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Abstract—We present a graphical model based approach for
on-line state estimation of water distribution system failures dur-
ing large-scale disasters. Water distribution systems often exhibit
extreme fragilities during large-scale disasters (e.g., earthquakes)
resulting in massive pipe breaks, water contamination, and
disruption of service. To monitor and identify potential problems,
hidden state information must be extracted from limited and
noisy data environments. This requires estimating the operating
states of the water system quickly and accurately. We model
the water system as a factor graph, characterizing the non-
linearity of fluid flow in a network that is dynamically altered
by leaks, breaks and operations designed to minimize water loss.
The approach considers a structured probabilistic framework
which models complex interdependencies within a high-level
network topology. The proposed two-phase approach, which
begins with a network decomposition using articulation points
followed by the distributed Gauss-Newton Belief Propagation
(GN-BP) based inference, can deliver optimal estimates of the
system state in near real-time. The approach is evaluated in
canonical and real-world water systems under different levels of
physical and cyber disruptions, using the Water Network Tool
for Resilience (WNTR) recently developed by Sandia National
Lab and Environmental Protection Agency (EPA). Our results
demonstrate that the proposed GN-BP approach can yield an
accurate estimation of system states (mean square error 0.02) in
a relatively fast manner (within 1s). The two-phase mechanism
enables the scalability of state estimation and provides a robust
assessment of performance of large-scale water systems in terms
of computational complexity and accuracy. A case study on the
identification of “faulty zones” shows that 80% broken pipelines
and 99% loss-of-service to end-users can be localized.

I. INTRODUCTION

Water utilities are critical infrastructure and are considered
an important lifeline to all local communities, whether regional
or worldwide. Often, infrastructure systems that capture, de-
liver and store water are many decades old, and have become
increasingly complex and vulnerable to a wide variety of
natural, technological and man-made hazards [1]. Natural
disasters and other types of hazards have resulted in different
types of water service disruptions, and caused financial, social,
environmental and human health consequences [2]. The ability
to maintain delivery of water supplies during and after catas-
trophic events is critical to ensure public safety and welfare.

In this paper, earthquakes are particularly concerning since
buried water pipelines are extremely vulnerable to damage
from earthquake-caused ground failures [3]. For example, the
1994 magnitude 6.7 Northridge Earthquake (US) damaged
over 1,000 distribution pipes and caused 7 days water outages;
the 2010 magnitude 8.8 Chile Earthquake damaged 3,000
distribution pipes and caused over a month of water outages;
the 2011 magnitude 9.0 Tohoku Earthquake (Japan) damaged
thousands of distribution pipes and caused several months of

water outages. Once pipeline networks are damaged, water
service areas will immediately shutdown via closure of valves.
In the mean time, potable water is distributed to customers
using mobile water tankers, while service crews are dispatched
to repair and restore the system to normal operating conditions.
This scenario highlights the need for a holistic and efficient
state estimation that produces estimates of the current operat-
ing states, and helps detect, locate and prevent possible sec-
ondary failures in the water system. An efficient hydraulic state
estimation enables timely countermeasures that can mitigate
and limit failure propagations, e.g., cascading failures such as
release of waste, flooding, and possible contamination.

Current status of water facilities: Despite promising ap-
plications, the actual implementation of a real-time monitoring
and measurement platform that adapts to perturbations caused
by disruptive events is lacking. One reason is that water
flow and pressures are generally not monitored in real-time
at an individual customer level (i.e., households). Water is
a relatively inexpensive resource. Consequently, most water
networks are metered only for billing purposes, and there is no
intelligent supervisory control and data acquisition (SCADA)
system on distribution pipelines. However, civil engineers
advocate that the next generation water networks will not be
passive water delivery systems, but active highly-distributed
event-based control systems [4]. Such a dynamical system
will heavily reply on an efficient operating state estimation
to facilitate effective water management under dynamic and
nondeterministic environmental changes.

Challenges on water system state estimation: The analy-
sis of hydraulic behaviors requires an accurate representation
of network topology as well as real-time measurements of
water flows and pressures. However, instrumenting the en-
tire system of underground pipelines with sensing devices
(pressure transducers and/or flow meters) is both unfeasible
(inaccessibility of locations) and expensive. Also urban water
systems are densely connected and complex networks cross-
ing diverse geologic conditions, where system performance
measurements are highly correlated. It is non-trivial to infer
operational states even with a complete observation. When
limited numbers of metering devices are available, probabilis-
tic state estimation can serve as a useful technique to “fill-
in” missing performance data as well as “smooth-out” noisy
measurements. Upon convergence, the optimization should
reflect the current state of the water network which, in turn,
should allow the prioritization of immediate responses and
after-event repairs, and eventually restoration of the system.

As far as we are aware we are the first to provide the sys-
tematic study of water system performance estimation under
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Fig. 1: Design of probabilistic model based state estimation.

limiting conditions, i.e., less than fully instrumented network
and noisy data environment, and the first to combine this
with distributed graphical model to identify failures caused by
disasters. This is a key step to the aforementioned distributed
event-based control system. Though inspired by water system
resilience under earthquakes, the proposed methodology is
designed for generic state estimation and analysis for other
pipe based cyber-physical systems and beyond.

