimal solution to: y = Φs = ΦΨθ = Aθ, where
y is an M × 1 vector, k < M ≪ N , Φ is an M × N
measurement matrix, and A is an M × N matrix.

• ℓ1-minimization: For a N × 1 vector θ, its solution is
obtained from the following ℓ1-minimization [21], which
can be solved in polynomial time, to reconstruct the
sparse signal: θ̂ = arg min

θ∈AN
∥θ∥1, s.t. y = Aθ, where

∥.∥1 is the ℓ1-norm. If the measurement y include some
noise ε, e.g. additive white Gaussian noise, then the ℓ1-
minimization to reconstruct θ is θ̂ = arg min

θ∈AN
∥θ∥1,

s.t. y = Aθ + ε.
ℓ1-minimization can be used to recover θ exactly if θ is

k-sparse, or compute an approximation of θ that is at least as
good as if it is computed from the values and locations of the
k most significant coefficients of s.

2) Problem Formulation: Fig. 3 illustrates an AP lookup
example with K = 4 APs deployed in a vehicular area
divided into a discrete grid with N = 64 grid points (GPs).
While the number of these APs can be recognized from their
node identifiers, the locations of these APs are unknown to
a mobile vehicle. On-board wireless devices take the drive-
by RSS measurements from these APs at M = 6 arbitrary
reference points (RPs) that are located at 6 grid points over
the grid. The RSS collection area around a grid point set for
a RP is usually very small (less than 50m2) in practice, if we
want to achieve accurate AP estimation using the RP location.
Considering the moving speed of a vehicle is much higher
than others in mobile scenario, it results in a very short time
slot (nearly 1 second) to collect RSS measurements from
sparse APs (in transmission range) while the vehicle is passing
corresponding single RP location. In such a short collection
period in vehicular networks, vehicle only can receive one
RSS measurement in most cases. For rare exception that a
vehicle scans more than one RSS at a RP from different APs,
the vehicle should only record one RSS measurement with less
noise so that these reliable RSS measurements can be used to
derive accurate AP locations.

In highly dynamic and noisy vehicular networks, given
above fact that only a small number of RSS measurements
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can be recorded in moving vehicle, the goal is to determine
the locations of these APs efficiently using the sparse signal
collection opportunities. Since K ≪ N , and the number of
measurements M ≪ N , the AP lookup problem can be well
formulated as a sparse matrix recovery problem in the discrete
spatial domain using compressive sensing as follows:

Y = ΦΨΘ + ε, (1)

where:
• YM×K includes the compressive noisy RSS measure-

ments from K APs and collected by the mobile vehicle
on M RPs. Each row vector indicates one measurement
value, since the vehicle only records one RSS measure-
ment that has the strongest signal at a short time slot when
it is passing corresponding RP location. The number
of measurements obeys M = O(K log(N/K)), with
M ≪ N .

• ΦM×K is the measurement matrix to record the locations
of the vehicle to collect the RSS. Vehicle can know
its location from widely used GPS or other positioning
systems. Only a small number of RSS measurements are
collected by the mobile vehicle over several arbitrary grid
points, referred as RPs. Thus, each row of Φ represents
the location of each RP, with an element of 1 to indicate
the grid point at which the RP is located.

• ΨK×N is the sparsity basis, under which the measured
signals have sparse coefficients Θ. [Ψ]i,j = ri,j indicates
the average value of RSS records sent from AP i and
received at grid point j, for all 1 ≤ i ≤ K , 1 ≤ j ≤ n.
These RSS records were collected by crowd-vehicles that
were previously presented at grid point j (RPs). Other
vehicles can download their average value from crowd-
server to construct ΨK×N . The strategy to derive ri,j is
explained in Section IV-B3.

• ΘN×K is a N × K matrix denoting the locations of the
APs over the grid, and Θ = [θ1, θ2, . . . , θK ]. Each θk is
an N × 1 vector with all elements equal to zero except
θk(n) = 1. n is the index of the grid point at which the
kth AP is located.

• ε is the measurement noise.
The specific application of above CS operations is illustrated

in Fig. 3 by the matrix Y , Φ, Ψ, and Θ. Note that APs and
RPs sometimes are not exactly located at grid points. For the
conveniency of CS computing, we select the locations of their
closest grid points by Euclidean distance to represent them in
CrowdWiFi.

In addition, incoherence between the measurement matrix Φ
and the sparsity basis Ψ is another important property that
should be satisfied to enable the use of CS theory for sparse
signal recovery from a small number of measurements [36].
As indicated in [21], the smaller the coherence, the fewer
the number of samples needed by CS. However, Φ and Ψ
formulated in Fig. 3 are in general coherent in the spatial
domain, which violates the incoherence requirement for CS
theory. In CS, the Restricted Isometry Property (RIP) provides
a sufficient condition for robust recovery of a sparse signal
from a small number of noisy measurements. An equivalent

description of the RIP is to say that the columns of matrix Φ
Ψ should be nearly orthogonal [21]. Therefore, we pro-
pose the following orthogonalization preprocessing procedure
that restores incoherence properties to facilitate compressive
sensing.

