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ABSTRACT
Current buildings rely on predefined rules to control the tempera-

ture in rooms disregarding their residents’ thermal comfort. Multi-

ple approaches have been presented in the literature to tackle this

issue (e.g., by enabling occupants to express their feedback using

their mobile devices). In general setting, to reach consensus among

group members, we apply decision making methods (e.g., major-

ity, mean, trimmed mean, and median) to aggregate the diverse

expected comfort levels of the inhabitants. However, such methods

might be unfair to some participants.

In this paper, we present the first study of the issue of fairness in

participatory thermal comfort control. Inspired by the traditional

definitions in scheduling, we introduce a definition of fairness that

is suitably adapted to the particularities of our scenario. We then

present our design of an aggregation method that ensures fair-

ness. Finally, we show how our algorithm behaves compared with

traditional aggregation methods in diverse simulated scenarios.

CCS CONCEPTS
• Theory of computation → Scheduling algorithms; • Com-
puting methodologies→ Simulation tools;

KEYWORDS
Thermal comfort, Personalized control, Fairness

ACM Reference format:
Eun-Jeong Shin, Roberto Yus, Sharad Mehrotra, and Nalini Venkatasubra-

manian. 2017. Exploring Fairness in Participatory Thermal Comfort Control

in Smart Buildings. In Proceedings of ACM BuildSys conference, Delft, The
Netherlands, November 2017 (BuildSys’17), 10 pages.
https://doi.org/10.475/123_4

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

BuildSys’17, November 2017, Delft, The Netherlands
© 2017 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06. . . $15.00

https://doi.org/10.475/123_4

1 INTRODUCTION
The control of the temperature in most of our current buildings

(e.g., offices) is still based on rules that try to match the comfort

of average people. For instance, Federal Occupational Safety and

health Administration (OSHA) regulations usually recommend that

the temperature in the different rooms be in the 20-25
oC range

1

which is considered to be comfortable. The reality is that people

have diverse comfort preferences depending upon different factors

such as their gender, age, weight, and nationality [19, 34]. Such

prespecified control tends not to be comfortable for many of the

inhabitants of the building [22].

Smart buildings equipped with a range of plug-and-play IoT

devices that provide sensing/actuation capabilities are becoming

the norm; these technologies allow users to interact with spaces

they live/work in on a fine grained basis and participate in the

control and management of these spaces. Participatory engagement

with building environments in a more integrated manner enables

a new level of personalized services including customized capture

and exchange of information. Such participation can be used in the

context of thermal comfort control. In this context, Participatory

Comfort Control (PCC) systems adapt the temperature of buildings

to increase the comfort of their residents.

However, adapting the temperature to the desired comfort level

of the inhabitants of the building presents several challenges. On the

one hand, there is a need for mechanisms to allow people to express

their feedback regarding the temperature in the room they are. On

the other hand, the feedback of the users have to be implemented

in the HVAC (Heating, ventilation and air conditioning) system

of the building. Multiple approaches have been presented in the

literature to address these challenges. For instance, systems have

been proposed to obtain feedback from people automatically (e.g.,

by determining their thermal profiles using information about their

gender, age, height and weight [3] or manually (e.g., by enabling

them to vote using their smartphones) [12, 21, 23]. Also, different

mechanisms have been presented to translate the preferences of

the users into the appropriate HVAC settings [5, 6, 9].

Nevertheless, there is an intrinsic challenge in such PCC systems:

people inside a same room usually have different thermal comforts

that have to be somehow aggregated to decide the temperature for

1
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INTERPRETATIONS&p_id=24602
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the room (unfortunately, having different temperature zones in the

same room might not be always possible). Works in the literature

dealing with this problem often leverage traditional decision mak-

ing methods to aggregate the possibly diverse opinions of people.

For example, group decision making processes, such as majority

or mean, have been extensively studied to reach consensus [31].

However, these methods might not be fair with the participants.

For example, think about a group of people that meet daily in the

same room (e.g., coworkers sharing a meeting room). If a majority

of the people prefer cold temperature and a minority prefer the tem-

perature to be hot, the previously mentioned PCC systems might

determine that the temperature in the meeting room should be cold

always. In the long term, the minority will be clearly uncomfortable.

The focus of this work is the study of fairness in the aggregation

of user thermal comfort in PCC systems. In this paper, we present

the first study, up to the authors’ knowledge, on this issue. In

particular, the contributions of this paper are as follows:

• We introduce a definition of fairness, inspired by the tradi-

tional definitions in scheduling, adapted to the particularities

of our scenario. Under this definition we prove that systems

that use traditional group decision making processes, such

as majority, mean, trimmed mean, and median, to aggregate

people thermal comfort are not fair.

• We present our design of an aggregation algorithm that

ensures fairness with the participants. We prove mathemat-

ically that the proposed algorithm is fair regardless of the

number of people, their thermal comfort preferences, and

iterations.

• We present a tool to simulate scenarios to evaluate different

aggregation algorithms. The tool enables us to define the

thermal profile of the inhabitants of a building, the frequency

of the feedback obtained from them, and the desired aggre-

gation algorithm, and executes a simulation that computes

its fairness and comfort.

