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Abstract—In recent years, notification services for social net-
works, mobile apps, messaging systems and other electronic
services have become truly ubiquitous. When a new content
becomes available, the service sends an instant notification to the
user. When the content is produced in massive quantities, and
it includes both large-size media and a lot of meta-information,
it gives rise to a major challenge of selecting content to notify
about and information to include in such notifications.

We tackle three important challenges in realizing rich notifi-
cation delivery: (1) content and presentation utility modeling, (2)
notification selection and (3) scheduling of delivery. We consider
a number of progressive presentation levels for the content.
Since utility is subjective and hard to model, we rely on real
data and user surveys. We model the content utility by learning
from large-scale real world data collected from Spotify music
streaming service. For the utility of the presentation levels we
rely on user surveys. Blending these two techniques together, we
derive utility of notifications with different presentation levels.
We then model the selection and delivery of rich notifications as
an optimization problem with a goal to maximize the utility of
notifications under resource budget constraints. We validate our
system with large-scale simulations driven by the real-world de-
identified traces obtained from Spotify. With the help of several
baseline approaches we show that our solution is adaptive and
resource efficient.

I. INTRODUCTION

In recent years, notification services have become truly

ubiquitous. Today, we receive contextualized notifications

about events and items of interest from service providers,

news agencies, social media websites, community services,

vendors of goods and services etc. For example, we can get

a notification on Facebook when a friend uploads a new

photo or updates her profile. On Spotify, a notification can

be sent when a friend starts streaming a music track, or

edits a shared playlist [1]. Mobile app developers can opt to

deliver notifications to devices using standardized notification

services, e.g., those provided by Apple and Google.

Scalability is a significant challenge given the staggering

amount and volume of notifications being generated today:

In Spotify, daily bandwidth consumption due to transferring

events from the client software and delivering notifications to

millions of users is around 2TB [2]. A significant fraction of

these notifications are being delivered to mobile devices, which

have constraints related to bandwidth availability, residual

battery capacity and data plan costs. Many content items, in

particular, those associated with media content such as video,

pictures, or audio, are large. They are also rich in terms of

the amount of metadata used to describe the content: a music

stream can be accompanied by a plethora of information about

the genre, artist, song, album, popularity, social friends who

listened to the same stream, etc.

Unfortunately, notification providers today often resort to

delivering a short message indicating that content is available

(without much information about the specifics) for all the

items that seem remotely relevant. Such a service expects

users to select the relevant content, initiate a session with

the provider and pull the content as desired. This approach

is deficient in several respects: (a) the sheer number of noti-

fications can overwhelm the user, (b) a barebone notification

may not provide sufficient information for the user to make

an intelligent selection, (c) the delayed pull-based approach

generally results in higher latency, and (d) simplistic delivery

schemes do not exploit connectivity information for improved

scheduling (such as periods of lower loads or efficient usage

of dataplan minutes). These factors call for selective delivery

with respect to both the choice of items in the notification and

specific associated information.

In this paper, we propose RichNote , an end-to-end frame-

work that addresses the problem of delivering rich notifications
to users in constrained settings, e.g. in mobile environments.

Rich notifications are notifications augmented with enhanced

content (including metadata, degraded content and partial con-

tent snippets). This is especially useful for media information

related to social interaction, e.g., in Spotify, and information

accessible through social network sites, e.g. audiovisual con-

tent in Facebook. The pushed notifications may include any

of a multitude of media presentations that can be scaled in

a variety of well-known ways – thumbnails of album cover

images, previews of video or audio streams, a random track for

an album, etc. Scalable encoding can be employed to degrade

the quality of media content.

There are fundamental challenges that must be addressed

to realize the above vision, prior to embarking on a large

scale implementation. A key question is that of balancing

the selection of content items for delivery with the selection

of representation for each item. Even for a fixed number of

content items and a small number of predetermined discrete

presentation levels, the question of what to deliver and how

involves nontrivial decisions: Is it better to deliver a homoge-
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neous presentation level across all the items or include concise

presentation for most items while focusing on extended pre-

sentation for a selected few? Can we quantify how the utility

decays over time if the notification is delayed? How does this

vary across media types–images, music, video streams etc?

RichNote, uses a multi-step approach to answer the above

questions and address the creation and delivery of rich no-

tifications of social media contents to mobile devices. In

the first phase, we consider the selection problem from the

end user perspective to maximize mobile user satisfaction

under resource constraints (e.g. bandwidth, energy, storage,

dataplan cost). We develop a comprehensive model of user

satisfaction that combines content utility (strength of user

interest in a particular content item) with presentation utility

(i.e., enhanced quality of user experience due to rich notifi-

cations) by combining a range of factors from user-specified

preferences, social network ties, content parameters, etc. The

outcome is a ranked list of notifications for delivery. The

second phase deals with the delivery of the items in the

ranked list. We develop adaptive scheduling techniques to

determine when and how to deliver rich notifications content

given the underlying dynamics of the user, device and network

and develop optimized scheduling methods to adapt these

plans as conditions in the network and mobile device change.

We transform the above steps into corresponding optimization

problems and develop efficient algorithmic solutions for them.

While the selection model and scheduling techniques can be

applied to any content type and any notification service and

setting, we consider its application to a popular large global-

scale platform that is inherently rich media, namely the Spotify

music streaming service (discussed further in Sec. II).

To illustrate the effectiveness of the RichNote method, we

evaluate it using de-identified production traces from Spotify.

