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Abstract— The IoT revolution has enabled per-
petual continuous monitoring of spaces, people and
events. Data thus generated can be used to create
knowledge for diverse ubiquitous services. Today, IoT
platforms are key technology substrate for smart
homes/buildings that are equipped with heteroge-
neous devices and diverse (often multiple) network
interfaces. In this paper, we address a key challenge
in perpetual smartspace applications, i.e. that of
energy cost associated with continuous sensing and
communication. Diverse applications utilize data at
different levels of quality; we exploit these quality
tolerances by modeling them as ”space-states” and
intelligently leverage the dynamic space-states to se-
lect and provision resources ( access networks, device
capabilities) to reduce energy overhead while ensuring
application quality. We propose efficient IoT provi-
sioning algorithms that trigger actions and space-
state shifts to drive energy-optimized sensor/network
activations. To validate our approach, we derive use-
cases from real-world assisted living smarthomes with
multiple personal and in-situ devices and target appli-
cations such as elderly fall detection. Through detailed
testbed measurements and larger simulated scenar-
ios, we show that adaptive provisioning techniques
that use state-spaces and their semantics can achieve
greater than 3X reductions in energy dissipation and
reduce active devices without loss of sensing accuracy.

I. INTRODUCTION

The growing Internet of Things (IoT) ecosystem with
over 50 billion connected devices is accelerating the pace
of IoT deployments that can offer diverse services in
cyberphysical spaces such as smart homes and buildings.
These deployments encompass pervasive sensing, intel-
ligent interaction, smart control and enable continuous
monitoring of spaces, people, activities and events. This
paper focuses on perpetual systems, which are sensing
systems that can continuously monitor the underly-
ing space and provide key insights and services in the
smartspace without interruption. Application domains
for perpetual systems can range from societal services
such as public safety, assisted living and healthcare,
industrial monitoring and control, safe operation of
mission-critical facilities (e.g. nuclear power plants) and
inventory management for enterprises.

For instance, a home-based healthcare monitoring de-
ployment can capture the resident’s Activities of Daily
Living(ADLs) to facilitate patient tracking, health as-
sessments and emergency response services in a manner
that is easier, quicker and safer. Such services enable
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seniors (or individuals with disabilities) to live indepen-
dently; it can be used to provide assurance to family
members/caregivers who cannot be available to provide
care 24 /7. Perpetual health monitoring is also useful in
nursing care and rehabilitation facilities that are facing a
shortage of qualified nurses/doctors to monitor patients
with chronic diseases [1]—[4]. A rather different usecase is
that of a smart campus with IoT-instrumented buildings
[5] which offer a novel range of services - smart class-
rooms/meeting spaces that are able to capture activities
and interactions to improve educational outcomes, pub-
lic safety/environmental monitoring for health/safety,
building energy management for sustainability etc. Con-
sider, next, a smart retail with autonomous inventory
monitoring [6, 7] and checkout systems in physical retail
stores. Studies indicate that the growing cost of human
labor is unable to sustain traditional manual approaches
to inventory inspection and tagging of items - about
4% of sales are lost due to an average 5-10% out-of-
shelf stock-out rate. Experts argue that the design of
reliable/accurate automated inventory monitoring and
checkout systems can revolutionize physical retail by
bringing down operating costs.

While the above IoT deployments hold significant
promises to improve the quality of life, several limi-
tations arise in operating these IoT deployments in a
scalable, resilient manner over time. Perpetual moni-
toring systems are expected to operate 24/7, to deliver
services/detect events. A key operational challenge here
is the energy consumption associated with continuous
IoT sensing/communication operations. These challenges
that arise are both at the device scale and in a broader
sense, at the systemic level. First, IoT devices are often
wireless and small with restricted resources including
limited compute power, battery and storage capabil-
ity. Continuous operation implies increasing plug-loads,
frequent data uploads and battery replacements. The
huge scale of deployment raises questions on the total
energy impact when numerous devices must operate
perpetually; indeed the carbon footprint caused by the
IoT industry is non-trivial. According to a recent IEA
report [8], the total additional energy consumption that
results from connecting devices to a communications
network is expected to increase from 500 TWh in 2010
to 1,150 TWh by 2025; note that this projected number
for communication energy does not include the energy
use of the equipment operation.