• We show experimental results of our approach and the tradi-

tional aggregation group decision making methods used in

the literature (i.e., majority, mean, trimmed mean, and me-

dian) using the simulation tool with two scenarios: a weekly

group meeting and a building with hundreds of participants

and 64 zones. For the latter, we drive the simulation by the

real occupancy data captured in a building.

The experimental results show the fairness of our algorithm in

contrast to the rest. They also show that there exists a trade off

between fairness and comfort. In order to guarantee fairness in any

possible situation, the overall discomfort of the participants with

our algorithm is higher, or similar in some situations, to the dis-

comfort that results from other techniques that target minimizing

discomfort without considering fairness.

The rest of the paper is structured as follows. In Section 2, we

present the related work. In Section 3, we introduce a motivating

scenario of a real building with different rooms and people. In

Section 4, we present our modeling of fairness and comfort in

occupant-participatory thermal comfort approaches. In Section 5,

we show our fair algorithm for the aggregation of user thermal

preferences. Finally, the experimental evaluation, conclusions and

future work are presented in Section 6 and Section 7, respectively.

2 RELATEDWORK
There have been multiple contributions in the literature towards

participatory comfort control in buildings. However, up to the au-

thors’ knowledge, we are presenting the first approach that takes

into account fairness in this context. In the following, we review

works in the area of participatory thermal comfort control. In par-

ticular, we describe approaches to obtain user thermal comfort

preferences and to implement such preferences into the HVAC sys-

tem. Also, we review works considering fairness in other aspects

of computer science.

2.1 Works on Participatory Comfort Control
Thermal comfort is defined by American Society of Heating, Re-

frigerating and Air-conditioning Engineers (ASHRAE) Standard

552013 as the condition of mind that expresses satisfaction with

the thermal environment. The Predicted Mean Vote (PMV) scale is
a common mechanism to measure how comfortable a person is

with room temperature [8]. The PMV scale consist of seven points

of thermal sensation varying from cold (-3) to hot (3), with other

points on the scale corresponding to cool, slightly cool, neutral,
slightly warm and warm. Predicted Percentage of Dissatisfied (PPD)

predicts the percentage of occupants that will be dissatisfied with

thermal conditions. PPD is a function of PMV, given that as PMV

moves further from neutral (0), PPD increases.

There are two main issues to be addressed in order to provide

participatory thermal comfort: 1) Capture and aggregate user ther-

mal preferences, and 2) Implement appropriate thermal comfort

into the HVAC system. Several approaches for PCC systems that

take into account both issues have been presented in the litera-

ture [2, 16, 22, 32]. Industry is also paying attention to the devel-

opment of PCC systems. For instance, Comfy
2
and Honeywell’s

Vector
3
systems collect user thermal feedback which is communi-

cated to the building administrator. However, all these systems use

traditional decision making methods (i.e., majority, mean, trimmed

mean, and median) to aggregate user thermal preferences which, as

we will demonstrate in Section 4.2, are not fair to the participants.

Some works have focused on obtaining the user thermal comfort

and could serve as input for our aggregation algorithm. In [23],

the authors developed a Temperature Comfort Correlation (TCC)

model that builds a profile for each occupant based on three param-

eters: 1) personal information such as age, gender, height, weight,

etc, 2) indoor and outdoor temperatures, 3) trainable parameters

such as users votes. Thermal comfort is a function of heat gain

and heat loss, which are primarily settled by metabolic rates and

parameters are plugged into this function. In [29], the authors intro-

duced a framework for building occupants serving as participatory

sensors wherein occupants provide their feedback of thermal com-

fort and dynamic temperature control is applied [2, 6, 17, 30, 32]

based on the feedback.With increasing levels of instrumentation

in buildings, e.g., audiovisual sensing, methods to extract thermal

comfort of occupants using visual signals and features along with

specialized image processing have been studied [18].

2
https://www.comfyapp.com/the-app/

3
https://buildingsolutions.honeywell.com/en-US/solutions/Vector/Pages/default.

aspx
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The aggregated thermal comfort of the different users in a zone

computed by our algorithm can be translated into HVAC control.

Different strategies have been proposed in the literature for such

a task. In [6], authors proposed a real-time and learned strategy

for temperature control. [5] proposed an HVAC control strategy

based on occupancy prediction and real time occupancy moni-

toring via a sensor network of cameras. In [9], signals measured

directly on the body were used to infer user comfort and control

the air-conditioning system to direct air flow where it was needed.

Techniques to estimate occupancy in buildings via sensors in con-

ventional building management systems have been shown to be

effective for zone-based HVAC scheduling and managing energy

usage effectively while ensuring thermal comfort [1].

2.2 Fairness in Scheduling
The notion of fairness in scheduling has been addressed along

multiple dimensions and has addressed a range of trade-offs - in-

cluding fair share scheduling in OS, delay scheduling for clustered

systems [33, 35], wireless networks [4, 13], shared memory archi-

tectures [14, 15, 25], and cloud computing [11, 27]. We focus on the

treatment of fairness in scheduling algorithms, in particular in the

context of a carpooling problem, which is related to our scenario.