Assume the noisy measurement matrix Y =
[y1, y2, . . . , yK ] with size M × K . Y = ΦΨΘ + ε,
where Θ = [θ1, θ2, . . . , θK ]. Each column of Θ, namely
θk (1 ≤ k ≤ K), is an N × 1 vector with all elements
equal to zero except θk(n) = 1, where n is the index of
the grid point at which the k-th AP is located; each θk is a
1-sparse vector. Since CS theory deals with reconstructing
unknown vectors, we can obtain Θ by applying CS to each θk

separately. Given an online RSS reading for the k-th AP
in yk, corresponding θk can be well reconstructed with
orthogonal operations in Proposition 1.

Proposition 1: Let y′
k = Tyk, A = ΦΨ, where T = QA†

and A† is a pseudoinverse of matrix A. Also let Q =
orth(AT )T , where orth(A) is an orthogonal basis for the
range of A, and AT returns the transpose of matrix A.
If M ≥ O(K log(N/K)), then θk can be well recovered from
y′

k via an ℓ1-minimization program.
Proof: See Appendix A.

B. Online Localization of Roadside AP

While in theory ℓ1-minimization is solvable in polynomial
time [21], it becomes computationally expensive when the
number of grid points N is large. When a vehicle moves, it
continuously reads the RSSs from different APs, so the size of
noise measurement matrix Y increases fast online, as shown
in Fig. 3. Meanwhile, the size of Φ and Ψ will be updated as
well in order to get an online estimate of Θ.

In order to further enhance the processing speed and derive
the location of the wireless APs while the vehicle is mov-
ing, we propose an online CS approach in CrowdWiFi,
using a sliding window and an iteration step over the col-
lected RSS data series. In comparison with traditional CS
localization using orthogonal noisy RSS measurements and
ℓ1-minimization as introduced in Section IV-A.2, the proposed
online CS in CrowdWiFi applies additional steps to online
localization based on limited RSS measurements, and can
achieve low cost CS computation for efficient estimation
through several iterations. The workflow of online CS is
illustrated in Fig. 2.

1) Grid Formation: Vehicle trajectories typically cross a
large geographic area resulting in a large number of grid points
and large sparsity bases Ψ. To reduce irrelevant or redundant
information, the online AP lookup from current grid points in
the reachable region is used.

Online grid formation in CrowdWiFi is based on the
dynamic time-dependent routes in each round of online CS. In
the n-th round of CrowdWiFi with inputs Rn, we localize
the APs using the grid structure of the current driving area.
We derive the boundaries of the driving area according to
the input RSS measurements Rn and their corresponding RP
location information. Simply, the boundaries of the fixed area
is defined by a rectangle with (xmin − Tm, ymin − Tm) and
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(xmax + Tm, ymax + Tm) as the lower-left and upper-right
corners’ coordinates, and xmin, ymin and xmax, ymax are the
minimum and maximum x and y coordinates of the series of
RPs’ locations, respectively. Tm is the communication radius
of the RSS-collector in the vehicle.

Depending on the accuracy and computation cost of the
lookup algorithm, the edge length of each lattice in the grid
structure can be determined.

2) Sliding Window Based RSS Reading: In order to further
enhance the processing speed in CrowdWiFi while the vehi-
cle is moving, we take an iterative approach using a sliding
window over the RSS series. Each RSS is tagged with a time
stamp and TTL (Time to Live) as it is useless when out of
date and should be removed.

As the RSS-collector gathers RSS information, we group
the most recently collected RSS data series into a small data
set for current estimations of nearby AP location. Suppose the
length of the current collected RSS sequence is k. We use
a sliding window with a length of s(s < k) to extract the
input data sequence from the current collected RSS sequence.
The iteration step size is set to q(q < s < k). Then, the set
of the input RSS sequences in the n-th round of iteration is
Rn = {rq(n−1)+1, rq(n−1)+2, . . . , rq(n−1)+s}.

In each iteration, CrowdWiFi estimates the likely locations
of APs by the CS operation on a grid structure, as explained in
Section IV-A2; one credit is granted to each of the estimated
locations mapped at the grid points. After several iterations
of selecting q RSS values from data set Rn, CrowdWiFi
consolidates these estimates, by merging credits of aligned
location estimates and filtering out spurious estimates with
few credits; then refines these APs’ location through offline
crowdsourcing introduced in Section V-E.

3) Constructing Sampling Matrix: Vehicular network
presents a complex environment for signal propagation and
could produce signal blocking and some RSS outliers, there-
fore it is hard for single vehicle to collect complete and reliable
RSS samples of roadside APs. A feasible approach is to collect
many samples and get their average value in the crowd-server,
so that other vehicles can download the average RSS of each
AP for online localization.

The sparsity basis ΨK×N in Section IV-A.2 is the down-
loaded sampling matrix, where ri,j are the average value of
RSS samples sent by AP i and received by different crowd-
vehicles at grid point j. Suppose the total number of RSS
samples received from AP i at grid point j is c; then, the

corresponding average RSS value is: ri,j =
c∑

τ=1

ri,j(τ)/c,

where ri,j(τ) represents the τ th RSS value from the AP i
for grid point j. Since the received signal power of wireless
network (802.11 variants) should range somewhere between
−100 to −10dbm, if an AP i was not perceived by any crowd-
vehicle before at grid point j, then ri,j = 0dbm by default
setting in CrowdWiFi, meaning no WiFi signal were detected
at the grid point before.