As the baselines, we employ two notification delivery methods

commonly used in the industry–FIFO and UTIL (highest

utility first). We measure and compare several performance

metrics capturing quantity and utility of the delivered notifica-

tions as well as energy efficiency and latency of RichNote and

the baseline methods. We demonstrate that RichNote always

delivers close to 100% notifications at different presentation

levels while the baseline methods suffer due to their fixed

presentation level. We then show that RichNote doubles

notification utility value compared to the baseline methods

without compromising energy consumption and queuing delay.

We also show that unlike baseline methods, RichNote adapts

to different settings such as available data budget, change

in battery status, dynamic network availability, to maximize

notification utility.

The unique aspect of our contribution is that we merge

the pub/sub paradigm with rich data delivery and mobile

systems into a single framework, RichNote, in a manner that

exploits the nature of social media content. Today’s social

media systems incorporate pub/sub technologies and content

delivery methods; albeit as independent, dissociated tasks. We

conjecture that a more holistic approach that combines these

tasks will result in improved systems that support delivery

of more relevant content to users and flexibly adapt to the

underlying system constraints. RichNote has the ability to

scale content granularity and adapt content presentation –

this allows us to diversify content presentation and staging

in a manner personalized for the user. Furthermore, existing

methods for content ranking and summarization are either

offline (information retrieval) or deal with data items that

have a simple predefined structure (data streams). RichNote, in

contrast, performs efficient online analysis of rich media infor-

mation and creates enriched content for notification delivery.

In summary, key novel elements of this work include:

• A structured approach to modeling utility of rich notifica-

tions both in terms of relevance of content to the user and its

presentation quality and a semantics-based content selection

approach (Sec. III).

• Design of the RichNote architectural framework and algo-

rithms that combine scalable content transformation tech-

niques with subscription-based data selection and adaptive

notification delivery methods (Sec. IV).

• Validation of the RichNote framework/algorithms using

real-world de-identified traces from the Spotify platform

(Sec. V).

II. USE CASE: RICH NOTIFICATIONS IN SPOTIFY

To lend focus to our techniques, we apply and evaluate the

RichNote two-phase approach to a popular music streaming

service, Spotify, which utilizes notifications to inform sub-

scribers about the availability of potentially interesting content.

Streaming music delivery services, in general, and Spotify, in

particular, serve as an interesting use case for rich notifications

due to its unique characteristics. Firstly, music, as a modality

of content allows for perpetual content playback - people listen

to music while conducting other day-to-day activities. This

results in significant resource demands on the infrastructure.

Second, the choice of music is very personalized in multiple

dimensions – genre, artist, activity etc. This implies the

need for customizing the rich notifications based on specific

user preferences. Finally, the library of potentially accessible

and available content is huge and growing. Matching large

numbers of content items to the plethora of users who want

continuous feeds is a challenge.

Today, Spotify is known to use the topic-based pub/sub

paradigm for delivering notifications arising from music-

associated social interaction among its users. The topics may

correspond to users friends, artist pages or publicly available

music playlists [1]. The publications for these topics are

notifications about friends listening to music tracks, new

album releases, and updates to followed playlists respectively.

To deliver these diverse types of publications, Spotify has

deployed a hybrid pub/sub engine that allows notification

delivery to users in two different modes:

Real-time mode: Social notifications such as friend feeds

are delivered in real-time so that users can receive them

instantly in the Spotify client software. Real-time processing is

needed because: (1) updates are frequent and large in number

compared to other publications (2) they provide an opportunity
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for users to take instant actions based on activities of friends. A

large number of real-time notifications will cause information

overload for human users [3]; methods for selecting a subset of

notifications in an efficient manner have been proposed in prior

work [3]. While these methods address information overload

to some extent, the actual utility of these notifications to end-

users is not considered.

Batch mode: Notifications about album releases and playlist

updates are relatively small in number and less frequent

and hence are good candidates for delivery in batch mode.

The batch mode also facilitates analysis of notifications for

computing utility and selective delivery to the users, for offline

viewing. However, these notifications contain textual metadata

with remote links to media content; offline users may not be

able to view them. The ability to provide rich notifications that

include media content samples in addition to textual metadata

enables richer experiences during offline viewing.

RichNote improves the existing Spotify notification scheme

in two ways. First, we address the inherent utility/timeliness

tradeoff between the two delivery modes - while the real-

time mode approximates utility computation because it is

computationally intensive, the batch mode facilitates utility-

driven delivery that is less frequent. RichNote incorporates

a round-based model for notification delivery where notifi-

cations are analyzed, selected and delivered in discrete time

frames called rounds - this provides a middle-ground between

the real-time and batch modes and allows us to tune time

duration of each round proportional to the frequency of the

feed. For example, friend feeds can be delivered every few

minutes whereas notifications related to artist and playlists

can be delivered in every few hours. Second, the textual

presentation mode of Spotify notifications has limited utility

to users. RichNote alleviates this by introducing the concept

of rich notifications that enables notifications to be composed

with different presentation levels. This process is driven by

the utility of the content to users, quality of presentation

level and mobile resource limitations such as cellular data

budget. For example, a notification about a music track from

a favorite artist can be enriched with 20 second preview of the

song which is readily available for the user provided there is

sufficient data budget.