The carpooling problem supposes that N people have decided

to form a carpool to commute to office and a decision has to be

made regarding who has to drive on a given day. Being selected as

a driver is a burden and thus, the driver role has to be shared by

the carpool members. In this context, to be fair, each person should

be driving approximately 1/k of the time that she rides with k − 1

others. For example, if the carpool consists of A, B, and C , then A
might be expected to drive 1/2 of the times that she rides with only

B or only C and 1/3 of the times that she rides with both B and C .
Fagin and Williams [7] generalized this definition. Assume that

at time t , A has participated in the carpool on b2 days when exactly

2 persons participated in the carpool, on b3 when exactly 3 persons

participated, and so on. They defined A’s ideal number of drives as
the number (1/2)b2 + (1/3)b3 + ... + (1/N )bN . Then, their formal

definition of fairness considers a carpool scheduling algorithm as

fair if “for each N (where N is the number of member of the carpool),
there is a number P such that whatever the schedule of arrivals, it
is the case that at each time t and for each carpool member A, the
number of times that A has actually driven differs from his ideal
number of drives in absolute value by no more than P”.

In Fagin and Williams scheduling algorithm, U is considered

to be a value that represents the total cost of a trip. U is a least

common multiple of 1, 2, ...,m wherem is the largest number of

people who ever ride together at a time in the carpool. The ledger

maintained by the algorithm contain one row for the date and one

column for each participant. It starts with initial record with all 0’s.

If there are k participants on the given day, andA is the driver, then

A’s entry is increased by U (k − 1)/k units. For the rest of the users

who do not drive, entry is decreased by U /k units. To decide the

next driver, the algorithm chooses the person with the lowest entry

in the table. [7] shows the above algorithm maintains fairness with

a bounded deviation from the ideal number of drives.

3 MOTIVATING SCENARIO
Consider a future commercial office building where the HVAC

(Heating, ventilation and air conditioning) system has been instru-

mented to capture resident feedback on thermal comfort; further-

more, let us assume that the system is capable of incorporating

this input when adjusting temperatures for different rooms in the

building. Note that any existing system can be used as a starting

point for this instrumentation [6, 12, 20, 21, 26, 30]. Let us also

suppose that the distribution of people at a given time in the rooms

of the our scenario is as shown in Figure 1(a) and that their thermal

comfort at a given time is given in Table 1(b).

(a)

Person Room Comfort

Alison 2011 +1

Eleanor 2059 -3

Erin 2059 -3

James 2011 +1

Jason 2059 -3

Karl 2059 +3

Katie 2059 -3

Katherine 2059 -3

Lisa 2011 +1

(b)

Figure 1: Distribution of the building residents in our sam-
ple scenario (a) and their thermal comfort (b).

In the case of rooms occupied by a single person, the individ-

ual’s preferred temperature setting can be applied. When multiple

residents of a space have identical thermal preferences (e.g., room

2011), the selection of a comfortable setting for all is also simple.

When several residents in a room have varying thermal preferences

(e.g., room 2059 where 5 users are cold (-3) and 1 of them feels

hot (3)), one can apply any commonly used aggregation method to

represent a group decision, such as: 1) majority (which selects the

comfort supported by more than half of the participants), 2) mean
(which selects the average value among votes), 3) trimmed mean
(which selects the average value after trimming a percentage of

the largest and smallest values), or 4) median (which selects the

value, in an ordered set of values, below and above which there are

an equal number of values). As an example, if we were to use the

system presented in [28], the mean method would be applied to

situations with several participant thermal comforts in the same

room. A setting of “cold (-3)” (the mean of the comfort values) will

result in discomfort for the single person that feels hot (3) at all

times – such a smart building is unfair to some of its residents.

4 MODELING FAIRNESS AND COMFORT
In this section, we first explain the modeling of the participatory

comfort control scenario. Then, we present a definition of fairness

for such scenario that is inspired by the definition of fairness in the

carpooling problem described earlier.

4.1 Modeling Thermal Comfort
Typically, PCC systems are slot-based control systems where de-

cisions are made for a fixed interval of time, which we will refer

3
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in the following as a “round”. We consider that at the beginning

of each round, thermal comfort collection happens. We adopt the

PMV scale (see Section 2.1) to model participant comfort. Thus,

thermal comfort of a participant Pi at round r is a value from the

PMV scale and can be defined as TCr [Pi ] = [−3, 3] (see Table 1(b)
for an example).

Let P[z] = {P1, ..., Pn } be the set of participants in a specific

zone z, and let TCr [P[z]] denote the aggregated comfort of zone

z set by the aggregate thermal control algorithm in round r . Note
that TCr [P[z]] = [−3, 3] (i.e., it is also a value from the PMV scale).

For example, considering the set of participants in room 2059 in our

running example (see Figure 1(a)) and their thermal comfort (see Ta-

ble 1(b)), if traditional aggregation methods such as majority, mean,

trimmed mean, or median were used the value of TCr [P[2059]]
would be -3,-2,-2, and -3, respectively.