Contributions of this paper:
•Network topology processing (Fig.1): Design of a method-
ology that formulates the water system as a hydraulic model
with measurement configurations, and transfers it into a factor
graph representation to incorporate non-linear hydraulic prin-
ciples within a structured probabilistic framework - (Sec.III).
•Probabilistic state estimation (Fig.1): A novel two-phase
approach for improving the speed and accuracy of state estima-
tion on the constructed factor graph: (I) split the water network
into conditional independent components using articulation
points; (II) estimate the hydraulic states using a distributed
Gauss-Newton Belief Propagation based approach - (Sec.IV).
•Real-world water systems evaluation: Design of a series
of experiments to explore the performance with respect to the
time complexity and accuracy of the proposed approach on
real-world water systems provided by EPA and Washington
Suburban Sanitary Commission (WSSC) - (Sec.V).
•Extensive evaluations under different levels of physical and
cyber disruptions, and a case study on the faulty zones
identification - (Sec.V).

II. RELATED WORK

Water system resilience: Due to increasingly failure-prone
community water services, there has been a lot of research
that concentrates on: the design and enhancement of the
water systems to reduce the likelihood and impact of asset
failures [5–7]; the detection, identification and control of
failures during disasters to reduce the cascading impacts [8–
10]; the recovery of the infrastructure to return the system
to normal operating conditions [11]. With respect to failure
identifications, our recent work [9] shows that the multi-leak

localization is a non-trivial problem due to highly correlated
performance measurements, and in the context of disasters,
the unpredictable environmental changes will make it more
difficult due to the lack of prior knowledge and the increased
number and severity of damages.

Hydraulic simulator: The commonly used demand-driven
(DD) hydraulic simulator, like EPANET [12], assumes that
customer demands are always met even if the pressure is
insufficient to provide the demand. They were not designed to
handle sudden failures resulting in inadequate pressure or rapid
changes in the system operation. In reality, however, disasters
can lead to low pressure conditions that reduce the amount
of water delivered to customers. This paper uses WNTR
hydraulic simulator - a recently developed water network
tool for assessing the resilience of drinking water systems to
disasters [13]. WNTR has the pressure-driven demand (PDD)
model where the demand supplied to the end-user is a function
of the pressure at that node:

d =

{ 0 p ≤ P0

Df

√
p−P0

Pf−P0
P0 ≤ p ≤ Pf

Df p ≥ Pf
(1)

where d is the actual volume delivered to the end-users (m3/s),
Df is the expected demand (m3/s), p is the gauge pressure
inside the pipe (Pa), Pf is the pressure above which the
customer receives the expected demand (Pa), and P0 is the
pressure below which they cannot receive any water (Pa).

Graphical model based inference: Graphical models are
used to represent the conditional independence relationships
among a set of random variables. It has been successfully de-
ployed in many fields, such as computer visions [14], medical
diagnostics [15], communication systems [16], and recently
power grids [17]. Belief propagation (BP) is an efficient
message-passing algorithm that gives exact inference results
in linear time for tree-structured graphs [18]. Though widely
used, tree-structured models possess limited modeling capa-
bilities, and many stochastic processes arising in real-world
applications cannot be well-modeled by cycle-free graphs [19].
Loopy belief propagation (LBP) is an application of BP on
loopy graphs, however, the convergence and correctness of
LBP are not guaranteed in general. LBP has fundamental
limitations when applied to graphs with cycles: local message-
passing cannot capture the global structure of cycles, and
thus can lead to convergence problems and inference errors.
[20] presented a feedback message passing algorithm for an
efficient inference in loopy models, which makes use of a
special set of vertices whose removal results in a cycle-free
graph. Inspired by the exciting results made available by
graphical models, we consider a graph representing the water
distribution system as a probabilistic model.

III. MODELING WATER SYSTEM IN STOCHASTIC MANNER

An efficient water system state estimator requires to pro-
vide optimal estimations under dynamic and nondeterministic
operational and environmental changes. In order to prop-
erly model the system stochastic properties and to conduct



computationally-tractable inferences, we propose a graphical
model description of the water system, which can discover and
analyze desired informative data by abstracting the physical
nature into a cyber network of nodes and links such that
nodes interact with each other along their incident links in
a distributed message-passing manner. Specifically, we model
hydraulic heads at water nodes as state random variables on
the graph vertices, and the edges of the graph determine the in-
teraction of state variables according to the hydraulic physical
law (i.e. Hazen–Williams equation [12]). Viewed together, the
graphical model is specified by the joint density of hydraulic
head random variables in the network for state estimation,
subject to the constraints imposed by the fundamental fluid
mechanics.

A. Graphical Model of Water Systems

A water system is defined as a undirected graph G(V, E)
(water can flow in both directions) with vertices V = {1, ..., n}
that represent nodes (end-users – nodes with demand, and
junctions – pipe joints), and edges E ⊆ V × V that represent
transmission/distribution pipelines. The set of measurements
is defined as M that is connected to the graph G. There are
two kinds of measurements, real measurements and pseudo
measurements denoted by MR and MP respectively, where
MR ⊆M,MP ⊂M,MR∪MP =M andMR∩MP = ∅.
Because the number of real measurements will be limited by
the cost of installation and maintenance of sensing devices, and
to initiate the state estimation algorithm, pseudo measurements
will be added in order for the entire system to be “observable”.
The initial values of pseudo measurements are assigned based
on the knowledge of real measurements, and usually with large
noise variances. It is worth noting that in the context of seismic
hazards, there is no enough priori knowledge (e.g., historical
data) that can be used for an appropriate initialization.

The probabilistic measurement model of hydraulic system
state estimation is expressed as

z = g(x) + u (2)
where the vector x = (x1, ..., xn) represents the probabilistic
water system states; the vector u = (u1, ..., uk) where ui is
the additive measurement noise assumed to be independent
Gaussian random variable with zero mean, i.e. u ∼ N (0,Σ),
Σ is a diagonal matrix with the ith diagonal element σ2

i ;
z = (z1, ..., zk) is the vector of measurement readings such as
flow rate and hydraulic head; and g = (g1(x), ..., gk(x)) is the
vector of non-linear functions associated with each measure-
ment following hydraulic physical laws. Each measurement
Mi ∈M is associated with measured value zi, measurement
noise ui, and measurement function gi(x).