In this paper we aim to optimize the energy con-
sumption of IoT-based perpetual systems in smart
space settings by reducing the overhead of sens-
ing/communication energy cost (of mobile and insitu
IoT devices) while supporting essential QoS of running
applications. Our key idea is to exploit the heterogene-
ity of IoT device/communication technologies, and the
dynamic space-states to create a context-aware energy-
efficient IoT system without loss of service quality.

Key contributions of this paper include:

- Modeling data collection needs of dynamic smartspace
applications using a novel space-state abstraction.

- Formalizing energy-efficient multi-network IoT provi-
sioning with space-states as a constrained optimization
problem, shown to be NP-hard.

- Implementing near-optimal algorithms for IoT provi-
sioning that leverages semantics of tasks and spaces. The
phased approach involves floor-plan segmentation, space-
state classification based on events, and energy optimiza-
tion; exploits heterogeneous IoT device/ network.

- Validation of our approach using a real prototype
testbed for assisted living called SAFER |[2]

- Conducting an in-depth measurement study to char-
acterize accuracy/energy cost tradeoffs with multiple
devices and network interfaces, that are used to drive
emulated scenarios in assisted living.

- Extensive evaluations to study the scalability and ef-
fectiveness of our algorithms/approach using simulation
studies using real assisted living layouts.

II. ENERGY EFFICIENCY AND PERPETUAL 10T
In this section, we describe the unique aspects of
energy optimization in the perpetual IoT multi-network
setting and design a space-state strategy.

A. Problem Description

We characterize the energy efficiency problem in
the indoor context where IoT devices are scattered
in a home/building to enable indoor event detection
tasks. Specific sensors include wearable devices with
motion/accelerometers/GPS, ambient sensors to capture
environment such as humidity /temp/gas and audiovisual
sensors that capture voice/video etc.) These IoT devices
have varying capabilities: processing, power source ’bat-
tery or wall-powered’, reliability, accuracy and are in-
terconnected using diverse (sometimes multiple) network
interfaces. Recent advances in IoT communication tech-
nologies have created a variety of low-power connectivity
options, such as NB-IoT, LTE-M, LoRa, Zigbee, etc,
with different network characteristics. NB-IoT and LTE-
M are recent protocols for low bandwidth cellular com-
munications that connect inexpensive internet devices
with small data transmission rates and smaller power
consumption, i.e. higher battery life [9]. Consequently,
TIoT devices are today equipped with multiple network
interfaces that can be customized and configured to sup-
port tradeoffs - e.g. larger datarates for communication
energy consumption based on usage needs.

This feature is handy with perpetual services to detect
critical anomalous events such as elderly falls; event like-
lihoods can help us tune the choice of sensors, data rates
and network interfaces for better situational awareness.
Table I depicts variations in service accuracies and data
rates required that fluctuate based on the current activity
performed in the monitored space. These measurements
can guide the choices made to achieve the highest accu-
racy possible while ensuring energy efficiency.

TIoT Node

Battery
Sensors
/Network Interfaces/

Configurations
capacity E 1

Power Performance
ion accuracy

Mobile phone All sensors/Wi-Fi 2249 mW 70%
Microphone 8Wh Microphone/Wi-Fi 1920 mW 45%
Accelerometer Accelerometer,Gyroscope/Bluetooth 1172 mW 60%
Gyroscope Accelerometer/Bluetooth 1050 mW 10%
/Bluetooth, Wi-Fi, LTE/ Idle 28 mW 0%
‘Wearable device 0.72Wh (CR2032) _\:\llfumus/pLE ) 2‘2.6 5.,"'“‘ 1[%
Accelerometor 3Wh (2XAAA) Accelerometer/BLE 11248 mW 30%
Gyroscope Idle 1.32 mW 0%
/BLE, Zigbee/
Smart pad All sensors/Wi-Fi 31W 90%
Pressure matrix 18Wh Motion, LQ camera/Bluctooth 174 W 75%
Motion © Motion, Pressure matrix/Bluetooth — 1.32 W 70%
A"“‘(‘;‘“‘ sensor Acoustic/LTE-M 740 m\W 45%
amera
/Bluetooth, Wi-Fi Motion/NB-IoT 650 mW 20%
NB-IoT, LTE-M/ Idle 330 mW 0%