In reality, the power status (e.g. off) and placement
(e.g. removal) of roadside APs change over time. Under these
circumstances, their previous RSS samples become out of date.

In order to provide average value of effective RSS samples for
online localization of dynamic roadside APs, each RSS sample
in crowd-server is also tagged with a time stamp to indicate
its time to collect, and an TTL to indicate its valid period.

4) Centroid Processing: The CS model in Fig. 3 is pre-
sented for the case that APs are exactly at grid points. In that
case, each recovered θ̂k from ℓ1-minimization is a N×1 vector
with one entry equals to 1, which correspondingly pin-points
the grid point at which the relevant AP is located, and all other
entries equal to 0.

However, the APs may not be exactly located at these grid
points. In such cases, the recovered θ̂k does not turn out to
be an exact 1-sparse vector, but with a few non-zero entries.
These non-zero entries in each θ̂k correspond to the grid points
whose distance from the AP is less than some threshold,
and the values at these entries are inversely proportional to
the distance from the AP and normalized to have a sum of
one (the case of AP exactly at a grid point can be easily
shown as a special case). Therefore, a post-processing proce-
dure by centroid approach is conducted for real applications.
We choose the dominant coefficients in θ̂k whose values are
above a certain threshold ζ, and take the centroid of these grid
points as the location indicator. Let Sk be the set of all indexes
of the elements of θ̂k such that: Sk =

{
n|θ̂k(n) > ζ

}
.

These are potential candidate grid points for the estimate
of the location of the kth source (actual AP). Each i ∈ S
represents a grid point in the two dimensional space (xi, yi).
The estimated location of source k, denoted by (x̂k, ŷk), can
be derived by finding the centroid of the candidate points,
denoted by (xi, yi), using weighted mean in (2). The weight
of each grid point (xi, yi) is its corresponding value θ̂k(i)
computed from the ℓ1-minimization. We have,

(x̂k, ŷk) =
1∑

i∈Sk

θ̂k(i)

∑

i∈Sk

θ̂k(i)(xi, yi). (2)

The above centroid processing running on a moving vehicle
provides an online approximation to the actual location from
the reconstructed signal. Note that CS theory guarantees that
the reconstruction error is proportional to the noise level,
where the random, uncorrelated noise could be caused by
fluctuations of the RSS, malicious interference, and the fact
that the vehicle does not take measurements exactly at grid
points. The noise level also reflects the reliability of a crowd-
vehicle in CrowdWiFi (i.e. if the noise level is high, the
reliability is correspondingly low). Therefore the AP location
results of centroid processing from a crowd-vehicle could
be coarse-grained estimations. In order to compensate for
the reconstruction errors induced by the diverse reliabilities
(noise levels) of different crowd-vehicles, an additional fine-
estimation of AP locations is proposed in Section V-E by
crowdsourcing the reliability information.

5) Adaptive RSS Matrix: In CrowdWiFi, smaller lattice
size in the grid structure can produce more accurate location
estimation due to its generation of a large number of grid
points N . However, large N in sparse network also indicates
many redundant grid points where no roadside AP exists
or RSS can’t be collected (see ΨK×N in Fig. 3), therefore
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results in extra computation and energy consumption to
run CS.

Proposition 2: Given K nearby APs and M RPs in online
localization, the energy consumption E for a vehicle to local-
ize these APs is proportional to the number of grid points N ,
as: E ∝ λN, λ = Ω(KM).

Proof: See Appendix B.
From Proposition 2, we know that for online energy sav-

ing an efficient mechanism is needed to select useful grid
points and achieve dynamic construction of RSS matrix. For
online but static RSS matrix Y in Fig. 3, we adaptively
remove unreliable online RSS to decrease the number of
rows, following a fitness function as: f = Y × W , where Y
is the static M × K matrix, generated by traditional CS,
with M online RSS measurements; W = [w1, w2, . . . , wK ]T
includes the weighted value wi to indicate the utilization rate
of each sensed AP i, i ∈ 1, 2, . . . , K . The weighted value
can be obtained from the crowd-server through analyzing the
offline RSS samples (see Section IV-B.3) collected by crowd-
vehicles; it is directly proportional to the number of grid
points that received RSS from AP i, defined as: wi = Ni/N ,
where Ni is the total number of grid points where the AP i
is perceived, and N is the total number of grid points in current
grid formation. CrowdWiFi uses fitness function to rank
the M APs by their online RSS value and offline weighted
value, and choose top M ′ APs (M ′ < M ) to construct new
online RSS matrix Y ′. As for new RSS sampling matrix Ψ′,
once crowd-server initiates a static Ψ as the original K × N
matrix, it removes the columns with all 0 in Ψ to construct an
adaptive K×N ′ matrix Ψ′ (N ′ < N ). These removed columns
represent the redundant grid points and they have no impact
on the estimation of other grid points with RSS records.

Compared to the original matrix Y and Ψ, the adaptive
matrix Y ′ and Ψ′ are composed of more reliable RSS measure-
ments and less redundant grid points, therefore can improve
the estimation efficiency and reduce the energy consumption.

V. OFFLINE CROWDSOURCING

After online roadside WiFi compressive sensing, the crowd-
vehicle uploads the geographical distribution of nearby
APs, with the number, location and grid formation, to the
crowd-server for offline crowdsourcing.

