
A BAD Demonstration: Towards Big Active Data

Steven Jacobs
Univ. of California, Riverside

sjaco002@ucr.edu

Md Yusuf Sarwar Uddin
University of California, Irvine

msarwaru@uci.edu

Michael Carey
University of California, Irvine

mjcarey@ics.uci.edu
Vagelis Hristidis

Univ. of California, Riverside
vagelis@cs.ucr.edu

Vassilis J. Tsotras
Univ. of California, Riverside

tsotras@cs.ucr.edu

N. Venkatasubramanian
University of California, Irvine

nalini@ics.uci.edu

ABSTRACT
Nearly all of today’s Big Data systems are passive in nature.
We demonstrate our Big Active Data (“BAD”) system, a
scalable system that continuously and reliably captures Big
Data and facilitates the timely and automatic delivery of
new information to a large population of interested users as
well as supporting analyses of historical information. We
built our BAD project by extending an existing scalable,
open-source BDMS (AsterixDB [1]) in this active direction.
In this demonstration, we allow our audience to participate
in an emergency notification application built on top of our
BAD platform, and highlight its capabilities.

1. INTRODUCTION
While some active software platforms, such as publish/

subscribe systems [12] and streaming query systems [15] ex-
ist today, each fails to satisfy one or more key requirements
for Big Active Data management due to limits in their data
and query facilities. These key requirements are:

1. Incoming data items might not be important in isola-
tion, but rather in their relationships to other data items
as a whole. Subscriptions thus need to consider data in
context, and not just newly arriving items’ local content.

2. Information important to users may be absent in in-
coming items, but may exist elsewhere in the data as a
whole. Subscription results should be enrichable using
other relevant, related data to provide users with action-
able notifications.

3. In addition to on-the-fly processing, later queries and
analyses over the collected data may yield important in-
sights. Thus, retrospective Big Data analytics must
also be supported.

The rest of this paper is organized as follows: Section 2
discusses related work while Section 3 overviews the BAD
system. Section 4 details the user experience for the audi-
ence of our demo, and Section 6 highlights the Impact and
Significance of the demo.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

2. RELATED WORK
Our model for Big Active Data builds on knowledge from

several areas, including modern Big Data platforms, early
active database systems, and more recent active platform
work on both Pub/Sub systems and Streaming Query sys-
tems. Figure 1 summarizes how our BAD vision fits into the
overall active systems platform space.

Figure 1: BAD in the context of other systems.

2.1 Big Data
First-generation Big Data projects resulted in MapReduce-

based frameworks, many based on Hadoop for long-running
data analytics; key-value storage management systems [11]
for simple but high-performance record management; and
various specialized systems (e.g. scalable graph analysis or
data stream analytics [3, 6]). With the exception of data
streams, Big Data remains “passive” in nature. Recent
projects such as Apache Flink [2], Spark [18], and Aster-
ixDB [1] have moved from MapReduce to algebraic runtime
systems but they are essentially all still passive systems.

2.2 Active Data
The HiPac Project [10] pioneered ECA rules, also seen in

later systems [14]. Big Active Data is a descendant of ECA
rules and Triggers, but overcomes two key limitations. First,
Triggers and ECA rules are really a “procedural sledgeham-
mer” for a system: when event A happens, perform action
B. We provide a more declarative (optimizable) way of de-
tecting complex events of interest. Second, to the best of our
knowledge, no one has scaled an implementation of Triggers
or ECA rules to the degree required for Big Data (in terms
of the number of rules or the scaled-out nature of the data).

A Materialized View [4] is a cached result of a given query
that is made available for querying like a stored table. Ma-
terialized view implementations have been designed to scale
on the order of the number of tables and have not addressed



the level of scale that we expect for the number of data
subscriptions in the BAD platform context.

2.3 Publish/Subscribe Systems
Pub/Sub systems seek to optimize the problems of identi-

fying relevant data publications and delivering them to users
in a scalable way. Modern Pub/Sub systems [12, 19] pro-
vide a rich, content-based subscription language. Our BAD
platform vision goes beyond this in two ways, as mentioned
in Section 1: First, whether or not newly arrived data is of
interest to a user can be based on its relationship to other
data. Second, notification(s) can be enriched by other data.
[17] studied Pub/Sub and Database integration, but no scal-
ability issues were addressed.