TABLE I: 10T CONFIGURATIONS IN THE SAFER PROTOTYPE

For example, in the SAFER assisted living context[2],
activating all platform IoT nodes for a fall detection
service will offer above 90% accuracy. This high level
of accuracy is wasteful at times of low activity (during
night time) when lower levels of sensing/transmission are
adequate. However, higher accuracy is required during
the wake-up times; studies indicate that 70% of elderly
falls happen during this time. This illustrates the need to
provide abstractions that capture the dynamicity of the
underlying space into multiple modes that can then be
used to trigger increased sensing based on event shifts.

We introduce a key abstraction for exposing indoor
space dynamicity in IoT deployments to build more
reliable and energy-efficient systems. For this, we observe
that there are 3 key modes that the physical space shifts
between based on the occurrence of events, We refer to
these settings as space-states. The three modes Normal,
Anomaly, and Emergency modes capture different
conditions and vary in the amount/quality of data that
needs to be sensed and transmitted. Ambient sensing at
low datarates occurs in the normal mode. Upon sensing
a potential gas leak. the system switches to the anomaly
space-state; more data to identify the causes and actions;
a latency tradeoff occurs to capture more information
in the anomaly mode. In a fire event (smoke, heat, gas
detection), the space-state shifts to the emergency state
where low latency and high data quality are needed - we
enable more sensors, high bandwidth interfaces to detect
the causes of fire/recommend evacuation routes [10].

In each mode, knowledge of device capabilities can be
used to activate an adequate subset of data sources to
meet the accuracy/latency levels based on the space-
state. Available connectivity’s options have varying char-
acteristics and energy cost that can be leveraged as
Wi-Fi module is the most energy-hungry [11], this can



be utilized in such a dynamic space to activate the
network interface that accommodates the streaming data
rate. Battery-powered devices such as mobile/wearables
dissipate power quickly and need to be recharged. Fur-
thermore, we noticed that one can designate areas in
the floor plan to be used to identify event patterns;
i.e. not all wall powered IoT devices are utilized all the
time. Knowledge of the space-state and activities of daily
living (ADLS) of a resident can provide us with semantic
information about the location, activity type, duration,
etc.; this can be utilized intelligently to minimize energy
dissipation in the integrated system. Given the above
observations, our goal is to minimize energy consumption
of the integrated IoT deployment to enable long-term
operation while meeting accuracy threshold demands.

B. Related Work

Perpetual monitoring systems are becoming common
in multiple contexts [1]-[7]; however, continuous sens-
ing/transmission and processing for operational purposes
in such settings have cross-layer concerns at multiple
levels of the system (devices, networks, data etc.). One
of the main concerns that gained attention from research
communities, is the energy consumption that increases
the operation costs and affects the system lifetime; novel
techniques have been proposed to reduce energy con-
sumption in sensor networks at the device, communica-
tion/network and system levels.

At the device level, engineers look into circuit and
hardware optimization to reduce power consumption
through energy harvesting (motion, thermal, wireless
[12]-[16]), wake-up receivers, duty-cycling methods to
maximize the devices’ lifetime.

At the communication level, standardization associa-
tions (IETF, IEEE, 3GPP etc.) have specified and devel-
oped protocols to enable energy efficient IoT by reducing
communication overheads. They focused on optimization
of access technologies, and create different options (BLE,
NB-IoT, LTE-M, Zigbee, LoRa, etc.), on adaptation of
IP protocols to extend the web architecture to the most
constrained sensors, and developing lightweight proto-
cols enabling the connection of everything to the cloud
(MQTT, etc.). Each option offers different bandwidth,
range, energy, reliability, etc. [9, 17]-[19]. Also, studies
such as [20], focuses on the access network power con-
sumption for a range of IoT traffic levels.