A. Crowdsourcing Tasks

CrowdWiFi uses geographical participation allowing
crowd-servers to assign two types of crowdsourcing tasks
to crowd-vehicles for information aggregation and analysis.
The two tasks are defined as follows:

1) Lookup Task: the crowd-vehicle runs online compressive
sensing in road segments along its driving route to
lookup nearby APs, and then sends the estimations to the
crowd-server. The crowd-server usually assigns multiple
lookup tasks to each crowd-vehicle to estimate APs in
different road segments.

2) Mapping Task: the accuracy of AP lookup results pre-
sented by crowd-vehicles in the same road segment

varies by the different reliability levels of these crowd-
vehicles. Crowd-server enumerates possible distribution
patterns (number and location) of APs in a road segment.
Once a crowd-vehicle finishes the lookup task in the
road segment and submits its answer to the crowd-server,
the crowd-vehicle will be asked to map its answer with
these distribution patterns, so that the crowd-server can
derive the reliability of each crowd-vehicle. The crowd-
vehicle with higher reliability can provide more accurate
AP lookup results.

CrowdWiFi assigns the crowdsourcing tasks to crowd-
vehicles using a bipartite graph, and aggregates answers and
analyze the reliability of each crowd-vehicle using an iterative
inference approach on the graphical model. CrowdWiFi also
refines the AP locations using these crowdsourced answers.
Detailed techniques will be explained in following sections.

B. Spammer-Hammer Model

CrowdWiFi assumes that all the lookup tasks have
the same level of difficulty, but that crowd-vehicles may
have different reliabilities; due to heterogeneous communi-
cation environments and processing capabilities, or they are
spammers.

We assume the reliability of crowd-vehicle j is measured by
a single parameter qj , which corresponds to its probability of
correctness. The values of qj reflect the diversity of crowd-
vehicles’ reliability, represented as independent distributed
random variables with a given distribution on [0, 1]. One
typical example is spammer-hammer model, as described
in [35], where, qj ≈ 1 correspond to hammers that provide
reliable answers, and qj ≈ 1/2 denote spammers that give
random answers. We assume the qj of all crowd-vehicles are
drawn independently from a common prior p(qj |δ), where δ
are the hyper-parameters. To avoid the cases where spam-
mers overwhelm the system, it is reasonable to require that
E[qj |δ] > 1/2. Typical priors in spammer-hammer model
includes the discrete prior, where qj ≈ 0.5 or qj ≈ 1 with
equal probability.

C. Graphical Model

To aggregate results from unreliable crowd-vehicles and
determine their reliability value qj , we have designed a
bipartite graph scheme for the crowd-server to enumerate and
assign mapping tasks to crowd-vehicles. As shown in Fig. 4(a),
the task assignment can be represented by a bipartite graph
where an edge (i, j) denotes that the mapping task i is labelled
by the crowd-vehicle j. Each mapping task is a possible
distribution pattern (number and location) of APs, denoted
by blue dots in the grid, given a road segment ID. Crowd-
vehicles submit their lookup answers if these distribution
patterns exist (labeling +1) or not (labeling −1). Initially,
some AP distribution patterns are generated randomly by the
crowd-server for bootstrapping. After that, distribution patterns
can be added into the mapping set by selecting the lookup
results from crowd-vehicles, so that the crowd-server can avoid
generating too many non-existent AP distribution patterns;
saving computation and assignment cost.
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Fig. 4. Aggregation in offline crowdsourcing. (a) Bipartite graph. (b) Grid
mapping. (c) Fine-grained estimation.

Specifically, we assume there are M crowd-vehicles and N
mapping tasks with binary labels ±1. The true label of task i
is denoted by zi ∈ ±1, i ∈ [N ], where [N ] represents the set
of first N integers. Nj is the set of tasks labelled by crowd-
vehicle j, and Mi is the set of the crowd-vehicles labelling

task i. The labelling results form a matrix L ∈ 0,±1N×M ,
where Lij ∈ ±1 denotes the answer if crowd-vehicle j labels
task i, and Lij = 0 if otherwise. Therefore, the reliability qj

of crowd-vehicle j is defined by the probability of correctness:
qj = prob[Lij = zi]. The goal is to find an optimal estimator ẑ
of the true labels z given the observation L, minimizing the

average bit-wise error rate
1
N

∑

i∈[N ]

prob[ẑi ̸= zi].

D. Iterative Inference

Using majority voting to aggregate labels L is error-prone
since it weights all the source crowd-vehicles equally. We use
an iterative inference approach for CrowdWiFi, based on a
message-passing algorithm proposed by [35]. Let xi→j and
yj→i be real-valued messages from tasks to crowd-vehicles
and from crowd-vehicles to tasks, respectively. Initializing
y0

j→i randomly from Normal(1, 1) or deterministically by
y0

j→i = 1, iterative inference updates the messages at t-th
iteration via

xt+1
i→j =

∑

j′∈Mi\j

Lij′y
t
j′→i, yt+1

j→i =
∑

i′∈Nj\i

Li′jx
t+1
i′→j . (3)