The probabilistic state estimator aims to find an estimate
x̂ of the true states x that achieves the maximum posteriori
probability (MAP), given the measurement set z and the priori
state information of x according to the measurement model in
(2). It is mathematically expressed as

max
x

p(x|z) =
p(x)p(z|x)

p(z)
(3)

where p(·) represents the probability density function. As-
suming that the prior probability distribution p(x) is uniform,
and given that the measurement probability distribution p(z)
does not depend on x, MAP solution of (3) reduces to
maximization of the likelihood function L(z|x), which is
defined via likelihoods of k independent measurements:

x̂ = arg max
x

L(z|x) = arg max
x

k∏
i=1

N (zi|x, σ2
i ) (4)

One can find the solution of (4) by weighted least squares
(WLS) estimator [21]:

x̂ = arg min
x

k∑
i=1

(zi − gi(x))2

σ2
i

(5)

To obtain the WLS estimate in (5), we need to first obtain
a proper formulation for g(x) (Sec.III-B), and employ an
efficient algorithm to conduct marginalization over p(x|z) in
(3) with respect to x (Sec.IV).
B. Hydraulic Network Model

The hydraulic system model is defined using the non-linear
measurement functions g(x) that follow the physical laws to
connect measured variables with state variables. This model
takes hydraulic head denoted by h as state variables x (i.e.,
x ≡ h), since hydraulic head measurements are essential
pieces of information that are required for determining water
service availability. Hydraulic head represents the mechanical
energy per unit weight of fluid in the system, and is defined on
water node i as hi = pi+ei, for i ∈ V , where pi is the pressure
head and ei is the elevation head at node i. The typical set
of measurements M in water systems includes: the status of
valves Vij (open or closed) and flow rates Qij (cubic meter per
second, cms or m3/s)) at pipes (i, j) ∈ E , and the hydraulic
head hi (meter, m) at special nodes i ∈ V (e.g., reservoir,
pump and tank). That is M = {MVij ,MQij ,Mhi} for
(i, j) ∈ E and i ∈ V , where {Mhi} is referred to as the direct
measurement Mdir since it measures state variables directly,
and {MVij ,MQij} is referred to as the indirect measurement
Mind. Noted that real/pseudo measurements (MR and MP)
and direct/indirect measurements (Mdir and Mind) are just
two different classifications of measurements that are defined
for the convenience to present the proposed approach. For
reasons of completeness, a short elaboration of the hydraulic
background is given following. Reader may safely skip this
part. The measurement functions used in the PDD model are
specified based on the measurement types and readings.
For flow-rate measurement zQij :

gQij (·) = (1/Rij)
1

1.852 · |hLij |
1

1.852 if zQij > 0.0004 (6a)
gQij (·) = (1/(Rij ·m)) · hLij if zQij < 0.0002 (6b)

gQij (·) = a′(hLij/Rij)
3 + b′(hLij/Rij)

2 + c′(hLij/Rij) + d′

if 0.0002 ≤ zQij ≤ 0.0004 (6c)
For hydraulic head measurement zhi :

ghi(·) = hi (7)
Here hLij = |hi − hj | is the headloss in the pipe (m),
and Rij = 10.667C−1.852d−4.871L is the pipe resistance



coefficient (unitless) [12] where C is the Hazen-Williams
roughness coefficient (unitless), d is the pipe diameter (m)
and L is the pipe length (m). Constant m=0.001 in (6b),
and constants a′=1.524 · 1015, b′=−2.530 · 109, c′=1.830 ·
103, d′=−7.695 · 10−5 in (6c), which are calculated using
polynomial curve fitting. In (6), different functions are used
according to the values of flow-rate measurements. Because
when Qij ≈ 0, it can cause the Jacobian of the set of hydraulic
equations to become singular, and [13] proposed to split the
domain of Q into several segments to create a piecewise
smooth function.
C. Factor Graph Construction

To solve the optimization problem in (3), we instead need
to find an optimal solution of (4) in an efficient manner. We
first construct a factor graph to describe a factorization of the
likelihood function L(z|x). Factor graphs comprised of the set
of variable nodes and factor nodes have been widely used to
represent factorization of a probability distribution function,
enabling efficient computations [22].

As shown in Fig.1, a factor graph can be formed from the
hydraulic model, where the variable node characterizes the
probability distribution of the hydraulic head at nodes, and
the factor node is determined by the set of measurements.
The pseudo measurements will be filled in based on the real
measurement readings, to make the entire system “observ-
able”. That is, the vector of state variables h defines the set
of variable nodes X = {h1, ..., hn}, while the set of measure-
ments M defines the set of factor nodes F = {f1, ..., fk}. A
factor node fi connects to a variable node xs ∈ X if and only
if the state variable hs is an argument of the corresponding
measurement function gi(x) according to (6) and (7). In this
manner, hydraulic head and flow rate are modeled separately,
and their correlations can be captured in the corresponding
factor nodes.
D. Leak Event Model

Leaks can cause large changes in network hydraulics, and
we use WNTR to model the pipe breaks [13]. A new junction
is added onto each pipeline to model the event node, and if a
pipe breaks, its event node will be used as the leaky point. In
WNTR, the mass flow rate of fluid through the hole, dleak, is
expressed as:

dleak = CdA
√

2ρpα (8)

where Cd is the discharge coefficient (unitless) with default
value 0.75, A is the area of the hole (m2), ρ is the density of
the fluid (kg/m3), p is the pressure (Pa) computed using ele-
vation and hydraulic head (m), fluid density and acceleration
due to gravity (m/s2), and α is set to 0.5 for large leaks out
of steel pipes.