Earlier literature in system level is based on wire-
less sensor networks which can be classified into three
approaches duty cycling, data-driven and mobility [21].
Duty cycling [22, 23] focus on optimizing the sub-
system by exploiting active/sleep/node redundancy. In
early techniques, sensor nodes, transmission are homo-
geneous(limited heterogeneity [24]) and energy is con-
strained, e.g. LEACH [22]. Data-driven [25, 26] focus
on reducing data sampling/transmission by exploiting
data aggregation, compression, or prediction. Mobil-
ity [21] focus in mobile entities, which can be the

sink. The IoT ecosystem, large level of heterogene-
ity /dynamicity/scalability that integrates several tech-
nologies, e.g. wireless sensor networks. It includes devices
with varying capabilities; these devices use diverse com-
munication protocols and direct connections to local or
cloud platforms.

Recent methods to tackle energy efficiency in IoT vary;
several efforts to modify IoT sensing behavior based
on the application requirements to conserve energy.
The tradeoff between energy and performance metrics
[27]-[29], by designing scheduling/activation algorithms
with the consideration of QoS. As some IoT applica-
tions incur high communication/energy costs, manag-
ing IoT devices to reduce network overhead is critical
and number of studies consider transmission schedul-
ing. They argue that devices consume more energy in
communication; their technique is a self-adaptive that
aims to minimize the energy by harvesting in signifi-
cant manner on IoT; range from modifying scheduling
strategy with traffic streams, optimizing graphs using
critical path elimination, building mini clouds at re-
lays/coordinator/gateways and reduced number of hops
in ToT network, integrating routing and node placement
techniques in a single network architecture [30]—[32].

III. THE ENERGY OPTIMIZATION PROBLEM FOR
MULTI-NETWORK 10T PLATFORMS IN SMART SPACES

In this section, we first introduce various terms com-
prising of our problem (the IoT multi-network energy
problem) then discuss our assumptions about the system;
formulate the problem as an optimization problem.

A. Terms and assumptions

We assume that in each building there is a local
controller that connects with all ToT devices (nodes) to
track their status. Each node has one to many network
(interfaces) to communicate and send their data. Each
node comprises one to many sensors (data sources) that
feed data to a designated service. We also assume that
each node can choose at most one interface at any given
time out of its available network interfaces.

We assume applications are part of smart build-
ing/home systems that deliver multiple services. For
example, smart meeting application (e.g., Noodle in
TIPPERS [5]) in a building can deliver services
such as recording audio/video and speech recogni-
tion/translations. For a given service, a set of sensors be-
longing to a certain set of nodes are required to send data
for the particular service to be realized. For example, for
the fall detection service for an elderly individual, data
from floor mat sensors and cameras around the subject’s
current location is preferred rather than pulling data
from all over. We classify nodes into two groups in terms
of their source of energy/power: unconstrained wall-
powered devices and constrained battery-powered devices.
Obviously, trade-off exists between the energy consumed
by a node and its different network configurations and



their bandwidth and latencies. Lower Latency is desired
but only at the cost of higher energy consumption,
which leads to shorter system lifetime. Higher bandwidth
interface (e.g., Wifi) can be chosen only if the data
volume is high; otherwise, a lower bandwidth interface
may be preferred. Sending an adequate amount of data
through an appropriate network interface results in an
energy-optimized sustainable IoT system.

B. Problem Statement and Formulation

We formulate energy optimization for IoT multi-
network problem as a constrained optimization problem.
Let us denote I to be the set of all candidate nodes
(indexed by i) in a certain segment/building at a given
time, J be the set of all types of data sources/sensors in
the system (indexed by j), and K be the set of all avail-
able interfaces (indexed by k). Obviously, not all nodes
will have all sensors, nor all interfaces. Consequently, we
denote a binary indicator p;; to denote if node i contains
data source type j onboard, s;; to denote if data source
j at node i is required for the service at hand, and
gix to denote if node i has interface k onboard. Given
these (with the associated attributes described later), we
are required to find two sets of binary decisions: (i) x;;
indicating if data source j on node i to be selected for the
service, and (ii) y; indicating if node i chooses interface
k to transmit data at that time interval. The objective
is to minimize the overall energy consumption subject
to latency and accuracy constraints. This selection of
sensors/interfaces happens periodically at an interval
denoted by T.