2.4 Continuous Query Engines
The seminal work on Continuous Queries was Tapestry

[13], which focused on append-only databases and included
the idea of monotonic queries. Subsequent work has mostly
focused on streaming data [5, 3]. These systems build spe-
cialized data flows to process queries as non-persistent data
streams through the system; queries relate to individual
records or windows of records.

2.4.1 NiagaraCQ and Spatial Alarms
NiagaraCQ [9] turned queries into data by finding groups

of queries that do selections on the same attribute but dif-
fer by the constant(s) of interest (e.g., age=19 vs. age=25).
Given these groups, they create a dataset of the constants
and join it with incoming data to produce results for mul-
tiple users via a single join. This data-centric approach
of treating continuous queries as data has inspired our own
subscription scaling work. Spatial Alarms [7] also used this
idea. Spatial Alarms issue alerts to users based on objects
that meet spatial predicates. The spatial predicates are
stored as objects in an R-Tree, and incoming updates are
spatially joined with this R-Tree of standing queries.

3. A BAD SYSTEM
Our Big Active Data platform is designed to deliver data

of interest to a scalable number of users without compro-
mising on any of the three requirements from Section 1.
Figure 2 shows the BAD system at a high level. Outside
the BAD platform are data sources (Data Publishers) and
end users (Data Subscribers). Within the platform itself, its
components provide two broad areas of functionality – Big
Data management and monitoring, handled by the BAD
Data Cluster, and notification management and distribu-
tion, handled by the BAD Broker Network.

3.1 BAD Data Cluster
We have chosen Apache AsterixDB [1] as a foundation

for BAD because it is openly available, intended for oth-
ers to use for research, and has technical benefits includ-
ing a rich declarative language (AQL) and a scalable dis-
tributed dataflow runtime system with continuous data in-
gestion support. We have enhanced AsterixDB with a new
feature called Channels [8]. Channels are created as parameter-
instantiable versions of queries that will execute continu-
ously starting at their creation. As an example, consider
the following continuous query: “Select the message, impact
zone, and nearby shelters for emergencies occurring near
me.” We can create this query channel as a continuous

Figure 2: Big Active Data (BAD) System Overview
geo-spatial join between users and emergencies, enriching
the query result with emergency shelter information.

A user interested in this channel would subscribe using his
or her user id. Internally, query evaluation takes a scalable
data-centric approach by adapting techniques from prior ac-
tive data systems as discussed in Section 2.4.1 [9, 7] to a
more expressive and more capable query engine [8] to scale
to a large number of subscriptions. As the channel executes,
it will produce and stage individualized results for each ac-
tive subscription. The Data Cluster will notify the BAD
Broker network whenever new data is available.

We extend the RESTful API of AsterixDB to allow com-
munication with Application Administrators (who create
and manage channels) and BAD Brokers (the link between
the BAD Data Cluster and the end user subscribers). The
platform currently supports the following REST calls:
• createbroker: Register a broker as both a subscription

generator on behalf of subscribers and a delivery endpoint
for new data notifications.

• createchannel: Create a new channel, given a reference
to the parameterized query (AsterixDB Function) to use.

• subscribe: Subscribe to a parameterized channel. (Sent
by the broker on behalf of a subscriber, including the pa-
rameters for this subscription and the broker to handle its
notifications.)

• getresults: Used by the broker to run queries against
the staged results on the cluster, including searching by
their time and subscription id.

• unsubscribe: Remove a subscription from a channel.
• movesubscription: Designate a new broker as the end-

point for notifications for a given subscription.
• dropbroker: Remove the broker as a subscription creator

and notification endpoint.
• dropchannel: Stop execution of the channel.

3.2 BAD Broker Network
The BAD broker network consists of two components: the

Broker Coordination Service and BAD broker nodes.

3.2.1 Broker Coordination Service (BCS)
The BAD broker network is managed by a BCS. When a

new broker node joins the broker network, it registers with
the BCS server. After registration, the broker can accept
clients for possible subscriptions to channels. A client con-
nects to the BCS server to receive the address of the broker
to which it should connect for subsequent services. The se-
lection of a broker can depend on many aspects, such as
geographic locations and the current system load (the num-
ber of clients each broker is serving). Currently, we use



geo-distributed brokers where clients are assigned to their
nearest brokers (with the IP to location mapping obtained
from the MaxMind database).