IV. A MULTI-PHASE PROBABILISTIC STATE ESTIMATION

The industry paradigm is shifting from the traditionally
deterministic model based centralized monitoring architecture
to probabilistic model based highly distributed interactive
data and resource management. Therefore, a multi-phase,
distributed implementation of the state estimator is likely to

be the preferred approach, which enables a fast and accurate
hydraulic behavior assessment.

The belief propagation algorithm efficiently calculates the
marginal distribution for each state variables by passing mes-
sages (a) from a variable node xs to a factor node fi and
(b) from a factor node fi to a variable node xs. Variable
and factor nodes locally process the incoming messages and
calculate outgoing messages in a distributed manner. Under the
assumption that measurement errors {ui} follow a Gaussian
distribution, the probability density function of {xs} and {fi}
are Gaussian. The passing-message can then be character-
ized by mean and variance. The marginal inference provides
marginal probability distributions p(x|z) that is used to find
an estimate x̂ of the true states x. It is well-known that
the key assumption of the BP algorithm converging to the
optimal solution is that the applying graph has no cycle,
i.e., tree-structured [22]. Such assumption often does not
hold for most water distribution networks, which are locally
dense and contain loops. In addition, due to the non-linearity
of the measurement functions, the BP based approach will
be sequentially applied over the factor graph until the stop
criterion is satisfied, which increases the time complexity
of convergence. Our experience shows that the inference on
a large-scale water systems can take more than 30min to
converge, which is too slow for an on-line state estimation, es-
pecially under seismic events. Ideally, state estimation should
run at the scanning rate or at least less than the sampling
rate of industrial metering devices (15min) [23], to handle the
new measurement as soon as it is delivered from telemetry
to the computational unit. To overcome these limitations, we
proposed a two-phase approach: (I) decomposes the hydraulic
network into conditional independent connected components,
and (II) performs the GN-BP based inference on each of them.
It is worth noting that Phase II can be done in parallel for all
components that can further reduce the time complexity.

A. Phase I: Network Decomposition by Articulation Points

Phase I aims to generate several disjoint connected com-
ponents where each one has a moderate size and they are
conditional independent given specific nodes being observed.
Articulation points (APs) are vertices in an undirected con-
nected graph, whose removal along with the removal of
their incident links disconnects the graph. The APs can di-
vide a graph into several biconnected components, where a
biconnected component is a connected and “nonseparable”
subgraph, meaning that if any one of vertices is removed,
the subgraph will remain connected. Noted that a biconnected
graph has no APs. In the context of the water system, it
is important to know the relatively structural prominence of
nodes or links to identify key elements in the network. A water
node that is an articulation point often has higher information
centrality and will be considered as the critical location - a
single point whose failure would cause network disconnection
[24]. A water network subzone that is a biconnected graph is
considered as more resilient and less susceptible to damage
and perturbation [5]. The existing of the alternative supply
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paths provides a two-fold redundancy and improve system
robustness and resilience by avoiding critical locations and
network bottlenecks. This redundancy, in turn, may improve
the performance of state estimations, since the incorrect mea-
surement on one path may be compensated by measurements
from alternative paths, and an estimate on the variable node
can be derived by the cooperation of messages from multiple
incident links. The work flow of Phase I is shown in Fig.2,
and summarized in following:

1. Find the articulation points and biconnected components
of the water network. For example, in Fig.3a, this is the
hydraulic network of the water system operated by North
Marin Water District, and nodes that are labeled by stars are
APs, which are used to generate all biconnected components.

2/3. One observation on branched water networks is that
there are many bridge-type biconnected components, that
consist of a single edge. The purpose of the network de-
composition is to reduce the time complexity while obtain
the optimal state estimates. This will require to use as many
sensing devices as the number of split points to make disjoint
components conditionally independent. Without using many
sensors, we do not want to split the network into many small
parts (components with a single edge). Thus, we merge those
bridge-type biconnected components and obtain a disjoint
union of trees (it can be proved by contradiction, which is
not shown to save space). For example, in Fig.3b, the network
decomposition outputs 3 biconnected components that are not
bridge-type, and 9 (bi)connected components after merging.

Without losing the structural information after decomposi-
tion, the node that is the intersection of 2 or more generated
disjoint connected components needs to be observable. In
Fig.3b, nodes labeled by stars are intersection points and will
be observed. That isMhi ∈MR if node i is such a point. The
paper focuses on efficient state estimation by utilizing limited
and noisy measurements. The problem to find a minimum
amount of measurements that are required to deliver optimal
system states is out of the scope. The corresponding study is
referred to as observability analysis.

B. Phase II: Hydraulic State Inference

In Phase II, we describe an efficient Gauss-Newton Belief
Propagation (GN-BP) based hydraulic state estimation algo-
rithm, which converges to the optimal inference results for all
water nodes in a reasonable time. To speed up the convergence
time on loopy networks, we then introduce a feedback vertex
set (FVS) selection criterion to break all loops, and a modified
version of the proposed algorithm to use FVS.
1) GN-BP based on-line inference: The BP based algorithm
allows the state of end-users to be estimated in a dis-
tributed, message-passing manner with the neighboring end-
users where flow meters are located. Then the aggregated
information is communicated in a bottom-up way to the back-
bone system operator for driving system control. However,
due to the non-linearity of measurement functions g(·) in
(6), the closed-form expressions for certain classes of BP
messages cannot be obtained. Therefore we integrate Gauss-
Newton (GN) method with BP based inference to solve the
WLS problem in (5). The GN algorithm is used to solve non-
linear least squares problem by minimize a sum of squared
function values and it has advantage that second derivatives,
which can be challenging to compute, are not required.