Moreover, we can measure the disagreement between a par-

ticipant’s thermal comfort TCr [Pi ] and the aggregated thermal

comfort of the participants in the zone (viz., TCr [P[z]]) as the dif-
ference in absolute value of these two termsTCDr [Pi ] = |TCr [Pi ]−
TCr [P[z]]|. In our running example, the disagreement per partic-

ipant for the different approaches to aggregate thermal comfort

discussed earlier is shown in Table 1. Ameasure of the total disagree-

ment of the participants in the zone can be obtained by summing

up their respective disagreements:

TCDr [P[z]] =
r∑
i=0

TCDr [Pi ] (1)

Table 1: Disagreement between the participant thermal
comfort and the zone thermal comfort for traditional ap-
proaches in our running example.

Participant Majority Mean Trimmed Mean Median

Eleanor 0 1 0 0

Erin 0 1 0 0

Jason 0 1 0 0

Karl 6 5 6 6

Katie 0 1 0 0

Katherine 0 1 0 0

We can aggregate the disagreement of a user over time to obtain

a value that represents how uncomfortable the user has been with

the decisions made until round r as follows:

ATCDr [Pi ] =
r∑

k=0

TCDk [Pi ] (2)

Finally, we generalize the scenario to buildings withm thermal

zones where the temperature can be controlled. We define the set

of zones as Z = {Z1, ...,Zm }. Also, we define the set of participants
of the building at a round r as P = {P1, ..., Pn }. P includes all the

participants that have been in the building until round r .

4.2 Modeling Fairness
The definition of fairness in our context is based on the definition

of fairness in the carpool scenario explained in Section 2.2. In the

carpool scenario every time that users are involved in driving, they

split the “cost” of the ride. A driver should ideally have driven at

any point of time her share in the rides she took part in.

In our scenario, the equivalent of a ride is a round, which is the

moment when the thermal comfort of the zone(s) is calculated using

the thermal comfort of the N inhabitants within. During round r ,
each user Pi “loses” the value represented by her thermal comfort

disagreement, which we refer to as real loss Lr [Pi ] = TCDr [Pi ]. We

define the “total loss” (or cost) of the round as Lr =
∑N
i=0 Lr [Pi ],

which is equal to the thermal comfort disagreement of the zone

TCDr [P[z]] in Equation 1. Then, we split the loss Lr among the N
users to define their ideal loss. We define the extra loss of a user Pi
in round r , ELr [Pi ] = Lr [Pi ] − Lr /N as the difference between her

ideal loss and her real loss. Finally, we define the accumulated extra
loss of a user Pi at round r as:

AELr [Pi ] =
r∑

k=0

ELk [Pi ] (3)

We define that an algorithm to select the thermal comfort of

a zone is “fair” if for the N users in the zone and at the round r ,
their accumulated extra loss in absolute value is bounded by some

constantM which is independent of r .
Our definition (and subsequently algorithm) of fairness is based

on the ones of the carpool scenario but is different. The main dif-

ference between the carpooling and the thermal comfort scenarios

is that in the latter only one person is affected (the chosen driver)

at the time of making a decision, whereas the rest of the people

are benefited always and in the same way. In the thermal comfort

scenario, users might have the same or similar preference, which

would mean that selecting the temperature preferred by one user

might also satisfy others. Therefore, straightforward algorithms

(like round robin selection of the driver) or the greedy algorithm

presented by Fagin and Williams [7] would not satisfy fairness in

our context.

Under our definition of fairness it is possible to show that the

traditional methods to aggregate participant thermal comfort are

not fair.

Majority selection is not fair.Assume the scenario for room 2059 in

Table 1(b) where there are six participants P1, P2, P3, P4, P5, and P6
whose thermal comfort are−3,−3,−3,−3,−3, and 3, respectively. In
this situation, selecting the value supported by the majority would

make TC0[P[2059]] = −3, the real loss per user will be 0, 0, 0, 0, 0,
and 6 and the ideal loss per user will be 1. Thus, the extra loss will

be −1, −1, −1, −1, −1, and 5. If this exact situation keeps happening

for r rounds, the extra loss for participants P1, P2, P3, P4, and P5
will be −1r and for participant P6 will be 5r , which are not bounded

by any fixed numberM (as r gets large).
Mean selection is not fair. Let’s consider the same scenario de-

scribed before. In that case, themean valuewouldmakeTC0[P[2059]] =
−2, the real loss will be 1, 1, 1, 1, 1, and 5, the ideal loss per user

will be 5/3, the extra loss will be −2/3, −2/3, −2/3, −2/3, −2/3, and
10/3. Therefore, for r iterations the extra loss is again not bounded.

Trimmedmean selection is not fair.We can find an scenario similar

to the previous for which this method is not fair regardless of the

percentage removed from the smallest and largest user thermal

comforts. For instance, using 20% (the value used in our experiments

in Section 6) and the same scenario used for majority, the value

4
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selected will make TC0[P[2059]] = −3. Therefore, the extra loss

is the same than in the majority example and not bounded for r
rounds.

Median selection is not fair. As in the case of the trimmed mean,

median will makeTC0[P[2059]] = −3 and thus the extra loss of the

participants is not bounded for r rounds.

5 A FAIR AGGREGATION ALGORITHM
In this section, we present our algorithm to calculate the thermal

comfort of a zone using the thermal comfort of the participants

within. Then, we prove that our algorithm is fair according to the

definition of fairness explained in the previous section.