A crowd-vehicle message yj→i represents the updated reli-
ability of the crowd-vehicle j, and the labels are estimated
via the sum of the answers weighted by each crowd-vehicle’s
reliability as: ẑt

i = sign[x̂t
i], where x̂t

i =
∑

j∈Mi

Lijy
t
j→i. Note

that the 0th iteration of iterative inference reduces to majority
voting when initialized with y0

j→i = 1.
After transforming the labeling aggregation problem into

an iterative inference problem on a bipartite graphical model,
the joint posterior distribution of crowd-vehicles’ reliabilities

q = qj , j ∈ [M ] and the true labels z = zi, i ∈ [N ] conditional
on the observed labels L and hyper-parameter δ is

p(z, q|L, δ) ∝
∏

j∈[M ]

p(qj |δ)
∏

i∈Nj

p(Lij |zi, qj)

=
∏

j∈[M ]

p(qj |δ)qcj

j (1 − qj)γj−cj , (4)

where γj = |Nj | is the number of answers made by crowd-
vehicle j, and cj :=

∑

i∈Nj

II[Lij = zi] is the number of j’

s answers that are correct. By standard Bayesian arguments,
one can show that the optimal estimator of z to minimize the
bit-wise error rate is given by

ẑi = arg max
zi

p(zi|L, δ), (5)

where p(zi|L, δ) =
∑

z[N ]\i

∫

q
p(z, q|L, δ)dq.

E. Crowdsourcing for Fine-Grained Estimation

Recall, the online compressive sensing finds the coarse-
grained location estimations of APs over the grid structure.
Using iterative offline inference, optimal estimations of z and
the corresponding reliability of each crowd-vehicle can edge
the locations closer to the optimum.

As shown in Fig. 4 (b), the crowd-server maintains an offline
global grid structure to cover a large area. When an online
local grid structure is formed by a mobile vehicle in a segment
of driving route in the area, the online grid will be mapped
into the offline grid, by placing its grid points at correspond-
ing positions according to the offline coordination system.
By the grid mapping, crowd-server can transfer the coordinate
information in CrowdWiFi (e.g. RSS, AP) between offline
grid and online grid for localization.

According to Section IV-B1, different grid structures from
local views may form, even though they are in the same
sensing area. As shown in Fig. 4 (c), the estimated locations of
an AP (estimations could be classified by the AP identifiers)
from three crowd-vehicles, denoted by three blue dots, are
located at different grid points of three grid formations. The
three estimated locations for the same AP are different, due to
the three crowd-vehicles with diverse estimation reliabilities
moving over different paths. A centroid processing procedure
is conducted by the crowd-server to further improve the AP’s
estimation by merging its three estimates to one, denoted by
the red dot in Fig. 4 (c). A crowd-vehicle with a higher reliabil-
ity can present more accurate estimation, therefore the centroid
is weighted based each vehicle’s reliability accordingly, similar
to the centroid method illustrated by Eq. 2 in Section IV-B4.

F. Crowdsourcing Platform

The crowdsourcing platform in CrowdWiFi consists of
four components: (1) a web interface where vehicle can
upload and download nearby APs information based on its
location; (2) a crowd-server including a database for stor-
ing the crowdsourced APs information, and distributing the
information to potential users; (3) a client application for the
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Fig. 5. Trajectory illustrations of APs lookup in UCI scenario. (a) Simulation
map. (b) 60 data points.

crowd-vehicle, which pulls available AP lookup tasks from the
database, based on its given driving route and geographical
information; and (4) a client application for user-vehicles to
obtain AP information. Through this crowdsourcing platform,
CrowdWiFi is able to provide nearby AP information to
vehicles requesting wireless access and data dissemination.

The driving routes and locations of crowd-vehicles, their
AP lookup results, and other relevant crowdsourcing factors
are privacy information. Therefore, in CrowdWiFi, crowd-
vehicles have the right to accept tasks to share these informa-
tion for rewards, or deny the tasks to protect their privacy.

VI. PERFORMANCE EVALUATIONS

CrowdWiFi is evaluated in terms of lookup accuracy by
simulation and real testbed experimentation. To define the
localization error, for each grid i, let K be the number of
roadside APs. Assume there are K actual APs with locations
{(xi, yi)}, ∀i = 1, 2, . . . , K , and there are corresponding K
estimated APs with locations {(x̂i, ŷi)}. Thus we derive
the localization error as the normalized relative distance:

(
K∑

i=1

√
(xi − x̂i)2 + (yi − ŷi)2)/(Kl), where l is the length

of grid lattice. If the error is less than 100%, then it indicates
that the estimated location is close to the real location as their
distance is shorter than the grid diameter.

A. Simulation Results

Eight campus AP deployments in the University of
California, Irvine (UCI) were used and RSS values from
periodic radio packets were collected along the path shown in
Fig. 5(a). We used NCTUns v5.0 [37] to model the vehicular
network and scaled the UCI campus map over a 300m×180m
rectangular area in our simulations. The distance between
each pair of APs is more than 50m, and the effective signal
transmission radius of the APs is 100m. The lattice size in
grid structure is set as 8m × 8m.