Using trace data from de-identified Spotify logs (notifica-

tions and user response to these notifications), we provide

an analysis of utility and derive the probability of a user

being interested in an item. The resultant model is used to

select and create the rich notification content. Furthermore,

since the Spotify client is not open for modifications such

as creating and delivering enriched notifications, we perform

utility assessment of a presentation form in a rich notification

by conducting separate subjective user studies.

III. UTILITY MODELING AND PROBLEM FORMULATION

We consider the problem of selective delivery of notifica-

tions from the end user perspective rather than that of a service

deployment. The selection is customized for each user individ-

ually. As motivated in Section II, we assume that the content is

generated and becomes available for the user in discrete time

frames, referred to as rounds. The content consists in many

items, a selection of which needs to be delivered to the user

on a mobile resource-constrained device. Each content item

may be represented in a notification at a selected presentation

level. Presentation levels also trade the balance between utility

for the user and resource constraints. The main problem we

address is—given a set of candidate content items, find a

subset of the items and their respective presentation levels such

that the overall utility is maximized. To address the challenges

in delivering large-scale rich multimedia notifications in social

interaction systems such as the one deployed by Spotify in

conjunction with its music streaming service, we need to solve

the three main problems: (1) notification utility modeling,

(2) modeling notification presentation levels, (3) notification

selection and delivery to maximize the utility under resource

constraints.

A. Utility modeling

In this paper, we consider rich notifications for multimedia

content. The utility of these notifications depends on the

utility of the content to the users (content utility). Since the

notifications are delivered in different presentation levels, we

assume that each presentation level has a different utility value

to the user (presentation utility). In this section, we elaborate

on these two utility models and explain how we combine them.

We denote utility of a notification as U(i, j), where i is

the content item, and j is the presentation level (we assume

that the presentation has discrete levels). The content utility of

item i denoted as Uc(i), corresponds to the relevance of the

content to the user derived from the content attributes; it is thus

independent of the presentation. The goal of the content utility

is to quantify the probability that a user is likely to consume a

given content item. The presentation utility Up(i, j) quantifies

the value derived from a specific presentation of the content.

Presentation utility depends on the metadata as well as the

duration and quality of the multimedia content included in the

notification. For example, music content can be presented with

a 5-second or a 10-second preview and using different bit rate

sampling. Similarly, video samples can also be presented in

combinations of duration and quality. Since presentation utility

is subjective; in this paper, we obtain it from a user survey.

Given content and presentation utility values, we define the

combined utility as follows:

U(i, j) = Uc(i)× Up(i, j) (1)

We now look into how we can compute these two utility

components for each content item.

Content utility. Uc(i) can be defined as a measurement of

how likely the user would be interested in consuming content

i given the user’s current context and content attributes. This

probability depends on the user’s explicit preferences, various

attributes of the content, popularity of the content across user

base, and the relationship (e.g., social rank) with the user who

generated the content. It may also depend on the recency of

the content (aging factor). All of these factors form a feature
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space. Given a feature space with appropriate training data we

can train a machine learning classifier to predict the utility of

the content. In Section V-A we explain the specific classifier

model and feature space we consider for the Spotify use case.

Presentation Utility. As mentioned above, the same con-

tent has different utilities for different presentations. Utility

function, Up(i, j), captures the level of satisfaction of the j-th

presentation of content i with respect to a base presentation,

say, for example, against the full content. We model utility

for a given presentation as a real-valued function dependent

on the inclusion of metadata as well as a subset of the original

full content.

The utility function always exhibits the following properties:

• Utility should monotonically increase for richer presentation

levels (higher j). This is because intuitively, as more details

are added to the presentation, utility should also increase.

The reason for this is “information never hurts”. We also

assume in our case no content is unwanted for a given user.

• Utility should follow “diminishing returns”, i.e., the gain in

utility for including specific details decreases as the level of

presentation increases.

Obviously, the utility function is highly application-

dependent. We elaborate on the specific presentation utility

model we use in the Spotify use case in Section V-B.

B. Presentation levels

We assume that content i can be presented or notified to the

user at any of several available presentation levels, namely

at levels 1, 2, · · · , ki, where level 1 represents the smallest

possible presentation with only a set of essential metadata and

without any media sample. Successive presentations then have

strictly higher presentation levels enriching the presentation

content accompanied by some part of the media content in

question. The presentation at level ki represents the largest
possible presentation for an individual content notification.

Notifications gradually become richer and larger in size when

additional pieces of information are added to the presentation.

The pieces of information that accompany a certain content

to enrich the notifications are application specific, and we

assume that a certain “generator” exists that produces these

presentations at different level of details. Different generators

may exist for different content types, which are developed by

the content providers. We assume that these presentations are

strictly ordered in their sizes and utility. We also define level

0, which means no presentation at all (with zero size and zero

utility). This level represents the case when the notification for

this content is not sent to the user.

C. Selection and scheduling problem

Our objective is to choose content presentations so as to

maximize overall utility subject to two types of resource

constraints—data and energy budget. At each round, data

budget limits the number of bytes to deliver while energy

budget specifies how much energy the user device is allowed

to spend. Let X(t) be the set of items that are to be selected

at round t. Denote by η a mapping from a content item i to

the presentation level chosen for i. η(i) is 0 if content i is

not chosen at all. The utility of selected items is therefore,

Ut =
∑

i∈X(t) U(i, η(i)). Let s(i, j) denote the size of j-

th presentation of content i and ρ(i, j) denote the estimated

amount of energy required to download item i at presentation

level j by the mobile user (following a specific energy model).