Based on k number of measurements M, the solution of
(5), which is a vector of n state variables x̂ ≡ ĥ, can be
found using the GN method [21]:

[J(x(ν))TWJ(x(ν))] ·∆x(ν) = J(x(ν))TWr(x(ν)) (9a)

x(ν+1) = x(ν) + ∆x(ν) (9b)
where ν = {1, 2, 3, ...} is the iteration index, and at each
iteration step ν, ∆x(ν) ∈ Rn is the vector of increments of
state variables x, J(x(ν)) ∈ Rk×n is the Jacobian matrix of
measurement functions g(x(ν)), W ∈ Rk×k is a diagonal
matrix containing inverses of measurement variances, i.e.
W = Σ−1, and r(x(ν)) = z − g(x(ν)) is the vector of
residuals, i.e., the difference between measured and estimated
values. The Jacobian expressions corresponding to gQij (·) and
ghi(·) can be computed based on (6) and (7).

Consider the GN method in (9) where, at each iteration ν,
the algorithm returns a new estimate x̂, and (9a) represents
the minimization problem:

min
∆x(ν)

||W1/2[r(x(ν))− J(x(ν))∆x(ν)]||22 (10)

Hence, the probability measurement model (2) can be re-
defined as a group of linear equations:

r(x(ν)) = φ(∆x(ν)) + u (11)
where φ(∆x(ν)) = J(x(ν))∆x(ν) comprises linear functions.
The MAP solution of (3) can be reduced to maximum like-
lihood problem, and the equation (4) can be re-defined as an
iterative optimization problem:

∆x̂(ν) = arg max
∆x(ν)

L(r(x(ν))|∆x(ν))

= arg max
∆x(ν)

k∏
i=1

N (ri(x
(ν))|∆x(ν), σ2

i ) (12a)

x(ν+1) = x(ν) + ∆x̂(ν) (12b)



Next, we show that the solution of (12) can be efficiently
obtained using BP based algorithm applied over the under-
lying factor graph introduced in Sec.III-C. The factor graph
constructed by the factorization of the likelihood function in
(12a) is slightly different from the one in (4). The set of
variables nodes is defined as the increments of state variables
instead of the state variable itself, i.e. X = {∆h1, ...,∆hn},
while the set of factor nodes is defined as before based on
the measurements M, i.e. F = {f1, ..., fk}. The factor node
fi connects to a variable node ∆xs if and only if ∆xs is
an argument of the corresponding function φi(∆x), that is
if the state variable hs is an argument of the measurement
function gi(x). The BP algorithm on factor graphs proceeds
by passing two types of messages along the edges: from
variable nodes to factor nodes and from factor nodes to
variable nodes. BP messages represent “beliefs” about variable
nodes, thus a message that arrives or departs a variable node
is a probability distribution of the random variable associated
with this node. The “beliefs” will be iteratively updated by
incoming messages and propagated by outgoing messages
until the stopping criterion is satisfied.

Message from a variable node to a factor node: Since
we consider the Gaussian graphical model, the message from
a variable node ∆xs to a factor node fi at iteration step τ can
be characterized by mean r(τ)

∆xs→fi and variance σ2 (τ)
∆xs→fi :

r
(τ)
∆xs→fi =

 ∑
fa∈Fs\fi

r
(τ−1)
fa→∆xs

σ
2 (τ−1)
fa→∆xs

 · σ2 (τ)
∆xs→fi (13a)

1

σ
2 (τ)
∆xs→fi

=
∑

fa∈Fs\fi

1

σ
2 (τ−1)
fa→∆xs

(13b)

where Fs is a set of factor nodes incident to ∆xs, and Fs\fi
is a subset by excluding the factor node fi. The incoming
messages used for calculation are obtained in previous iteration
(τ − 1).

Message from a factor node to a variable node: Similarly,
the message from a factor node fi to a variable node ∆xs can
be characterized by mean rfi→∆xs and variance σ2

fi→∆xs
:

r
(τ)
fi→∆xs

=
1

Ci,∆xs

ri − ∑
∆xb∈Xi\∆xs

Ci,∆xb · r
(τ)
∆xb→fi


(14a)

σ
2 (τ)
fi→∆xs

=
1

C2
i,∆xs

σ2
i +

∑
∆xb∈Xi\∆xs

C2
i,∆xb

· σ2 (τ)
∆xb→fi


(14b)

where Xi is a set of variable nodes incident to fi, and Xi\∆xs
is a subset by excluding the variable node ∆xs. Ci,∆xp for
∆xp ∈ Xi are Jacobian elements of the measurement function
gi(·) associated with fi:

Ci,∆xp =
∂gi(·)
∂xp

(15)

Marginal inference: The marginal of the state variable is
the estimated value of the increment, which will be calculated

when rfi→∆xx and σ2
fi→∆xx

converge:

∆x̂s =

 ∑
fi∈Fs

rfi→∆xx

σ2
fi→∆xx

 ·
1

/ ∑
fi∈Fs

1

σ2
fi→∆xx

 (16)

The GN-BP based inference subroutine is summarized in
Algorithm 1. To present the algorithm precisely, we define
different types of factor nodes based on the measurementsM.
The factor nodes that correspond to real measurements MR

are real factor nodes FR ⊆ F , and similarly pseudo factor
nodes FP ⊂ F are associated with pseudo measurements
MP. The direct/indirect measurements Mdir and Mind are
represented by direct/indirect factor nodes Fdir ⊆ F and
Find ⊆ F respectively. In Algorithm 1, the outer loop stops
when the difference on estimated values is less than a very
small number εO, and the inner loop stops when the difference
on BP messages is less than a very small number εI(ν) that
varies with the outer iterations.