Each sensor type j has these attributes: the data
generation rate (denoted by drj, measured in bytes per
sec) and the energy consumption rate, e;j, at which
energy get depleted when the sensor gets activated at
node i. Admittedly, different data sources such as video,
audio, and motion generate data in different rates and
consequently consume different amount of energy. Again,
a data source on a certain node has certain accuracy to
contribute towards its service, denoted by a;;. Finally,
each interface k has these attributes: energy consumption
rate (ex, measured in Joules per byte), bandwidth of
the interface (bwy, measured bytes per second), and
the propagation delay/latency of the interface (pli).
Note that the propagation delay accounts for the signal
propagation delay from the transmitter to the receiver,
but the actual end-to-end delay (latency) depends on, in
addition to the propagation delay, to the volume of data
being sent over the interface, which in turn depends on
which data sources are chosen and the bandwidth of the
interface. Consequently, the effective end-to-end latency
lix (at node i for sending data on interface k) is given by:

Lix = plk + (T . injdrj) . ﬁ (1)

As noted earlier, the service in question has two con-
straints: latency constraint and accuracy constraint. The
latency constraint dictates that the end-to-end latency

of collecting data from all of the chosen data sources
should not exceed a certain bound. This bound is called
the latency demand and is denoted by 7. Interestingly,
the latency demand can be a variable (rather than being
a constant) that may change over time depending on
the service operation and its space state. For example,
7 can take a lower value for a time-critical service (when
quicker responses are demanded) than a normal service
when the latency demand can be relaxed (by setting
to a higher value).

The second constraint, the accuracy one, asks for
certain accuracy of the service. We argue that when
data from multiple sources are combined for a given
service, the accuracy of the service should increase. By
defining accuracy as the probability of detecting some
event of interest, we can use a soft OR operator to
combine accuracy when data from multiple data sources
is utilized as follows: if one source gives accuracy a; and
another source one gives a, the combined accuracy is
given by: 1 —(1—a;)(1—-ay) (probability that at least one
of the two sources detects the event), or more generally,
1 -T11,,(1 = ay) for relevant m’s.

The accuracy constraint dictates that the combined
accuracy over all collected data from the chosen data
sources should exceed a threshold, called the accuracy
demand (denoted as «). Like the latency demand, the
accuracy demand can also be a variable that may change
over time depending on the service space state. For
example, when the service detects an anomaly, the accu-
racy requirement becomes higher compared to when the
service was running as normal.

As stated above, our objective is to minimize the
overall energy consumption for collecting and sending
data over the interfaces across all nodes. We also want
to extend the lifetime of battery-powered devices, so we
should consider the remaining battery capacity of those
devices. Considering this, we define energy-cost, denoted
by cik, for each interface choice per node as follows:

cik =T -mi Y, xij (ex X drj + i) (2)
The cost is proportiénal to the amount of energy
consumed by the interface, which is e; times the data
volume generated by the sensors chosen at the node,
plus the amount of energy consumed by the node for
activating those sensors (e;;’s). The cost also takes into
account the fact that operating a battery-operated device
is costlier than an equivalent wall-powered device, when
they both consume the same amount of energy. The oper-
ation arguably gets costlier when the remaining battery
capacity becomes low. To reflect this, we multiply the
base energy consumption with an adjustment factor, n;,
which is given by (the expression is adopted from [2, 3]):
Ti
ni=1+p-exp (—r—o) (3)
1
where r? denotes the initial battery capacity of the node,
r; is the current remaining energy, and g is a tune-able



parameter to adjust the effect.
We, therefore, have the following optimization: find x;;
and y;x so as to—

minimize Z Z Yik * Cik (4)
i€l keK

subject to Z Z xij - log(l —a;j) <log(1—a) (5)
iel jeJ
Vir - lie < T,Vi,k (6)
Yik < inj,\?’i,k (7)

jeJ

Z Yik < LVi (8)
keK
Xij < pij - 8ij, Vi, j 9)
Yik < qir, Vi k (10)

v-xl]a Yik € {O’ 1}’Vi’j’ k

The objective (4) is to minimize the total energy cost
for all nodes for the chosen associated interfaces. Eq 5 is
actually a rewritten expression (taking log in both sides
with some adjustments) of the following:

G

i€l jeJ

which ensures that the effective accuracy accumulated
over all data sources remains higher than the accuracy
demand, a. Eq 6 is to meet the latency constraint so that
the latency of all data sources remains within 7. Eq 7
ensures that an interface on a node is activate (at most
once, Eq 8) only if some sensors on the node is chosen.
The last two constraints allow only onboard data sources
and interfaces to be chosen for a given node.

The IO0T MULTI-NETWORK ENERGY OPTIMIZATION
PROBLEM as formulated above is an NP-hard problem
that can be reduced from the minimum multidimensional
multiple-choice knapsack problem [33].

Looking closely at the formulation, it reveals that
for each node, we are required to find two things: the
subset of data sources to be chosen (x;;) and the network
interface to be used (yi). We can combine these two
selections into one as follows. For each node, we construct
a list of choices where each choice is a tuple in the
form of (S,k) where S is some subset of data sources
for some choice of interface k. Ideally, this list may
contain all possible combination of choices over the set of
data sources and interfaces that the node has. But the
choices for which the associated latency exceeds 7 can
be treated as invalid because they violate the latency
constraint and hence can be dropped. In addition, there
can be an empty choice denoted as (0,null) (no sensors
and no interface are chosen). With this transformation,
we are now required to choose ezxactly one choice per
node that minimizes the total energy cost subject to the
accuracy constraint. This is effectively an instance of the
classical Multiple-Choice Knapsack Problem (MCKP)
and we use the classical MCKP heuristic to solve this.
Since the number of interfaces and data sources per node,

>a/

(11)

)CUClU

in practice, is small (in the order of 10 or fewer), the total
number of choices are rather bounded and an efficient
algorithm can be devised (refer to the next section).

IV. ALGORITHMS AND HEURISTICS FOR ENERGY
OPTIMIZATION IN MULTI-NETWORK 10T PLATFORMS

In the following sections, we will propose a description
of set of feasible design intuitions along practical algo-
rithms based on aggregated resources to optimize energy
efficiency in IoT platforms over heterogeneous networks.

A. Design intuitions

We have considered the following intuitions in our solu-
tion: Location-aware space segmentation: partitioning is a
viable strategy of overall system energy efliciency, scal-
ability, and performance. Fxploiting space-state modes:
aggregating multiple low cost sensor as a base-line ambi-
ent sensing including (motion, door sensors, temperature,
etc.) to detect ambient events/activities such as ADLs
(activities of daily living) and occupancy information,
that shift the space-state modes (normal, anomaly, emer-
gency) is beneficial. These base-line sensors can be wired
or wireless with a slow-battery-drain and consume power
at a very low rate, such as less than 8 watts consumption
in layout of the 39 sensors (31 motion, 4 door, and 4
temperature) deployed on the 900 ft> home, as shown in
Figure 3; that have been used for daily activity/space-
state recognition [4, 34].

B. Framework and Algorithms

Developing an optimal energy efficient system for
perpetual and heterogeneous IoT operation needs com-
prehensive knowledge about the floor-plan architecture,
space-state, semantics patterns, and IoT device pro-
files/status. To handle the complexity that arises due to
the dynamic nature and the diversity of the underlying
infrastructure, we propose a three-phase system frame-
work that utilizes the design intuitions mentioned above
as illustrated in Figurel.
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Fig. 1: The proposed system architecture




Algorithm 1: System- Wide-Greedy(@)

1 ChoicesList;({S}, k) < all combinations of
available ToT nodes(i)with its feasible
sensors{S}subset associated with k interface

2 ChoiceResult; <+ Emptye,({} ,null)
3 CombinedAccuracy = 0;
4 while (CombinedAccuracy < a) do
5 foreach i do
6 AEnergyCost = EC0oStpext (i) — ECOSteyrrent (i)
7
8 CalculateSlop({i})(AEnergyCost|AAccuracy)
9 end
10 Select i with the largest slope;
11 Choice — Result; = Choices — list;(next);
12 CalculateCombinedAccuracy;
13 end

1) Base-line algorithms: We activate all IoT nodes
that are needed by the service at hand (e.g., fall detec-
tion), which are enabled with all data sources (sensors)
required by the fall detection service, such as smart pad,
audio, and video cameras, with the highest bandwidth
network interface available, Wi-Fi.