Given each user having a data budget, B(t), and energy

budget, E(t), for the current round, the problem of notification

selection is to find presentation for each content item, that is

mapping η, so as to

maximize Ut (2a)

subject to:
∑

i∈X(t)

s(i, η(i)) ≤ B(t) (2b)

∑
i∈X(t)

ρ(i, η(i)) ≤ E(t) (2c)

The above is an instance of the multi-choice Knapsack

(MCKP) [4] problem with two weight constraints. Following

MCKP terminology, presentations are object categories, utility

corresponds to profits, and presentation sizes and energy values

map to weights. The problem is reportedly NP-Hard [4], even

with a single weight constraint. We advance the intuition from

that work and develop a greedy heuristic.

While the problem definition above is for a single round t,
it can be used for a series of rounds as well. The objective of

the scheduler is to maximize long term utility of notification

delivered, while satisfying constraints at each round. Budgets,

B(t) and E(t) do also evolve over time in rounds. Moreover,

another implicit condition needs to be ensured, which is—the

queue of the scheduler should remain bounded or stable over

time. In the following, we describe our scheduling algorithm

for selecting notifications using the classical Lyapunov control

strategy [5] that offers an elegant way to balance among utility,

constraints and queue stability at the same time. In effect, the

objective function of the above MCKP is modified with an

adjusted utility score that we describe next.

IV. SCHEDULING NOTIFICATION DELIVERY

In this section, we devise our scheduling algorithm and

design a scheduler to deliver rich notifications to mobile users.

Figure 1 shows various steps of the scheduler. At each round,

new content items arrive in the scheduler and are added to

the incoming queue. The scheduler then generates different

possible presentations of each content item and assigns ap-

propriate utility to them, and places them into a scheduling
queue. The scheduler then selects a subset of notifications in

their appropriate presentations out of the scheduling queue

and pushes them to the delivery queue, from where the

notifications are finally pushed to the mobile devices. The goal

of the scheduler is to transfer items from the scheduling queue

to the delivery queue maximizing overall utility of notifications

under budget constraints while keeping the scheduling queue

stable i.e. finite average length.

Inspired by [6] we use Lyapunov optimization frame-

work [5] to select different notification presentations. The
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Figure 1. Scheduling workflow.

framework enables optimizing certain objectives under queue

stability using Lyapunov drift analysis. The technique involves

defining a non-negative scalar function, called a Lyapunov
function, whose value depends on the current queue backlog.

The Lyapunov optimization guarantees that a series of actions

that minimize the Lyapunov drift over time stabilizes queues

while maximizing the desired objectives—for our case, utility.

More specifically, maximizing Ut under queue stability trans-

lates to:

minimize Δ(L(t))− V × Ut (3)

for some control parameter V where Δ(L(t)) is the Lyapunov

drift over a suitably defined (explained below) Lyapunov

function L(t). The control knob, V , balances between utility

and queue size: choosing larger V favors utility over queue

backlog.

For brevity, we move energy constraint (2b) to the objective.

Lyapunov allows this by converting the quantity in question

(here energy) to become yet another queue (virtual) in the

system. We therefore define two queues: the scheduling queue,

Q(t) and a virtual queue, P (t), that keeps track how much

energy is allowed to spend in the current round. Note that P (t)
corresponds to energy budget E(t) (introduced in Equation

2c). Ideally, Q(t) should remain bounded and P (t) should

remain close to some constant over rounds. Let this constant

be κ. We define a Lyapunov function as follows:

L(t) =
1

2

(
Q2(t) + (P (t)− κ)2

)

Lyapunov drift is given by: Δ(L(t)) = E[L(t+ 1)−L(t)],
where the expectation is conditioned over the current values

of Q(t) and P (t). According to Lyapunov theory, minimizing

drift Δ(L(t)) ensures Q(t) to remain stable and P (t) to remain

close to κ over time.

The drift depends on how Q(t) and P (t) evolve over time.

Let Xs(t) denote byte-size of all presentations in X(t), that

is Xs(t) =
∑

i∈X(t) s(i), where s(i) =
∑

j s(i, j). When a

notification is delivered, all presentations of the same item

are dropped from Q(t). Similarly, let Xe(t) be the estimated

energy required to transfer items in X(t). Hence, we have the

following queue updates:

Q(t+ 1) � [Q(t)−Xs(t) + ν(t)]+ (4)

P (t+ 1) � [P (t)−Xe(t) + e(t)]+ (5)

where ν(t) are the new items added to the queue during

the current round and e(t) is an additional budget added

to the current energy budget, both of which are assumed

to bounded by some constants. Consequently, for a suitably

chosen constant β it can be shown that: Δ(L(t)) ≤ β −
E[Q(t)Xe(t)+ (P (t)−κ)Xe(t)]. Applying the above expres-

sion in (3) and replacing minimization with maximization with

the objective function negated, we obtain our optimization

under data budget constraint as follows:

max E[Q(t)Xs(t) + (P (t)− κ)Xe(t)] + V × Ut

st.
∑

i∈X(i)

s(i, j) ≤ B(t) (6)

We can further simplify the formulation if we assume xij to

denote whether content i is selected in presentation level j. In

that, we have: Xs(t) =
∑

i,j xijs(i), Xe(t) =
∑

i,j xijρ(i, j),
Ut =

∑
i,j xijU(i, j). Putting all these into the objective

function, we obtain the following optimization:

max
∑
i,j

xijUa(i, j)

st.
∑
j

xij = 1, ∀i, and
∑
i,j

xijs(i, j) ≤ B(t)
(7)

where Ua(i, j) = Q(t)s(i) + (P (t)− κ)ρ(i, j) + V × U(i, j)
is an adjusted utility for presentations that takes into account

current queue size (Q(t)), current energy level (P (t)) and

the original presentation utility (U(i, j)). The first constraint

forces exactly one presentation to be chosen per item. We

propose a greedy heuristic to solve the above MCKP instance.