As explained earlier, both the thermal comfort of the partici-

pants and the zones take values in the range [−3, 3]. The goal of
our algorithm is to find a group thermal comfort value within the

range which will minimize the accumulated loss of the participants

defined in Equation 3. To do that, our algorithm checks which par-

ticipant had the highest accumulated loss in the previous round

and decreases it by selecting a group thermal comfort value that

will make his extra loss negative. So, if AELr [Pi ] > AELr [Pj ] ∀ j
then AELr+1[Pi ] ≤ AELr+1[Pi ]. Multiple group comfort values

could be chosen to minimize the participants accumulated extra

loss. Our algorithm tries to chose a value that would not increase

the accumulated extra loss of other users with a different ther-

mal comfort much. This is important as it can help in maintain-

ing an appropriate bound on the accumulated extra loss in any

situation. For that, the algorithm tries to find a group thermal

comfort value that satisfies the two following conditions, when-

ever possible: 1)AELr+1[Pi ] ≤ AELr [Pj ] ∀ j; and 2)AELr+1[Pi ] >
AELr+1[Pj ] ∀ j. As we will show later, this can be achieved in

situations where TCr+1[Pi ] ≤ TCr+1[Pj ] ∀ j.
Also, there might be situations where several participants share

the same value for the accumulated extra loss and this value is

the highest in a given round. For example, this happens the first

iteration where AEL0[Pi ] = 0 ∀ i . In this scenario, and from the

point of view of fairness, any of such participants can be selected to

decrease his accumulated extra loss. Our algorithm favors consis-

tently the participant with the coldest thermal comfort preference

as a way of breaking the tie.

In the following, we prove that our algorithm is fair for any

scenario, number of participants and rounds, under the fairness

definition given in Section 4.2.

Without loss of generality and in order to simplify the explana-

tion of the proof, we will consider a simplified PMV scale [−1, 1] for
the participant thermal comfort. Under such scale, Table 2 shows

the extra loss of the participants under the definition in Section 4.2

depending on their thermal comfort (i.e., −1, 0, 1), the number of

participants supporting each thermal comfort (i.e., n−1, n0, n1 with
n−1 + n0 + n1 = N ), and the aggregated thermal comfort computed

(i.e., TCr [P[z]] or t in the table).

First, we prove three propositions that we will use to prove the

fairness of our algorithm.

Proposition 5.1. Lr [Pi ] is bounded by [0, 2].

Table 2: Extra loss of a participant depending on his thermal
comfort, number of participants supporting each thermal
comfort (i.e.,n−1,n0,n1), and the aggregated thermal comfort
computed (t ).

TC = −1 TC = 0 TC = 1

t < 0

(2t + 1)n0 + 2tn1
N

−n1 − (2t + 1)n−1
N

n0 − 2tn−1
N

t > 0

n0 + 2tn1
N

−n−1 + (2t − 1)n1
N

−2tn−1 + (1 − 2t )n0
N

Proof. Lr [Pi ] represents the loss for participant Pi when the

thermal comfort of the zone selected is TCr [P[z]] that is, the dif-
ference between the participant’s thermal comfort TCr [Pi ] and
TCr [P[z]]. As both take values ranging between [−1, 1], Lr [Pi ] is
bounded by [0, 2]. □

Proposition 5.2. At any round r ,
∑N
i=1 ELr [Pi] = 0

Proof. Using the extra loss model in Table 2 it is easy to see that

multiplying each cell by its corresponding nx (where x is −1, 0, 1),
the sum of both rows is equal to zero. □

Proposition 5.3. If Pi and Pj are such thatAELr [Pi ] = AELr [Pj ]
and AELr [Pi ] > AELr [Pk ] ∀ k and TCr+1[Pi ] < TCr+1[Pj ] then
∃ TCr+1[P[z]] such that AELr+1[Pi ] < AELr [Pi ]

Proof. As AELr+1[Pi ] = AELr [Pi ] + ELr+1[Pi ], in order for

Proposition 5.3 to hold we should prove that we can find a value

such that ELr+1[Pi ] < 0. According to the extra loss model in Ta-

ble 2, if TCr+1[Pi ] = −1 this value will be such that TCr+1[P[z]] <
−n0/2(n0 + n1) and if TCr+1[Pi ] = 0 this value will be such that

TCr+1[P[z]] < −(n1 = n−1)/2n−1. □

Proposition 5.4. If AELr [Pi ] > AELr [Pj ] ∀ j and TCr+1[Pi ] ≤
TCr+1[Pj ] ∀ j , then∃ TCr+1[P[z]] such thatAELr+1[Pi ] < AELr [Pi ]
and AELr+1[Pi ] > AELr+1[Pj ] ∀ j.

Proof. There exists two scenarios for r + 1: TCr+1[Pi ] = −1
or TCr+1[Pi ] = 0 and TCr+1[Pj ] ≥ 0 ∀ j. Then, for 5.4 to hold

AELr [Pi ] + ELr+1[Pi ] > AELr [Pj ] + ELr+1[Pj ]. In the first sce-

nario and using the extra loss model of Table 2, TCr+1[P[z]] <
−(AELr [Pi ] −AELr [P1])/2 (with AELr [P1] representing the high-
est accumulated extra loss of a participant Pj whoseTCr+1[Pj ] = 1.