Location-Aware algorithm: In this approach, we
activate the IoT nodes that are present in the segment
area where the user is currently located based on the
feeds from the ambient sensing. The scheme chooses the
highest data rate to get the highest accuracy with the
highest bandwidth network interface available.

Context-Power-Aware algorithm: In this ap-
proach, we take into the consideration the space-states
(normal, anomaly, emergency) and the demanded ac-
curacy of operation; each space-states mode requires
different level. Also, it maximizes the system lifetime
by activating the wall-powered devices first, then choose
the battery-operated devices in descending order of their
remaining battery capacity until we exceed the current
space-state’s accuracy threshold.

2) Greedy Algorithms: In this subsection, we out-
line greedy heuristics for the selection of data sources
(sensors) and network interfaces per node. As per the
formation outlined in the earlier section, we are required
to find the best choice for each node, that is, the best
(S,k) tuple per node that optimizes the total energy
cost subject to the accuracy constraint. For the n-th
choice at node i, we compute the following two quantities:
energy(i, n) and accuracy(i, n), the total energy cost and
the combined accuracy, respectively, associated with the
choice of data sources and the interface. Given these, we
can construct a selection in the following two ways:

Node-approximation: For each choice (i,n), we com-
pute the ratio of energy(i, n) to accuracy(i, n) and
then rank the choices per node in ascending order this
ratio (0/0 is assumed to be 0). Once the choices are
ranked, the algorithm builds the solution as follows. It
starts by taking the first choice (the empty choice) from
each node (zero energy cost with no interface is chosen)

and then progressively moves to the next immediate
choice per node (one node at a time) and compute the
combined accuracy with the associated choices across all
nodes (using the soft OR operation described before).
The algorithm ends when the accuracy demand is met
(combined accuracy exceeds @) or the solution cannot
be improved any more.

System-wide greedy: In this approach, the search
iterates over the entire (i,n) space instead of doing it

AAccuracy = Accuracynex:(i) — Accuracycurrens (i) PET node. This approach uses the classical gradient-based

MCKP heuristic [35]. The choices per node are ranked in
the ascending order of accuracy (for the choices having
the same accuracy, only the lowest energy choice is kept).
The algorithm, starting with an empty choice, makes a
sequence of changes in which the current choices from
each node are upgraded to the next best based on the
gradient of energy cost change to accuracy change, given
by the ratio Aiiz’%, with worst-case time-complexity
O(n.i). The goal is to move toward the choice that offers
lower change in energy cost compared to a big change
in accuracy. The process continues until the accuracy
demand is achieved (Algorithm 1).

V. PERFORMANCE EVALUATION AND RESULTS

The perpetual IoT platform is derived from our exist-
ing community-oriented IoT deployments in SCALE [1]
that was deployed in Victory Court Senior Apartments
in Montgomery County, MD. Leveraging that, we de-
veloped SAFER [2], an elderly fall detection system,
that helped us to explore challenges arising in real world
deployments and to collect measurements varying and
realistic combinations of sensors to drive our simulations.

A. Prototype Platform and Measurement Study

We aim to investigate the energy consumption of
various IoT access network technologies, such as Wi-
Fi, Bluetooth, NB-IoT, and LTE-M, to present their
average energy consumption based on our measurements
and datasheets [11, 18, 19, 36]-[39]. SAFER: prototype
platform and testbed: The smart pad, shown in Fig-
ure 2, is comprised of multiple data sources (matrix of
Square Force-Sensitive Resistor sensors, motion, camera,
acoustic sensor) with multi-connectivity options: Wi-Fi
(Edimax EW-7811Un), Bluetooth, NB-IoT, and LTE-M
(Cellular IoT Application Shield).