MCKP Heuristic. While 0/1 MCKP is NP-Hard, fractional

MCKP obtained by considering xij to be a real within [0, 1]

can be solved optimally by the following greedy algorithm [4]:

start with presentation 0 for all items, then make a series of

“upgrades” (described later) in presentations, until the budget

is exhausted and the last item can only be partially upgraded.

The integral solution is the same but without the last fractional

upgrade. Therefore, the difference in overall utility obtained

between the greedy integral solution and the greedy fractional

solution is at most the utility obtained by the last fractional

upgrade, which can be made arbitrarily small if presentation

sizes are significantly small compared to the budget.

The algorithm defines utility-size gradient, ∇(i, j), as the

utility to size difference ratio for two successive presentations:

∇(i, j) =
Ua(i, j + 1)− Ua(i, j)

s(i, j + 1)− s(i, j)
, for 0 ≤ j < ki

Algorithm IV outlines the steps in our solution. It starts

with selecting all contents with presentation 0 (set η(i) =
0, ∀i). It then finds item i′ that has the largest utility-size

gradient against its currently chosen presentation (step 5) and

“upgrades” its presentations (step 8). The process continues

until budget is exhausted. While the original algorithm in [4]

upgrades to the best presentations by skipping a few in

between which may have negative gradients, we rather move

to the next presentation level because in our case utilities are

monotone across presentations. Its runtime is O(n+k log2 n),
for k = maxi ki, due to building a max heap (O(n)) at the
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beginning with initial gradients, followed by at most k updates,

each O(log2 n).

Algorithm 1 SelectPresentations (budget)

1: η(i)← 0, ∀i, totalsize← 0, done← false;
2: while not done do
3: i′ ← argmaxi∇(i, η(i))
4: sizegain← s(i′, η(i′) + 1)− s(i′, η(i′))
5: if totalsize+ sizegain ≤ budget then
6: η(i′)← η(i′) + 1
7: totalsize← totalsize+ sizegain
8: else done← true
9: end if

10: end while
11: return items for which η(i) > 0

Algorithm 2 Notification Scheduling Algorithm

1) Notification Selection. In round t, clear the current
delivery queue. For set of items, I , in the scheduling
queue, find

X(t) = SelectPresentations(B(t))

Transfer items in X(t) to the delivery queue and sort
them in descending order of their utility values.

2) Data and energy budget update. In round t, add θ to
B(t), and add e(t) to P (t) if P (t) ≤ κ.

3) Budget Deduction. On delivery of item i: set B(t) =
B(t) − s(i, j) and set P (t) = P (t) − ρ(i, j). Drop all
presentations of i from the scheduling queue.

Scheduling Algorithm. Now, we present the scheduling

algorithm for notification delivery (Algorithm 2). At each

round, the scheduler chooses the best notifications from the

scheduling queue and pushes them to the delivery queue. It

also orders notifications in descending order of their utility

values. At each round, user’s data budget and energy budget

are also updated. Each user specifies a budget (in bytes) per

round, θ. The scheduler allocates new budget at each round

(B(t) is incremented by θ) and allows budget to roll over

in the next round if not used in the current round. When a

user downloads a notification from the delivery queue, an

equal number of bytes is deducted from the data budget.

Energy budget is also replenished in a similar fashion, but

at a variable rate, e(t), depending on the current battery status

of the device.

V. EXPERIMENTAL EVALUATION

In this section, we first explain the data-driven utility

modeling based on the Spotify traces and user surveys we

conducted. Then using trace-driven simulations we validate

the RichNote and compare it with two baseline approaches.

A. Content Utility Modeling Using Spotify Trace Data

In the context of the Spotify use case, we model content

utility based on real de-identified notifications collected from

the Spotify production system for a duration of Jan 1, 2015 to

Jan 7, 2015. Specifically, the logs contained notifications and

music activity feeds sent to the users and the corresponding

mouse activity by the users. We consider a notification to have

a higher utility to a user if it was clicked on by that user.

However, this does not imply that notifications not clicked

on by a user have lower utility. This is because users may

not be paying attention to all the notifications, e.g., they may

not be looking at the Spotify client when the notification

was delivered. To address this problem we assume that a

notification has lower utility if the user hovered the mouse

pointer over the notification without actually clicking it. This

ensures that the user was giving some degree of attention to the

notification and yet the user opted not to view that notification

by clicking on it.

Since the goal is to model the utility of the music content in

the notifications, it is critical to include features of the content

that are indicators of its utility. Therefore, we combine the

mouse activity data with the metadata such as attributes of

the music track, album or artists data obtained using Spotify

public APIs. While these attributes aid in assessing the content

importance, they do not capture the social importance to the

user. To address this, we obtain the social relationships of the

user by combining the Spotify de-identified social graph [1]

with the mouse activity. This provides us with available social

ties between the recipient and the sender of the notification.