In the second scenario,TCr+1[P[z]] < −(AELr [Pi ]−AELr [P1]). □

Now we prove that our algorithm is fair.

Theorem 5.5. AELr [Pi ] < 2N ∀ i

Proof. We prove it by contradiction. We assume that at round r
it was the first time that a participant Pi crossed the bound. There-

fore,

AELr [Pi ] > 2N (4)

Because it was the first time, it means that in this round his extra

loss made him increase his accumulated extra loss. By 5.1, we know

that at max his extra loss could had been 2 so,

2N > AELr−1[Pi ] > 2(N − 1) (5)

5
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Also, our algorithm guarantees by proposition 5.3 and 5.4 that

such increase could only happen in two situations:

(1) ∃ Pj such that AELr−1[Pj ] > AELr−1[Pi ] and TCr [Pj ] >
TCr [Pi ]

(2) AELr−1[Pi ] = AELr−1[Pj ] and TCr [Pi ] > TCr [Pj ]
We can focus on the first situation, where Pj had a highest AEL

than Pi and a hotter thermal comfort preference. In such situation,

Pj would had decreased his AEL while increasing the AEL of Pi for
a number of rounds. We can consider r ′ as the first round where

AELr ′[Pj ] started decreasing and

2N > AELr ′[Pj ] > 2(N − 1)
2N > AELr ′[Pi ] > 2(N − 2) (6)

Let’s consider now the second situation, where Pj and Pi had the
same accumulated extra loss at round r − 1 and Pi had a hotter ther-
mal comfort preference than Pj . Such tie should had been reached

following the same idea than earlier, but this time being Pi the one
that would had decreased his accumulated extra loss whereas Pj
would had increased his. Therefore, 6 would interchange the Pi and
Pj values.

In both situations and as explained before when discussing the

increase on the accumulated extra loss of Pi , this could only happen
if there was another participant Pk with an equal or higher accu-

mulated extra loss at round r ′ − 1 and a hotter thermal preference.

In such scenario, we can also consider r ′′ as the first round when

AELr ′′[Pk ] started decreasing and

2N > AELr ′′[Pk ] > 2(N − 1)
2N > AELr ′′[Pj ] > 2(N − 2)
2N > AELr ′′[Pi ] > 2(N − 3)

(7)

We can keep using the same logic for all the possible participants.

If we apply it recursively we will reach a time r
′n

in which the last

participant Pn would appear to make

2N > AELr ′n [Pn ] > 2(N − 1)
...

2N > AELr ′n [Pj ] > 2(N − (N − 1))
2N > AELr ′n [Pi ] > 2(N − N )

(8)

Which means that at that point all of them will have an accumu-

lated extra loss greater than zero which cannot happen as it would

contradict the condition on the first round where every participant

satisfies AEL0[Px ] = 0 ∀ x .
□

6 EXPERIMENTAL EVALUATION
In this section, we first present the simulator tool developed to

perform the experiments. Then, we explain the experimental set up

with the scenarios. Finally, we show the results of the experiments

to compare traditional aggregating methods and our approach in

terms of fairness and comfort.

6.1 Simulator Tool
We have developed a simulator to test various building occupants

scenarios. The simulator takes input parameters such as a set of

zones, a set of participants with their corresponding thermal pro-

files (e.g. hot/neutral/cold preferred) and movement between rooms,

a set of initial temperatures per room, simulation period, etc. Also, it

enables the user to select the algorithms to use to compute thermal

comfort of the rooms (it supports the five algorithms considered

along the paper –majority, mean, trimmed mean, median, and our

algorithm–). Also, we included a variant of our algorithm which

bases the selection of the participant whose thermal comfort should

be selected at a given round on the Lmax distance of the accumu-

lated extra loses of the participants. We included this algorithm

because it presents an interesting trade off fairness vs. comfort.

Nevertheless, such algorithm is not fair according to our definition

as we have found a pathological situation where the accumulated

extra loss is unbounded
4
.

Once the settings have been defined, the tool starts the simula-

tion of the movement of people through the different rooms and

periodically uses the defined algorithm to compute the thermal

comfort of the zone/room based on the thermal comfort of the par-

ticipants in it. Finally, the tool simulates a change of temperature

in such rooms according to the computed thermal comfort.

The simulator is composed of four main modules:

• Participant manager, which generates participants and their

thermal comfort based on the profiles and ratio given as input

(e.g., if the input ratio is 50:30:20, 50% of cold, 30% of neutral,

and 20% of hot preferred participants will be generated). Also,

it manages the movement of the participants according to

the input trajectories.

• Zone thermal comfort manager, which computes the ther-

mal comfort for each zone using the thermal comfort of the

participants in the room and the selected algorithms.

• Fairness and thermal comfort calculator, which computes

the accumulated loss and discomfort of each participant at

each round.

• Temperature manager, which simulates a change of temper-

ature according to the computed thermal comfort for each

zone. HVAC control is out of the scope of the paper but

we implemented a simple mechanism in the simulator that

changes the temperature by 1
oC every 30, 45, and 60 min-

utes if the computed thermal comfort is -3/3, -2/2, and -1/1,

respectively.