In order to demonstrate the AP lookup performance using
online CS, we first set the 8 APs to be physically located at
8 grid points and then run online CS to estimate locations
at three different moments: those when the RSS-collector
collected the 60-th; 120-th; and 180-th RSS values in the
simulation respectively. The resulting location estimates of the
60 RSS values are shown in Fig. 5(b), where the bold dark
curve shows the online trajectory, the crosses represent the

Fig. 6. Localization error vs. measurement noise.

actual AP locations, and circles are location estimates from
CrowdWiFi. The sliding window size for each computation
iteration is set as 60, and the iteration step size is 10. That is,
we re-run CrowdWiFi using the past 60 data samples when
the RSS-collector collects an additional 10 RSS values.

The signal-to-noise ratio (SNR) is commonly used in wire-
less communication as a way to measure the quality of wireless
connections. If data transmitted to the receiver are to be
received correctly, a sufficient SNR must be maintained at
the receiver. In order to test the robustness of our algorithm,
we intentionally add Gaussian white noise to the observation
vector y. The average localization error of with respect to
the measurement noise, running in the scenario as described
in Fig. 5, is presented by Fig. 6. The SNR is changed from
10dB to 30dB to evaluate its impact on our online CS based
localization when 60, 120 and 180 RSS data are collected.

As Fig. 6 shows, when vehicles move around the amount
of RSS readings increase, and our online CS operations can
provide accurate estimates of AP locations. In comparison
with the 60 RSS data set, the 120 data set and 180 data
set can achieve more accurate location estimates. Based on
the three data sets for location estimate, the average estimate
error reduces from 2.53 meters (for the 60 points) to 1.63
meters (for the 180 points) when SNR = 30dB; satisfac-
tory error bounds. It also shows the online CS approach
can achieve certain localization accuracy under various SNR.
When the number of measurements conforms with the CS
theory, the localization error is below 2 meters for the 180
RSS data set; 1.95m for SNR values at 10dB, 1.72m for
SNR values at 20dB, and 1.63m for SNR values at 30dB.
The convergence trend of localization error confirms that our
online CS-based localization can tolerate a certain level of
noisy RSS measurements, and effectively reduce the impact
of SNR on RSS collection and processing. Therefore, it
suits the harsh localization environment in vehicular networks.
For performance evaluation, we set SNR=30dB in following
simulation experiments.

The lattice size (number of grid points) is an important
parameter for CS, and can determine CrowdWiFi’s accu-
racy level. Fig. 7(a) examines the impact of lattice size on
localization error over 180 data points. The localization error
is computed by the above mentioned method times 100%.
Fig. 7 shows that a smaller lattice length (larger number of grid
points) results in more accurate location estimation. When the
lattice is less than or equal to 10 meters, CrowdWiFi achieves
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Fig. 7. Impact of grid structure in CrowdWiFi. (a) Lattice size. (b) Energy
consumption.

a low estimation error of less than 2 meters. When the lattice
length is around 20 meters, CrowdWiFi can maintain the
error at a level below 3 meters.

Intuitively, while the estimation error increases with the
increased lattice length, a very small lattice length will result
in more computation costs and energy consumption due to
the increased number of redundant grid points. As shown in
Fig. 7(b), given the lattice length as 5 meters, CrowdWiFi
has a lower average energy consumption compared to the tra-
ditional CS [22] and fingerprint [28] with respect to different
number of APs, because it can adaptively choose useful grid
points to reduce the size of RSS matrix in the CS operation.
The dynamic selection scheme is not well considered in the
traditional CS and fingerprint, therefore, when the average
energy consumption of these two algorithms ranges from
10J to 13J , CrowdWiFi’s average energy consumption
is below 10J , which exhibits significant energy efficiency.
According to the results, we learn that choosing a feasible
lattice length between 5 to 10 meters can guarantee satisfactory
localization performance.

Since online CS provides estimates of APs located at grid
points, and in reality most APs are not exactly located at
grid points, the true locations of 8 APs are set randomly
on the grid structure for the second set of simulations. Then
we verified the performance of offline crowdsourcing on fine-
grained estimation.

We generated the reliabilities qj from the spammer-hammer
priors, that equal 0.5 or 1.0 with certain probabilities. The
assignment graphs were randomly drawn from the set of (ℓ, γ)-
regular bipartite graphs with 1000 tasks. The left degree ℓ

Fig. 8. Performance of crowdsourcing in bipartite assignment.
(a) ℓ(fixed γ = 5). (b) γ(fixed ℓ = 15).

denotes the number of crowd-vehicles per task, and the right
γ denotes the number of tasks per crowd-vehicle. For com-
parison, we also calculated majority voting (MV) to chooses
what the crowd-vehicles decide [34], Skyhook that compares
relative rankings using the Spearman rank-order correlation
coefficient [28], and the oracle lower bound (Oracle) that
assumes the true reliability values qj of all crowd-vehicles are
known. We terminate all the iterative algorithms at a maximum
of 100 iterations or with 10−6 message convergence tolerance.
All results are averaged on 100 random trials. As shown
in Fig. 8 (a) and (b) in our experiments, the bit-wise error
rate of the iterative inference in CrowdWiFi is shown to be
lower than majority voting and Skyhook due to its reliability
evaluation, and CrowdWiFi scales in the same manner to
approach oracle lower bound when the number of workers
per task and the number of tasks per worker increase. Also,
we show that the error rates of the crowdsourcing algorithms
generally decay exponentially w.r.t. the degree ℓ and γ of the
assignment graph on a spammer-hammer model.