In summary, we obtain the following features:

• Social ties between the sender and recipient of the notifi-

cation; intuitively, a notification from a friend or favorite

artist has a higher utility to the user.

• Popularity of the music track, album and artist that the

notification is about. The popularity is a normalized score

between 1 and 100 obtained via Spotify public APIs

based on their streaming frequencies in Spotify.

• Timestamp of when the user clicked on or hovered over

the notification, e.g., weekday/weekend, day/night, etc.

First we filter out notifications without corresponding mouse

activity from the dataset. Using the above features we ap-

proach the utility prediction as a binary classification task

with two classes: “clicked” or “hovered” for a content item

i represented by the variable xi ∈ {0, 1}. The goal is to learn

a function that predicts if a notification i with its corresponding

features mentioned above will be “clicked” (xi = 1) or

“hovered” (xi = 0) by the user. For each notification, since

we also know whether the notification was clicked on or

hovered over by the user, we can exploit this information

for a supervised learning technique. In this regard, we train

a binary classifier using the well-known Random Forest (RF)

classification method [7]. RF is an ensemble of many decision

trees that determines the class of a notification along with a

confidence score in the form of probability Pr(xi) for the

predicted class xi. Using these confidence scores, we assign

content utility of an item i as below:

Uc(i) =

{
Pr(xi = 1), if xi = 1

1− Pr(xi = 0), otherwise

To evaluate the effectiveness of the learned classifier model

and to ensure that we are not over-fitting to the training data

we performed a five-fold cross validation. In this process, we

divide the input data in to five equal parts. Then each part
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Figure 2. Presentation utility as observed from user survey.

acts as test data while the rest of the four parts are used for

training. We use the popular Weka data mining software [8]

to train and test the classifier. For Spotify data with the RF

classifier, we got a precision of 0.700 and accuracy of 0.689.

B. Presentation Utility Using User Survey

Presentation utility reflects the impact of the metadata and

portion of the media content included into rich notifications.

This part of the utility is subjective and depends on individual’s

taste and experience w.r.t. specific media content in question.

We conduct a subjective user survey to analyze user’s feedback

for different possible presentations and assign utility scores

accordingly. We consider music audio as our media content.

Audio content can be presented in many different ways

varying across a wide range of attributes, including sampling

rate (range: 8KHz–48KHz), bitrate (64kbps–320kbps), dura-

tion (couple of seconds to several minutes), channel (mono or

stereo), and compression technique (wav, ogg, mp3, etc). The

impact of different attributes cannot be considered separately

because of potential correlations. The space of all possible

attribute combinations is represented by the Cartesian product

of the attributes. Fortunately, we do not need to explore the

entire space for the purpose of selecting a presentation. The

salient feature of this space is the trade-off between the size

and utility. Thus, we do not need to consider a combination

of attributes if another combination yields the same or smaller

size, yet a higher utility. Consider Figure 2(a), notice that B
is not a useful presentation given A, because A provides the

same utility for a smaller size, and similarly D provides a

higher utility than same-sized B and C.

We conducted a survey to derive audio content utility based

on two attributes, namely sampling rate and duration. We used

four rates, 8, 16, 32 and 44KHz, and five durations, 5, 10,

20, 30 and 40 seconds. We produced a set of corresponding

audio samples and asked a number of users to rate them in

the scale of 0–5, indicating to what degree they are satisfied

listening to these samples. We observed that utility scores for

these 20 presentations varied from 0.3 to 3.3 and resulted in

only six useful presentations, which constituted a monotone

rise in utility scores across their respective sizes (similar to

the illustration in Figure 2(a)).

Utility based on audio duration. Arguably, utility of an

audio content presentation mostly depends on its duration.

We studied how user choice varies in choosing a suitable

duration for a good audio notification. We conducted another

survey among 80 users where we provided a few music tracks

(average duration 276 seconds) and asked the users to listen

and stop at the point when they think the duration was barely

enough for a good notification. We define utility, util(d), of

an audio sample of duration, d, to be proportional to the

fraction of users who prefer a notification to be equal or

smaller than that duration. That means, CDF of duration is

translated into utility value. We model util(d) as one of the

two possible functions, namely logarithmic a + b log(1 + d)

and polynomial a
(
1− d

D

)b
, for some constants a, b and D.

Using linear regression, we deduce these constants from our

survey results obtaining the following two utility functions:

util(d) = −0.397 + 0.352× log(1 + d) (8)

util(d) = 0.253×
(
1− d

40

)2.087

(9)

From our survey results, logarithmic function showed a better

fit (Figure 2(b)) so we use this function in our experiments.

These surveys, though limited in scale, give useful insights

about deriving presentation utility of media content. A wide

scale survey through crowdsourcing can give better results.

C. Experimental Setup

We use a custom event-based simulator [6] written in

Java. Using the de-identified Spotify traces, we conduct the

simulations for top 10k users with maximum number of

delivered notifications in the traces. This allows us to focus on

users for whom the resource budget constrains are important.

Note that while we run simulations using 10K users, our

solution can potentially scale to a much larger user base using

a backend parallel platform since our solution can work in

rounds and independently for each user. For each user, we

replay all notifications intended for them as a stream of content

items arriving at our scheduling and delivery system (i.e., a

broker), see Section IV. The broker then prepares notifications

for these items in specific presentations and selects them via

the SelectPresentations method as shown in Algo-

rithm 2. The selected notifications are scheduled for delivery

by moving them to a queue from where they are delivered

to the end users. We assume that users are on their mobile

devices and are connected to the broker sporadically through

a cellular connection with a budgeted data plan. A separate

trace (obtained from [6]) of timestamped battery status per user

is also provided to mimic energy drain and battery recharge

patterns of the devices.