After each simulation, the tool outputs CSV files with the results

for each algorithm in terms of accumulated loss and discomfort per

user and per round.

6.2 Experimental Setup
We used the simulator to empirically test the behavior of our ap-

proach compared with traditional aggregating methods. We tested

two scenarios:

(1) A simulation of a weekly group meeting with regular par-

ticipants. We assume that 10 people meet in the same room

every week at 8am. Meeting lasts for about 30 minutes and

the comfort of the room is computed at the beginning of

the meeting. The scenario tries to simulate short meetings,

which are common in buildings like the one described in

4
Due to the space restrictions we included more information about such situation and

the complete algorithm at tippersweb.ics.uci.edu/fairness.
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our experiments. Due to the time needed to implement the

temperature changes, we compute the comfort at the begin-

ning in order to change the temperature for the duration of

the whole meeting. Also, we introduce some randomness for

each meeting guaranteeing that at least 4 of the participants

vote in each round.

(2) A complete building with hundreds of participants. The TIP-

PERS [24] dataset consists of a trace of distinct devices con-

nected to 64 Wi-Fi access points located in the 6 story Bren

Hall building at UC Irvine collected over a 20 month pe-

riod from January 2016 to September 2017. We used a sub-

set of the TIPPERS dataset for the period of May 29th to

June 2nd 2017 from 8am to 8pm. To filter out passerby de-

vices (some of theWiFi AP ranges cover a fewmeters outside

of the building), we discarded MAC addresses that had less

than 50 events registered in the log for the period. After

the filter, we obtained 18,837 events and 1065 unique MAC

addresses. WiFi AP ranges cover several rooms in most of

the cases so, for simplicity, we considered each WiFi AP as a

zone. Therefore, all the MAC addresses connected to a WiFi

AP at a given time represent participants in the same zone.

We defined three types of thermal profiles for the two scenarios:

hot preferred, neutral, and cold preferred (see Figure 2). These

profiles are based on the temperature in the zone. For example,

as Figure 2 shows, for a room temperature of 23
oC the thermal

comfort of a hot preferred, neutral, and cold preferred users will

be -1 (slightly cold in the PMV scale), 0 (neutral), and 2 (warm),

respectively. For each scenario, we performed two tests with two

different thermal profile settings. One setting represents a scenario

with a clear majority of thermal profiles, where 90% of people prefer

cold temperature and 10% of people prefer hot temperature (in the

following we refer to it as 90/10). The second setting represents

a balanced scenario where 50% of people prefer cold temperature

and 50% of people prefer hot temperature (50/50).

Figure 2: Thermal comfort for different thermal profiles in
our experiments.

6.3 Results for the Meeting Simulation
In the following, we show the results of fairness and comfort

achieved by each method for the first scenario.

6.3.1 Fairness.
Figure 3 shows a comparison of the fairness of the different algo-

rithms in terms of accumulated loss per round. For each algorithm

we show two graphs (for the 90/10 and 50/50 settings) and a mea-

sure of the average accumulated loss per participant (represented

by the dots in the graph) and the standard deviation from it. Notice

that for each graph, the value at the last round represents the final

accumulated loss at the end of the simulation.

The first implication of the results is that the accumulated loss

for the majority (Figure 3(a)), mean (Figure 3(b)), trimmed mean

(Figure 3(c)), andmedian (Figure 3(d)) are not bounded. The different

graphs show that the accumulated loss keeps increasing for each

round for both settings. It is interesting to notice that the behavior

is similar for both settings even when one of them represents a clear

majority vs minority situation. This is caused by the randomness

introduced in terms of the participants at the meeting at each round.

This means that even in the 50/50 setting, there might be rounds

with a clearmajority. If we focus on the results for our algorithm (see

Figure 3(e)), we can see that, in contrast with the other algorithms,

it keeps the accumulated loss bounded as expected.

Additionally, Figure 3(f) shows the variant of our algorithm based

on Lmax distance which also keeps the loss bounded in this test

(although it is not bounded in general as commented before).

6.3.2 Thermal Comfort.
Figure 4 shows the comparison of the algorithms in terms of comfort

(measured as aggregated thermal discomfort of the users per round).

Figure 4(a) shows the comparison in terms of average discomfort

per user for the setting 50/50 and we can see that as expected, the

majority algorithm achieves the best comfort as it selects the most

comfortable temperature for the majority of the participants. Our

algorithm, increases the average discomfort in comparison with

the traditional approaches. This happens because by being fair,

sometimes it selects the thermal comfort of the minority and the

majority of users thus, feel uncomfortable. In terms of the maximum

value of discomfort (see Figure 4(b)), our algorithms achieve the

worst comparing to the majority and median algorithms. For the

90/10 setting, our algorithm increases the discomfort greatly in

comparison with others because every time the comfort of the

minority gets selected, most of the participants feel uncomfortable.

Interestingly, the variant of our algorithm using Lmax behaves

similarly to the rest of algorithms in terms of comfort for the 50/50

scenario.