Algorithm 1 The distributed GN-BP based inference

1: Input factor graph Gf (X ,F), state variables x with initial
values, state threshold [xL, xH ], measured values z

2: Output estimated states x̂

/* Outer state update loop ν = 1, ...; τ = 0 */

3: while |x(ν) − x(ν−1)| < εo do
4: for fi ∈ F do
5: r

(ν)
i = zi − gi(x(ν)) using (6) and (7)

6: end for
7: for ∆xs ∈ X do
8: if fxs ∈ FR then
9: r

(ν,τ=0)
∆xs→fi = r

(ν)
s ; σ(ν,τ=0)

∆xs→fi = εσ for fi ∈ Fs
10: else
11: r

(ν,τ=0)
∆xs→fi = εr; σ

(ν,τ=0)
∆xs→fi =∞ for fi ∈ Fs

12: end if
13: end for

/* Inner message update loop τ = 1, ... */

14: while |r(τ)
f→∆x − r

(τ−1)
f→∆x| < εI(ν) do

15: Compute r(τ)
fi→∆xs

, σ2 (τ)
fi→∆xs

using (14)
16: Compute r(τ)

∆xs→fi , σ
2 (τ)
∆xs→fi using (13)

17: end while
/* Marginal inference */

18: Compute x(ν+1) = x(ν) + ∆x̂(ν) using (16)
/* State validation */

19: for ∆xs ∈ X do
20: if x(ν+1)

s 6∈ [xL, xH ] then x
(ν+1)
s = x̄(ν+1)

21: end if
22: end for
23: end while

2) Feedback vertex set selection: The non-bridge biconnected
components generated by Phase I contain loops - it provides
path redundancy for resilience but can also add difficulty for
BP inference. We consider a particular set of nodes called
a feedback vertex set (FVS) denoted by F whose removal
breaks all the cycles and results in a cycle-free graph, which



is inspired by [20]. The algorithm proposed in [20] runs in
time O(m2n) where m is the number of feedback nodes and
n is the total number of nodes. When m is bounded by a small
number, this is a significant reduction from O(n3) of LBP.

Many of water systems in US have a hybrid network
topology (a combination of loops and branches), and thus it
is possible to find a FVS with a reasonable size to remove all
loops in a water network [25]. Without losing much structural
information in terms of the removing nodes, the goal is to
find a minimum FVS to break all cycles and enable a fast
LBP convergence on the remaining graph. After Phase I, all
non-cycle-free graphs are biconnected, meaning that all nodes
in the graph are part of a cycle. To find an optimal FVS with
a small size, we propose a greedy heuristic algorithm: one
feedback node is chosen at each iteration, and at each stage
we examine the graph excluding the nodes already included
in the FVS F and select the node with the largest degree.
We then remove the node along with its incident edges and
put it into F . The same procedure will be continued on the
remaining graph T until it is empty. The motivation for this
method is given that since the number of cycles is reduced with
the removal of nodes, it makes sense to choose nodes with the
highest degrees to remove more cycles at each iteration. The
selection algorithm is summarized in Algorithm 2.

To utilize FVS, we use a special update scheme for feedback
nodes. Consider the loopy graph in Fig.4a, FVS identified by
Algorithm 2 contains two feedback nodes. (1) Algorithm 1 is
first applied on the cycle-free graph GT by removing feedback
nodes and its incident edges (Fig.4b). We obtain inaccurate
“partial states” for the nodes in the cycle-free graph. (2) We
then compute the inference results for the feedback nodes by
applying Algorithm 1 on the subgraph of feedback nodes, their
incident edges and neighbors GT (Fig.4c). (3) Last, we make
corrections to the “partial states” of the non-feedback nodes
by running Algorithm 1 on the cycle-free graph again (Fig.4d).
Optimal inference results are obtained for all nodes. Noted that
in (2) and (3), the initial states of nodes that are neighbors of
feedback nodes (e.g., nodes appear both in Fig.4c and 4d) are
determined by the previous stage.

Algorithm 2 The FVS selection criterion

1: Input biconnected component G generated by Phase I
2: Output a FVS F
3: Objective find a optimal F to break all cycles in G

4: Let F = ∅ and T = G
5: while T is not empty do
6: (a) Get node degrees of T
7: (b) Put the node with the highest degree into F and
8: remove it with its incident edges from T
9: (c) Clean up T by eliminating all tree branches.

10: end while

3) Hydraulic state estimation: Given a water network, Phase I
first splits it into several disjoint connected components, whose
hydraulic states are then estimated by Phase II. To execute the

1

2

!"# !$#

1

2

!%# !&#

Feedback node

Feedback node

Fig. 4: The message update scheme with 2 feedback nodes.
The nodes here represent variable as well as factor nodes.

GN-BP based inference on a graph G(V,E), the state variables
on nodes V need to be initialized and the pseudo indirect
measurements on edges E need to be set. The initial values
of observed state variables equal to their real measured values,
while for those that are not observed, their initial values are set
to the average of the observed states. The value of a pseudo
indirect measurement is set to the same value as its closest real
indirect measured value. The state estimator is summarized in
Algorithm 3.

Algorithm 3 The multi-phase hydraulic state estimation

1: Input water network G, measurements M
2: Output estimated hydraulic heads of water nodes

/* After Phase I */

3: for each connected component Gc(V,E) of G do
/* Initialization */

4: For ∀i ∈ V : ifMi ∈MR, xi = zi; else xi = average
value of Mi ∈Mdir ∩MR.