3.2.2 BAD Brokers

Figure 3: Broker Data Flow

The brokers are responsible for handling client (called
BAD client) registration, managing subscriptions and de-
livering results for those subscriptions. Each broker has two
parts: a “client-facing” part managing the clients and an
“Asterix-facing” part handling interactions with the Asterix
backend. A simple workflow of interaction between a client
and the broker is as follows: The client registers via the bro-
ker and logs in. The client then subscribes to one or more
available channels using desired parameter values, which are
passed to the Asterix backend by the broker. The backend
notifies the broker when new results are populated in the
subscribed channels. The broker, in turn, notifies the client,
and the client acts to fetch the results as desired.

Broker nodes are implemented as RESTful servers written
in Python using the Tornado web framework. The server
currently supports the following REST calls:
• registerapplication: Register a new application in the

system (in a designated AsterixDB dataverse).
• register: Register/sign up a new user.
• login: Login an already signed up user.
• subscribe: Subscribe to a parameterized channel.
• getresults: Retrieve results for a given subscription.
• listchannels: List channels in the current dataverse.
• listsubcriptions: List subscriptions for a given user.
• unsubscribe: Unsubscribe from a subscription.
• logout: Logout from the current session.

In terms of sending out notifications to BAD clients, the
broker node currently supports three types of clients:
(1)Web clients: Notifications pushed through web sockets.
(2)Desktop clients: Notifications are managed by RabbitMQ,
an active messaging system. (3)Android clients: Notifica-
tions pushed through FCM (Firebase Cloud Messaging).

4. A BAD DAY IN MUNICH
In this demonstration, we mimic an “emergency notifi-

cation system” where users can receive information about
emergencies (for example, earthquakes, floods, shootings,
etc.) via their subscriptions. Emergency reports (contain-
ing useful information related to emergency situations, and
including temporal and spatial attributes) may be published
by agencies. Notifications to users can be enhanced [16] with
additional data such as nearby shelters and their locations.

We will utilize a web application built using HTML, CSS3,
Javascript, and the Angular framework. Initially, the appli-
cation administrator communicates directly with the BAD
Data Cluster to set up the application dataverse with rele-
vant datasets and channels. The demo application will con-
sist of pre-built parameterized channels that enable users to
monitor emergencies in several ways, detailed below.

Our interactive demo enables the audience members to
have the option of being either a data subscriber or a data
publisher, by using their own personal computers or phones.

4.1 Data Subscriptions
When accessing Emergency Reports website, the user will

have the option to select a home city. Once logged in, the
user will automatically begin moving randomly around the
city. (To see/update her current location, she can go to the
Data Notifications screen (Figure 6), discussed later).

Figure 4: Data Subscription Interface

Figure 4 shows the User Subscriptions screen. Here she
can perform two tasks:
• View/Remove existing subscriptions
• Create new subscriptions

To begin with, the new user will not have any subscrip-
tions. She can create as many subscriptions as she would
like by selecting several options for each subscription:
• The emergency type(s) she is interested in (e.g., riots)
• Whether to monitor emergencies at a static location (e.g.

Munich) or to monitor emergencies occurring near her dy-
namically updated location (“near me”)

• Whether to enrich the result with shelter information
Once she has made these choices, she confirms her sub-

scription, which gets added to “Your subscriptions.” She can
create additional subscriptions or delete existing ones.

4.2 Data Publishers: Loki strikes
For more mischievous audience members, we allow them

to log into Loki accounts. Rather than subscribing to emer-
gencies of interest, Loki users are data publishers who can
create emergencies when the urge strikes (Figure 5).

To create an emergency, Loki has the following choices:
• Which type of emergency to create
• Where the emergency will occur (either type the loca-

tion or specify it by moving a Loki icon on the map)
Loki can continue creating emergencies over time, in ever-
changing locations.

4.3 Data Notifications
On the Data Notifications screen (Figure 6), a user can see

the live notifications created when the emergencies created
by Loki users intersect with her subscriptions in time and
space. On this screen, she can choose to manually move



Figure 5: Loki interface

herself to any location on the map. The application will then
begin a random walk from the current location to slowly
move the user around.