6.4 Results for the Building Simulation
In the following, we show the results for the second scenario.

6.4.1 Fairness.
Due to the complexity of the scenario and the high number of

participants in it (1065), we show test results achieved in terms of

accumulated loss at the final round of the simulation. Table 3 shows

accumulated loss for each method in both 90/10 and 50/50 settings.

As in previous scenario, our algorithm achieves better results in

terms of accumulated loss than most of the traditional approaches.

Notice that for some specific cases, our algorithm obtains a slightly

higher value than the mean/trimmed mean approach. We analyzed

the data and discovered that the occupancy data extracted from the

real building shows a situation where only in very specific moments

the zones contain a significant amount of participants (e.g., more

than 4) and in most of the rounds, most of the participants are in

one or two zones (remember that the zones correspond to WiFi

APs). This corresponds to areas of high concentration of people in

the building and to specific events.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Comparison of fairness for the first scenario in terms of accumulated loss for traditionalmethods: majority (a), mean
(b), trimmed mean (c), and median (d), our approach (e), and a variant (f).

Table 3: Accumulated loss at the last round for each algorithm in the building scenario.

Scenario Loss Majority Mean Median Trim. Mean Our Algo Lmax Algo

90/10 Max 7.5 7.5 7.5 2.5 3 0.5

90/10 Min -3 -1.5 -3 -1 -5.33 -0.83

50/50 Max 8.5 2.83 6 2.83 3 0.83

50/50 Min -6.5 -2.16 6 -2.16 -5.33 -0.66

6.4.2 Thermal Comfort.
In terms of comfort, we again looked at the accumulated discom-

fort at the final round of the simulation. Comparing the average

discomfort per user, the results show that for the 50/50 setting,

our algorithm achieves close discomfort compared to the major-

ity algorithm which obtains the lowest discomfort (0.25 vs 0.2). In

case of the 90/10 setting, the difference is 0.05, which is similar

to the previous scenario (0.11 vs 0.06). Notice that as we pointed

8
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(a) (b)

(c) (d)

Figure 4: Comparison of comfort for the first scenario in terms of aggregated thermal comfort.

out in the previous scenario, the variants of our algorithm using

Lmax keep the discomfort similar to the rest of algorithms. For

the 50/50 setting, Lmax obtain an average discomfort of 0.48 and

for the 90/10 setting, they obtain an average discomfort 0.8.

In summary, the experiments of the two scenarios and the dif-

ferent settings show that, as expected, our algorithm obtains the

lowest accumulated loss per user while increasing the accumulated

discomfort. An interesting conclusion of the experiments is that

the Lmax variant of our algorithm (which is not fair under our

definition) maintains a low accumulated loss while maintaining

the discomfort in similar levels than the traditional algorithms.

Therefore, it seems that this variant could present a good trade off

between fairness and comfort. However, it is not straightforward to

design an algorithm that can be proven fair for any scenario while

including the goal of maximizing the comfort of the participants.

7 CONCLUSIONS AND FUTUREWORK
Current buildings and their residents are equipped with the tech-

nology to make it possible to control the temperature in their rooms

to maximize resident’s comfort. Different proposals have been pre-

sented in the literature to address this challenge. In situations where

more than one resident is in the room, there is a need for mecha-

nisms to determine the temperature for the room according to their

possibly diverse thermal comforts (e.g., some users prefer colder or

hotter temperatures). The systems presented in the literature use

traditional decision making methods (i.e., majority, mean, trimmed

mean, median, etc.) to make such decision. We argue that these

methods are not fair with the residents.

We have presented the first analysis, up to the authors’ knowl-

edge, of the fairness of the different methods used to aggregate

residents’ thermal comforts. Specifically, we defined fairness in

the context of thermal comfort control and proved that traditional

group decision making processes, such as majority, mean, trimmed

mean, and median, to aggregate people thermal comfort are not fair.

We also explained an aggregation algorithm that ensures fairness

with the participants. Our algorithm takes the thermal comfort of

the participants as input but is agnostic about how this information

is determined; it could be obtained from personal information (such

as age, gender, height, and weight) [23], from stochastic thermal

profiles related to room conditions [10], or even asked directly to

the participants [29].

We presented experimental results performed using a simulator

that we implemented to recreate scenarios driven by real occupancy

data. The experimental results show how the accumulated loss for

participants in our simulated scenarios increased with traditional

decision making algorithms whereas it remains bounded for our

algorithm. Also, they show, even when there exists a trade off

between fairness and comfort, different variants of our algorithm

can achieve a similar comfort than the traditional approaches.

As future work, we plan to continue our study about the trade off

between fairness and comfort using other variants of our algorithm.

The challenge is to prove that these variants, which achieved good

9
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results in terms of fairness and comfort in our experiments, are fair

for any scenario. Another aspect which was out of the scope of the

paper but in our plan is to study whether these algorithms can be

gamed by participants. Achieving energy efficiency while obtaining

thermal comfort has been addressed in many works. We also plan

to study how to combine energy efficiency into our fairness vs.

comfort trade off. Finally, it would be interesting to study how to

generalize the concept of fairness for other participatory services

in the smart buildings (e.g., time professors spent with students in

tutoring hours).
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