5: For ∀j ∈ E: if Mj ∈ MP, zj = zc, where c =
arg minl distance(j, l) and Ml ∈Mind ∩MR.
/* Inference */

6: if Use FVS then
7: Find FVS of Gc, and get GT and GF .
8: Alg.1 on factor graphs Gf (X ,F) of GT and GF .
9: else

10: Alg.1 on factor graph Gf (X ,F) of Gc.
11: end if
12: end for

V. EXPERIMENTAL STUDY

In this section, we examine the effectiveness of the pro-
posed multi-phase state estimation algorithm on a small-scale
canonical water network and two real-world water systems
where they have different configurations on topology, network
size and pressure range (Fig.5). The inference approaches we
compared include: GN-BP - directly estimate the states of
the entire network by Phase II; FVS+GN-BP - find FVS and
estimate the states using FVS by Phase II; Decomp+GN-BP
- split the network by Phase I and estimate the states of each
component by Phase II; Decomp+FVS+GN-BP - find FVS for
each components generated by Phase I and estimate the states
using FVS by Phase II. We begin by describing the setup
under which the experiments are conducted, and introduce the
performance metrics and the results.

A. Experimental Setup
Figures 5b/5c show the real-world water systems that are

used to evaluate the scalability of the proposed approach.



NET3 is the service area, containing multiple pressure zones,
of North Marian Water District (NMWD) provided by EPA,
and WSSC-SUBNET is a single pressure zone of WSSC
service area provided by WSSC. Figure 6 illustrates that NET3
has relatively large variances on both hydraulic heads and
flow rates, where the variance on hydraulic heads is 5.989m
compared with 1.386 · 10−4m of WSSC-SUBNET, and the
variance on flow rates is 1.5 · 10−2m3/s compared with
2.755 · 10−6m3/s of WSSC-SUBNET.

We use WNTR to simulate the earthquake impacts on the
water distribution system by generating a earthquake event
with magnitude 5.5 (unitless) and shallow depth 5000m at a
random location. The pipe failure probabilities are then calcu-
lated using the attenuation model of peak ground acceleration
(PGA) where PGA = 403.8 × 100.265M(R + 30)−1.218 and
the fragility curve that defines the probability of exceeding a
damage state as a function of PGA (Fig.7). Here M is the
earthquake magnitude and R is the distance to the epicenter
(km). The leak diameter of the broken pipe is generated
following the uniform distribution between 0.15 and 0.3 of the
pipe diameter. Each pipeline may have different lengths and
diameters. We assume that 50% pipelines are instrumented
by flow meters with varied noise variances, and the critical
points are instrumented by SCADA monitoring systems with
a small noise variance, since, in reality, SCADA systems are
less susceptible to physical and cyber failures. The critical
points include reservoirs, tanks, pumps, and those articulation
points that are used to split the network in Phase I. There
are 19 (≈ 8%) and 48 (≈ 8%) critical nodes in NET3 and
WSSC-SUBNET respectively.

B. Performance Metrics

The effectiveness of the hydraulic state estimator is first
evaluated in terms of the time complexity and the accuracy.
The sampling rate of industrial flow meters is 15min, meaning
that the estimator needs to infer the current system states in
less than 15min before new measurements arrive. The faster
the estimation converges to the optimal values, the quickly
the countermeasures can be adopted. The time complexity is
evaluated by the number of iterations to converge, and the
accuracy is evaluated by the mean square error (MSE). We
also consider two resilience metrics: pipe damage state and
water service availability. There are two damage states: “no
damage” and “break”, and the goal is to identify faulty zones
where pipes are in the “break” state. To demonstrate this
identification performance, we define True Positive (TP) as the
number of predicted broken pipes within the distance threshold
to the leaky points divided by the number of true broken pipes,
and False Positive (FP) as the number of predicted broken
pipes not in the distance threshold divided by the number of
predicted broken pipes. A higher TP with a lower FP means
a better performance. Water service availability at each node
is computed as Vi/V̂i for i ∈ V , where Vi the actual water
volume (m3) received at node i and V̂i is the expected water
volume (m3) received at node i. The water service availability
can be influenced by failures and operational changes after a

disaster, and it is important to estimate the received volume
at end-users to localize the areas where they loss the access
to the supply and facility. Precision and recall are used to
demonstrate this estimation performance.

C. Complexity and Accuracy of Hydraulic State Estimation

In this section, the proposed state estimation approach is
validated through a detailed simulation study on a small-scale
canonical water network and two real-world water systems.
We first demonstrate the performance of the approach on
the small-scale water network (Fig. 5a), where the flow rate
measurements have a large noise variance (5m3/s). Figures
8a/8b illustrate that our approach can generate an accurate
estimation on hydraulic heads (MSE = 0.02) with a flat start
of 305m in a fast manner (converge in 1s). The reason for
simulating a flat start is to mimic the water system environment
with strong state variation, making typical initial guess method
(from the last static state estimation) less informative for the
new estimation process. Figure 8c shows the fact that the
proposed GN-BP based estimation approach does not rely
heavily on the initial guess.