The performance of offline crowdsourcing combined with
online CS on AP lookup is examined in the next simulations.
We compare CrowdWiFi with two specific state-of-art algo-
rithms: the Gaussian mixture model based grid algorithm [26],
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Fig. 9. Comparisons between CrowdWiFi and other algorithms on
localization errors. (a) Localization vs. sparsity level. (b) Localization vs.
measurement.

and the multidimensional scaling (MDS) based radio scan
algorithm [27], referred to as “LGMM” and “MDS”, respec-
tively. We also implemented “Skyhook” based on Place Lab’s
fingerprinting algorithm [28] (Skyhook’s wardriving algorithm
is proprietary, but similar to Place Lab). The localization
error is computed by above mentioned method times 100%,
respectively. The simulation area is 250m × 250m, and the
lattice size in grid is set as 8m× 8m.

Fig. 9(a) depicts the localization error vs. the sparsity
level K when N = 900, M = 160, where K , N and M
indicate the number of WiFi APs, the number of grid points
and the number of reference points, respectively. We also set
SNR = 30dB. It can be observed that CrowdWiFi and Sky-
hook exhibit much lower error than other algorithms due to the
adoption of crowdsourcing. In addition, because CrowdWiFi
employs compressive sensing for sparse signal processing and
reliability based crowdsourcing, it can achieve better perfor-
mance than Skyhook. When K = 30, the localization errors
is almost zero, while other algorithms produce a localization
error of over 200% under the same scenario. Even when K
is as small as 10, the localization error of LGMM, MDS, and
Skyhook is still above 60%. When K = 40, CrowdWiFi
achieves a localization error of less than 100% (inside a grid)
while other algorithms result in a much lower accuracy.

Fig. 9 (b) depicts the localization error vs. the number of
measurements M when N = 900, K = 10 and SNR = 30dB.
As an overall trend, the larger the M , the smaller the
error for all algorithms. Note that the localization error for

Fig. 10. Real testbed for online lookup of roadside APs.

Fig. 11. Localization error vs. AP placement.

CrowdWiFi are almost zero when M ≥ 40, while other
algorithms yield much higher errors when M < 100. This
clearly indicates that CrowdWiFi does not require a large
number of measurements to precisely estimate the number and
location of the APs and is therefore highly practical.

B. Testbed Experiment Results

In our real testbed experiments, we used Open-Mesh wire-
less mesh nodes running IEEE 802.11b/g as APs [38]. Each
inexpensive node is an integrated access point, mesh gateway
and repeater, though our work can apply to other kinds of
roadside APs. The transmission radius of the Open-Mesh
nodes is approximately 30 meters. As the RSS-collector, a
ThinkPad X61 Laptop with Intel(R) PRO/Wireless 3945ABG
Network Connection was used to collect the RSS values along
the moving path of our vehicle.

In the first set of experiments, we evaluate the performance
of online CS, and how location estimations are affected when
the roadside APs are located inside buildings (behind walls
from the roads) in comparison with the APs outside buildings.
We deployed three Open-Mesh nodes inside and three Open-
Mesh nodes outside the California Institute for Telecommu-
nications and Information Technology (Calit2), which is a
building beside the E Peltason Dr at UCI, as roadside APs.
The APs inside Calit2 building are labelled by orange icons,
and the ones outside building are labelled by green icons,
as shown in Fig. 10. A vehicle was moving at speed around
15mph (miles per hour) back and forth on a road section of
the E Peltason Dr, as labelled by the arrows on the road in
Fig. 10, to collect RSS samples from the six APs and estimate
their locations. The lattice size of the grid structure is set as
10m × 10m. The sliding window size for each computation
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Fig. 12. Roadside APs lookup and crowdsourcing in UCI campus testbed experiments. (a) Testbed map. (b) 20 data points, 20mph (estimation error 3.85m).
(c) 40 data points, 20mph (estimation error 3.31m). (d) Crowdsourced result (estimation error 2.04m).

iteration in online CS is set as 20, and the iteration step size
is 10. The experiments run around 220 seconds.

Fig. 11 presents the average location estimation error and its
standard deviation for different placements of roadside APs.
The average localization error is 2.61m for APs placed inside
Calit2 building, and 1.26m for APs placed outside building.
In addition, the estimation deviation of placement inside
building is bigger than outside building. The results are caused
by the collected RSS measurements that fluctuate depend-
ing on the propagation environment. When vehicle moving
on the road collects RSS measurements from roadside APs
(in transmission range) placed inside building, these signals
come much more background noise and interference than
outside scenario because of the influence of indoor structure.
However, these online errors from indoor environment can be
effectively compensated by our offline crowdsourcing based
fine-grained localization scheme in CrowdWiFi; we will
illustrate the effects by the second set of real experiments as
follows.

In the second set of real-world experiments, we evaluate
the performance of our crowdsourcing based fine-grained
localization scheme in CrowdWiFi. We deployed six Open-
Mesh nodes at six different locations: two in the Graduate
Division Office, one in Irvine Barclay Theatre, one each in The
Hill Bookstore, Starbucks and the UCI Student Center, over
a 100 × 100 square meters area on UCI campus as shown
in Fig. 12. The blue icons indicate the real locations, the
red icons indicate the estimated locations, and the green
solid line indicates the moving path of our vehicle. We chose
a different campus scenario here because it presents some APs
placed further away from the moving path of our vehicle, in
comparison with the placement of roadside APs in Fig. 10,
therefore CrowdWiFi can be tested in a harsher localization
environment to evaluate its crowdsourcing performance.