To compare RichNote performance, we use two baselines:

(1) FIFO that delivers notifications in the order of their deliv-

ery timestamps in the trace, and (2) UTIL that delivers noti-

fications in decreasing order of utility score. The experiments

are designed to demonstrate the adaptiveness of RichNote by

comparing metrics such as the precision, recall and utility of

the delivered notifications with the baselines under varying

data budget. We chose these two baselines because they are

the widely used techniques in the industry. For example, in

Spotify FIFO is used in real-time mode and UTIL strategy is
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Figure 3. Performance metrics for different scheduling technique.

used in batch mode. Since for mobile devices energy efficiency

is critical we simulate the battery consumption and measure

the energy efficiency. Finally we evaluate the effectiveness of

the scheduling algorithm by measuring the queuing delays.

We assume that each user specifies a certain data budget

within which she prefers to receive these notifications. This

rate is denoted as budget per week indicating the upper limit

on data consumption by the notifications. We vary this budget

from 1MB to 200MB. Each user also specifies a certain

amount of energy to spend per round (κ in our scheduling

algorithm). We assume each round to be 1 hour (3600 seconds)

and set κ to 3KJ per hour. We set Lyapunov control parameter,

V , to 1000. These settings are used from [6].

We generate different presentation levels by varying the

duration of music tracks at a fixed bitrate of 160 kbps (Spotify

default bitrate). Specifically we consider six levels: first level

contains metadata only and five more levels with 5, 10,

20, 30 and 40 seconds of previews in addition to metadata.

For RichNote we do not need to set a presentation level as it

switches between them according to the available budget, but

for both baseline approaches (FIFO and UTIL) we need to

fix the presentation level to mimic state-of-the-art techniques.

We assume average metadata size is 200 bytes (as mentioned

in [2]), consisting of information about a music track, artist,

album names, and a URL link to the track. While assigning

presentation utility, we assume a small portion of utility (about

1%) is due to metadata and the rest is from the audio content,

the latter part is specified by the logarithmic utility function

in Equation 8. At 160kbps bitrate, the size of a d-sec preview

is d×20KB assuming no audio compression is used.

We use the following performance metrics to compare Rich-
Note with the chosen baselines:

Delivery ratio: The fraction of notifications delivered.

Precision/recall ratio: We measure precision as the fraction

of delivered notifications (before the recorded click time

in the Spotify trace) that are clicked on by the users, and

recall as the fraction of total clicked notifications that are

delivered to the users.

Average utility: Average utility of delivered notifications to

users computed using Equation 1.

Download energy: Energy spent in downloading notifica-

tions based on the energy model from [9].

Queuing delay. The time between when a notification arrives

in the broker and when it is delivered.

In all experiments for all methods unless mentioned explic-

itly the values of these metrics are averaged across all users.

D. Experimental Results and Analysis

1) Performance Comparison of Different Methods: In the

first set of experiments the goal is to compare performance

metrics of different methods by varying available weekly data

budget from 1 MB to 100 MB. In these experiments we fix

the presentation level of FIFO and UTIL to metadata with 5s

and 10s previews. This matches the current behavior of Spotify

embedding an URL to 10s song preview in some notifications.

In Fig. 3(a), it can be observed that delivery ratio increases

as the data budget increases. An interesting observation here

is that RichNote always delivers close to 100% notifications

while FIFO and UTIL need a higher data budget to deliver

more items. This is because RichNote adapts the presentation

level to lower presentation levels when the data budget is

limited. On the other hand since FIFO and UTIL have fixed

budget they can deliver only limited fraction of notifications

with the given limited budget. Fig. 3(b) shows the total amount

of data delivered by different methods. RichNote delivers more

bytes than its counterparts again because of its presentation

adaptation. Furthermore, RichNote does not use up the entire

budget allocated because data delivery is limited by other

factors, such as network and energy availability.

Figures 3(c) and 3(d) show recall and precision results for

the three methods. We observe that RichNote has higher recall

and precision than other techniques. This is directly related

to the fact that RichNote delivers close to 100% notifications

within the given budget. On the other hand precision is limited

to 0.3 because of high recall. Note that it is possible to achieve

higher precision using RichNote by only delivering notifica-

tions with higher utility value. However, RichNote makes use

of all the available data budget to deliver more notifications

even when they are not being clicked on by the users.

In Fig. 4(a), we show utility of all delivered notifications

aggregated across all the users for different methods. We see

that RichNote achieves higher utility than FIFO and UTIL

since it is designed to maximize utility. Since RichNote does

not strictly follow FIFO, notifications may be delivered after

the actual click time in the input data. To mitigate this effect

RichNote employs the round-based model. In Fig. 4(b) we
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Figure 5. Adaptation of RichNote and Utility Across Users

can see that RichNote still has a higher utility compared to

the FIFO and UTIL methods even among the clicked items.
Fig. 4(c) shows energy expenditure comparison between