Figure 6: Data Notifications Screen
When an emergency intersects with one of the user’s sub-

scriptions, a red circle indicating the emergency impact zone
will appear on the map. She can click on these alerts to
see the full notification, including the shelter information (if
part of the subscription). Users also have the option of a list
view, which appends new results to a list rather than show-
ing them on a map. On the History Screen (Figure 7), users
can see the full history of results for their subscriptions.

Figure 7: History Screen

5. BAD IN SOCIAL MEDIA
We will also demonstrate a Twitter-based mobile applica-

tion which allows a user to subscribe to her Twitter friends
(i.e. followers and/or followees), and if the user, a subset
of her friends and a coffee shop are in close proximity, the
application will notify the user that they can meet in that
coffee shop. We get the latest location of all the users and
their friends in real-time when they post geo-tagged tweets.
Coffee shop locations are stored in an AsterixDB table. The
BAD subscription channel checks for this condition period-
ically (e.g., every 5 seconds) and notifies the broker once a
meetup is possible. The developed Android app shows the
locations of the users and of the coffee shop on a map.

6. IMPACT AND SIGNIFICANCE
Users of this system are able to see how we achieve the

three key requirements in Section 1:

1. Emergencies are not important in and of themselves
but because of their relationships to user location data (an-
other rapidly changing dataset).

2. Notifications to the user are enriched with information
from a third dataset (the emergency shelters).

3. The History Screen enables the application user to do a
posthumous query to determine a full history of subscription
and emergency intersections.

Our project is advocating a shift from passive Big Data to
an era of Big Active Data platforms. In this demonstration
we present our implementation of such a system and show
how its features can be used to build an interesting active
application involving Big Data. Our vision and the initial
design decisions for the BAD platform appear in [8].

7. ADDITIONAL AUTHORS
Yao Wu (UCI, Renmin U China (NSFC No. 61532021), yao
.wu@uci.edu), Syed Safir (UCI, fsyedsha@uci.edu), Purvi
Kaul (UCI, kaulp@uci.edu), Xikui Wang (UCI, xikuiw
@uci.edu), Mohiuddin Abdul Qader (UCR, mabdu002
@cs.ucr.edu) and Yawei Li (UCR, yli119@ucr.edu)

8. REFERENCES
[1] Apache AsterixDB (https://asterixdb.apache.org/).

[2] Apache Flink (https://flink.apache.org).

[3] D. J. Abadi et al. Aurora: a new model and archi-
tecture for data stream management. VLDB J., 2003.

[4] P. Agrawal et al. Asynchronous view maintenance for
VLSD databases. 2009.

[5] A. Arasu et al. Stream: The Stanford stream data
manager. IEEE Data Eng. Bull., 2003.

[6] S. Babu and J. Widom. Continuous queries over data
streams. ACM SIGMOD, 2001.

[7] B. Bamba, L. Liu, P. S. Yu, G. Zhang, and M. Doo.
Scalable processing of spatial alarms. HiPC, 2008.

[8] M. Carey, S. Jacobs, and V. Tsotras. Breaking BAD:
A data serving vision for big active data. DEBS, 2016.

[9] J. Chen et al. NiagaraCQ: a scalable continuous query
system for internet databases. ACM SIGMOD, 2000.

[10] U. Dayal et al. The HiPAC project: Combining active
databases and timing constraints. SIGMOD, 1988.

[11] G. DeCandia et al. Dynamo: Amazon’s highly
available key-value store. ACM SOSP, 2007.

[12] P. T. Eugster et al. The many faces of publish/
subscribe. ACM Comput. Surveys, 2003.

[13] D. Goldberg et al. Using collaborative filtering to
weave an information Tapestry. Comm. of ACM, 1992.

[14] E. N. Hanson et al. Scalable trigger processing. IEEE
ICDE, 1999.

[15] C.-Q. JI et al. Analysis and management of streaming
data: A survey. Journal of software, 2004.

[16] M. Y. S. Uddin et al. RichNote: Adaptive selection
and delivery of rich media notifications to mobile
users. Distributed Computing Systems (ICDCS), 2016.

[17] L. Vargas, J. Bacon, and K. Moody. Event-driven
database information sharing. BNCOD, 2008.

[18] M. Zaharia et al. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. NSDI, 2012.

[19] Y. Zhao et al. DYNATOPS: A dynamic topic-based
publish/ subscribe architecture. DEBS, 2013.