For AP lookup by crowdsourcing, the vehicle collected
RSS values from nearby APs at three different average
moving speeds: 10mph, 15mph, and 20mph. We present
the location estimation results for each moving speed at
two different moments of the experiment; those when the
RSS-collector collected 20-th and 40-th RSS samples, as
shown in Fig. 12(b) and Fig. 12(c), for the case that the
vehicle is moving at speed 20mph. The offline crowdsourcing
platform aggregated the AP lookup results of the three moving
speeds, and obtained a corresponding reliability measure of the
crowd-vehicle. After centroid processing of the crowdsourced

Fig. 13. Impact of lookup results on mobile communication.

AP information weighted by crowd-vehicle’s reliability, the
crowdsourced result (see Fig. 12(d)) shows more accurate
estimations compared to the individual vehicle (see Fig. 12(b)
and Fig. 12(d)). CrowdWiFi can look up all six Open-Mesh
nodes to match with the actual locations, and the average
estimation error in the real testbed experiments is 2.04m.
Recall, Skyhook relies on war-driving to create a current
radio map, and then updates lookup results according to its
previous records. We tested Skyhook over the same area
resulting in an estimation error of 11.61m; less accurate
than CrowdWiFi.

In order to test the CrowdWiFi lookup results on Internet
connection and data transmission, we further evaluated the
Open-Mesh testbed in Fig. 10 on two types of real world traf-
fics: FTP (for file transmission) and YouTube (for multimedia
transmission). Once the vehicle obtains lookup results from its
CrowdWiFi system, it connects to one roadside AP detected
with better signal and closer location. Our evaluation results
were collected when the connected AP in our experiment
is the green one with number “1” included, as shown in
Fig. 10. The inclusive number in node icon indicates the
number of users per node (in our case here only one vehicle
is connected to a mesh node so only one node icon has a
number). The vehicle was moving at speed around 15mph.
Fig. 13 presents the data transmission rate by the connection
during a driving period around 6 seconds. The average trans-
mission rate is around 6.4Mbps for FTP traffic and 2Mbps
for YouTube traffic. Most of the transmission sessions are
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relatively stable, in comparison with only a small portion with
obvious change that was caused by roadside signal interference
(e.g. parallel vehicles, cluster of trees, group of pedestrians).
Considering the highly dynamic environments, the perfor-
mance of CrowdWiFi presents good network connection for
mobile communication in vehicular networks.

Overall, the results of these experimental evaluations con-
firm that our proposed approaches in CrowdWiFi are valid
and can perform reasonably well in practice.

VII. CONCLUSION

CrowdWiFi is a system for vehicular roadside AP lookup
using online CS and offline crowdsourcing techniques. The
CS-based coarse-grained lookup approach includes completed
online steps to make the CS operation efficient and effec-
tive for crowd-vehicles to recover sparse APs. Online CS
also reduces the number of RSS readings and the size
of RSS matrix required while maintaining accuracy. The
crowdsourcing-based fine-grained lookup can generate truthful
estimation of APs based on the efficient aggregation of sensing
results using a bipartite graph, providing reliability mea-
sures of each crowd-vehicle using iterative inference. Through
extensive simulation and real testbed results, we have showed
the superiority of CrowdWiFi over existing approaches with
respect to lookup errors (e.g. around 80% improvement on
localization in comparison with the state-of-the-art Skyhook).

APPENDIX A

Proof of Proposition 1: From the assumption, y′
k can be

written as: y′
k = QA†yk = QA†Aθk + QA†ε = Qθk + ε′.

Since Q is usually a nearly orthogonal matrix with unit
norm, it is shown in [39] that Q obeys the Restricted Isom-
etry Property that is needed by the CS [40]. In addition,
θk is 1-sparse and the number of RPs M is in the order
of K log(N/K). Therefore, the orthogonal operations satisfy
both the sparsity and incoherence requirements of CS the-
ory [36], [39], [41], and the location indicator θk can be well
recovered from y′

k with ℓ1-minimization.

APPENDIX B

Proof of Proposition 2: Assume Pt is the transmission
power of a vehicle to send one-time localization broadcast
message, and Pri is its reception power to receive one RSS
measurement at one RP i from an AP. Tt and Tr are their time
cost, respectively, which is around one second by the WiFi
standard and our corresponding setting for CrowdWiFi oper-
ations in Section IV-A.2. Let Pl be the energy consumption
for CS operation, and Tl be the time cost for its localization
steps which is normally in the order of milliseconds. Then

E = PtTt +
M∑

i=1

PriTr + PlTl. Since Tt ≪ Tl, Tr ≪ Tl,

and M is a small number in CS operation as explained
in Section IV-A.2, we have E ∝ PlTl. According to the proof
on page 112 in [42], the time complexity of CS operation
is Ω(KMN). We can express Tl = λN , where λ = Ω(KM).
Therefore, we conclude: E ∝ λN, λ = Ω(KM).
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