UTIL and RichNote (we omit FIFO because it shows similar

results). We can notice that the energy expenditure of Rich-
Note is steady and stable compared to UTIL. Unlike UTIL

that has spikes at a lower budget, RichNote strives to control

energy consumption and keep it below the specified threshold

of 500KJ (given by κ, 3KJ per hour for 7 days). However,

at the data budget 100MB RichNote energy consumption

matches UTIL, this is due to the higher volume of data with

richer presentation delivered by RichNote. since In addition,

RichNote adapts presentations based on network dynamics,

which results in significantly lower queuing delay (Fig. 4(d)).
2) Presentation Adaptation of RichNote: Next, we analyze

the adaptive behavior of the RichNote method. In Fig. 5(a)

we can see that RichNote outperforms all fixed presentation

methods. Apparently, no single fixed presentation method

performs well with respect to the utility in all scenarios, which

illustrates their limitation. For example, it can be observed that

when the data budget is lower than 20MB, presentation levels

with previews shorter than 20s perform better, but when the

budget is between 20MB and 50MB, the presentation level

with a 20s preview performs the best and finally when the

budget is greater than 50MB, presentation levels with previews

longer than 30s achieve higher utility values. This can also

be supported by observing presentation levels selected by

RichNote as shown in Fig. 5(b) with a stacked bar chart.

For brevity, we do not show “metadata only” presentation

in the figure, which is simply the missing fraction in each

stack. We observe that for a data budget lower than 3MB only

10% notifications contain media preview and the rest 90% are

delivered as “metadata only”. As the budget grows, more items

are delivered at higher presentations (e.g. at 20MB, nearly 20%

items are delivered with a 40s preview). These observations

illustrate that RichNote adapts well to the data budget.

3) Network Conditions: In this experiment we show

that RichNote adapts to network conditions such as when

wifi is available in addition to cellular network. We simulate

network condition by using a Markov transition model (as

given in [6]) among three states, namely WIFI, CELL and

OFF, which indicates whether the user is on wifi, cellular or

none. We use 50% probability to remain in the current network

condition and equal probability of transiting to cell or wifi

when off. As shown in Fig. 5(c) when devices use wifi, they

receive richer presentations than cellular only option (shown

in Fig. 5(b)) because wifi allows more data to deliver.

4) Performance Across Users: In Fig. 5(d) we measure the

utlity achieved for users with different notification delivery

rates. We measure this by introducing user categories based

on the number of content items. Then we assign users with

a given number of content items in to the corresponding

categories. The utility is shown as an average across all users

in the same category along with the error bars indicating the

deviations from the average. We can observe that users with

higher number of items benefit more.

5) Lyapunov effects: The value of the Lyapunov control

framework manifests itself in ensuring continued and stable

performance despite changes in connectivity and energy bud-

get. We observe this adaptation capability through a) more de-

livered data with more leftover bandwidth (Fig. 3(b)), b) lower

queuing delays (Fig. 4(d)), c) ability to exploit new additional

networks, e.g., Wifi (Fig. 5(c)). We conducted experiments

measuring the sensitivity of RichNote to Lyapunov control

knob, V , and observe that RichNote performs uniformly better

in all these settings.
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VI. RELATED WORK

Large-scale notifications systems are popular in many do-

mains, e.g. in public safety (CityWatch, CodeRED, Ever-

bridge), societal and personal information sharing (Twit-

ter, FourSquare, Facebook), traffic and weather alerts

(www.wunderround.com, weather.gov).

Efforts in the multimedia community have explored the use

of complex transcoders [10] and multilayered encoding for

scalable storage and transmission of rich voluminous content.

Encoding formats such as H.264/SVC [11] encode media

(e.g. video) into a stream of multiple layers allowing in-

network methods to adapt layers based on wireless dynamics.

Recent work also combines multilayer coding techniques with

scheduling on hybrid networks (e.g. cellular-adhoc) to improve

dissemination [12]. Content adaptation with varying degree of

fidelity amid of resource scarcity is used in Odyssey [13].

Content prefetching techniques have focused on addressing

connectivity and device energy constraints [14], [15].

A key goal of pub/sub systems has been the instant and

efficient notification of publications to subscribers that may

be content-based or topic-based [16]. Key focuses include

scalability and efficiency through efficient subscription man-

agement, event-matching [17]–[20], and optimal overlay de-

sign [21]. Recent work addresses in-network customization

of individual publications based on user/device profiles (e.g.

spoken dialects, device footprint [22]) and overlay adaptation

with fast-changing subscriptions in mobile settings. RichNote,

in contrast, alters the semantic content of the publication itself

to create a succinct, yet informative experience for the user.

Traditional content recommendations are driven by analysis

of the content and user profile [23]–[25]. A direct application

of these techniques to RichNote may not be feasible: methods

that rebuild entity graphs to re-evaluate relationships would

be computationally prohibitive in our dynamic setting where

arrival of new content is the norm. Such schemes might also

be unsuitable for mobile deployment. While RichNote inherits

the spirit behind the systems, it also addresses the additional

complexities associated with multimodal content, mobile user

and dynamic network constraints and the consequent scaling

of recommendations. Recent efforts use crowdsourcing and

multimedia information for a richer experience [26], [27].

VII. CONCLUDING REMARKS

Customizing notifications while managing diverse updates

and hard-to-predict content arrival rates requires a careful anal-

ysis of user-content relevance and mobile device dynamics. In

this paper, we explored a structured approach to quantify the

utility of rich content and developed techniques to formulate

an appropriate rich notification delivery system. To the best

of our knowledge, RichNote is the first framework to explore

adaptation of rich media notifications in a unified manner at

multiple levels involving the user, content and infrastructure.
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