In the following set of simulations, we study the perfor-
mance under different levels of sensing and infrastructure dis-
ruptions, with respect to the number of iterations to converge
and the mean square error of the headloss at pipes. Headloss
is the absolute difference on hydraulic heads at the end nodes
of a pipeline (6), and it can be used to identify pipe failures,
since the headloss of a broken pipeline will increase due to
the leaking. An earthquake event is generated on NET3, and
it causes 10% (≈ 20) pipe failures with varied leak volumes.
Different percentages of the disrupted sensing devices are sim-
ulated based on the locations of broken pipelines, where those
disrupted meters are considered with a large noise variance
2.5 · 10−3m3/s compared with the noise variance 10−6m3/s
of non-disruptive meters. Figures 9a/9b illustrate that com-
pared with FVS+GN-BP, the proposed two-phase approach
(Decomp+) can dramatically reduce the time complexity using
less number of iterations and improve the accuracy with
lower errors. Because the network decomposition separates
the network into several subnets, and each of them has a
relatively small size. In addition, each subnet can yield a better
initialization by capturing its local information compared with
the initialization over the entire network, since the initial
states of unobserved state variables are set to the average of
the directly observed values in its connected component. The
performance of GN-BP (without FVS and Decomp) on NET3
is not shown, because it takes more than 30min to converge
and makes the estimation too long to be meaningful. The
approach of Decomp+FVS+GN-BP can further decrease the
computational complexity but with the cost of less accuracy.
Because the removal of feedback nodes breaks the original
graph structure, which can result in the loss of topological
information. Figures 9c/9d show the estimation results on
WSSC-SUBNET where there are 5% (≈ 30) pipe failures,
and the noise variances of disrupted and non-disruptive meters
are 10−4m3/s and 10−8m3/s respectively. Likewise, the two-



(a) Sample Net

Net3, CA

- Multi-pressure Zones
- Pipe Length: 65.75km
- # of Nodes: 214
- # of Pipes: 234

(b) NET3

WSSC-Zone300A, MD

- Single Pressure Zone
- Pipe Length: 19.04km
- # of Nodes: 615
- # of Pipes: 632

(c) WSSC-SUBNET

Fig. 5: (a) A sample network provided by EPA, and two real-
world water systems: (b) water distribution system operated by
NMWD and (c) a single pressure zone operated by WSSC.
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Fig. 6: Comparisons on (a) hydraulic head (m) and (b)
flow rate (m3/s) of NET3 and WSSC-SUBNET water
systems at 11am under normal condition.
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Fig. 7: (a) PGA of pipelines for a magnitude of 5.5 earthquake.
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Fig. 8: Sample Network - (a) estimated hydraulic heads with
a flat start 305m and (b) mean square error versus number of
outer iterations. (c) Errors versus initial head values.

phase approach yields a better performance with less time
complexity and high accuracy.

In Fig.10, the comparison is performed on NET3 under
different levels of infrastructure (pipe) failures, where the noise
variance of meters is 10−6m3/s. It can be seen from Fig.10a,
that as the number of pipe failures increasing, our approach
is able to converge in approximately same amount number of
iterations. Fig.10b shows that Decomp+GN-BP can achieve a
0.71 MSE of headloss when 9% (≈ 22) pipe breaks.

D. Faulty Zones Identification

This section explores the hydraulic state estimation for the
faulty zones identification. To enable the ability of a system
to minimize disruptions and return to the normal function
after disruptive incidents, it is important to quickly detect
and localize faulty regions such that this information can be
used by water agencies and city planners for damage control,
community notifications and evacuation plans. We use WSSC-
SUBNET in this case study, since the coordinates of its water
nodes are their true geo-locations. In this study, 5 major

leak events with different large leak volumes are generated at
random locations, which are indicated by circles in Fig.11a.
According to the modeling of leak events (Sec.III-D), each
pipeline is split into two segments, and the leaky point on a
pipe can cause the difference on the headloss between these
two segments. The key observation is that the true headloss
can be used to identify the broken pipes with TP = 1,
FP = 0. In Fig.11a, our approach is able to localize damaged
pipes with TP = 0.8 of a distance threshold 200m. It can
be seen that though the predicted locations are not the exact
leaky points, it can help narrow down and target the potential
faulty regions such that detailed examinations can be executed
effectively. Water service availability is another important
resilience metric to identify the places where they loss the
access to the facility. The delivered water volume can be
calculated using (1) where the node pressure is computed using
its elevation and estimated hydraulic head. Figure 11b shows
that 99% of loss-of-service nodes can be localized. With this
information, the portable water can be delivered for drinking
and other sanitary purposes.

VI. CONCLUDING REMARKS

This paper presents a novel probabilistic state estimation
approach for fault identification, which combines physical
constraints with structured nondeterministic information into
a single cyber-physical graphical model, for water distribution
systems. We consider the real-world water systems under dis-
asters, where different percentages of physical infrastructures
and monitoring devices are disrupted, and the proposed two-
phase mechanism is scalable for state estimation in large-scale
water networks. This paves the way for distributed control
for next generation water systems. One can imagine that the
estimated damaged state information is fed into a control
decision process, where the pipe network would be reconfig-
ured using remotely controlled valves to save both water and
customer demand issues [8]. In future work, we aim toward
a systematic middleware design and implementation, which
will leverage dynamic data from multiple information sources
including failure models and fragility curves as a source for
priori knowledge, hydraulic state estimates and human inputs
as a source for posterior information, and simulation/modeling
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(c) WSSC-SUBNET: Iterations
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Fig. 9: Total number of iterations to converge and mean square error of headloss at pipes versus the percentage of sensor
failures on NET3 and WSSC-SUBNET.
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Fig. 10: NET3 - (a) number of iterations to converge and (b)
error of headloss at pipes versus percentage of pipe failures.
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Fig. 11: WSSC-SUBNET - (a) predicted damaged pipes with
TP = 0.8, FP = 0.4 of distance threshold 200m; (b) predicted
loss-of-service nodes with precise = 1 and recall = 0.99.

engines, that ultimately will enhance the resilience of future
community water distribution systems.
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