Fig. 2: The SAFER platform devices



Communication Maximum Transmission Latency Avg. Power The communication energy efficiency based on data rate
Technology bandwidth range Consumption 100 bps 100 kbps 1Mbps 10Mbps
Wi-Fi (4router) 54 Mbps < 300 feet 2-3ms 1800 mW 18.00 mJ/b 18.00 pJ/b 1.800 pJ/b 0.1800 pJ/b
Bluetooth (4gateway) 3 Mbps 300 feet 100ms 1000mW 10 mJ/b 10 pnJ/b 1pnJ/b N/A
NB-IoT (Cat-NB1) 250 kbps 6 miles 1.5-10s 480 mW 48 mJ/b 48 pJ/b N/A N/A
LTE-M (Cat-M1) 1 Mbps 1-3 miles 50-100ms 500 mW 57mlJ/b 57 uJ/b 057 pJ/b N/A

TABLE II: Comparison of some access network technologies that have been used in our platform [11, 18, 19, 36]-[39]
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Fig. 3: Segmented floor-plan for an assisted living setting (SAFER with base-line ambient sensing) [34]

The wearable sensor (Ti SensorTag CC2541), Figure 2,
incorporates up to 10 sensors: light, digital microphone,
magnetic sensor, humidity, pressure, acc., gyroscope,
magnetometer, object temperature, and ambient temper-
ature. It includes interfaces BLE, 6LoWPAN and ZigBee.
The setup also has a mobile phone with a set of onboard
Sensors.

The measurements shown in Table I include the trans-
mission range, bandwidth capacity in bits per second and
power consumption. We observe that energy cost per bit
is higher if a small amount of data is sent over a higher
energy interface with higher bandwidth.

According to [38], Bluetooth uses nearly 3% of Wi-Fi’s
energy; for example, sending data at the rate of 75
bytes/sec over Wi-Fi requires 80 mW whereas Bluetooth
consumes only 2mW. In NB-IoT, however, the data rate
does not directly impact the power consumption [18§],
similar to WiFi radio [38].

We, therefore, calculate energy efficiency (in Joules
per bit) of different network interfaces at various

data rates. It is also observed that data sources have
varying data generation rates (e.g., sensors like hu-
midity /temperature/GPS produce 120-200 bps whereas
video can reach up to 10Mbps).

B. Experimental Setup - Simulation Studies

To conduct further experiments, we developed a fixed-
time interval simulator and created multiple test cases
at different scales/devices intensities based on real-world
layout of elderly living options. The floor-plan includes 2
bedrooms, a living room, kitchen, office and 2 bathrooms
with a space of 900f¢> (Figure 3).

With a density of 1 IoT device per 50 f12, we consid-
ered a total of 18 devices (15 static wall-powered devices
and 3 mobile battery-powered devices).

We also considered two more settings with density 1
node per 30f7> and 1 node per 20ff2, respectively. We
execute our simulations on the CASAS trace dataset
obtained from [34] that contains the activities of daily
living of an individual in an assisted living setting for a
week (ADLs are used to switch between space-states).
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Fig. 4: Simulation Results

We use the following performance metrics.
Cumulative energy consumption: the total energy con-
sumption can be used as a benchmark to evaluate the
energy optimization algorithms.

Sensing and transmission energy consumption: we ex-
amine the effect of different algorithms in the ratios of
sensing and transmission energy consumption.

Number of active/idle IoT nodes: intuitively, an opti-
mized algorithm should reduce the number of active IoT
nodes while attaining the demanded accuracy.

C. Ezperimental Results

Comparing Energy Optimization Algorithms:

Figure 4a shows the cumulative energy consumption
of different algorithms. As we can observe, activating
sensors based on space-state demanded accuracy that
has been considered in Context-Power-Aware algorithm
reduces energy consumption by half compared to the
case when all IoT devices in the location are running.
On the other hand, the Node-approximation algorithm
saves nearly 75% of energy, then, System-wide greedy
algorithm consumes little less energy as it takes into con-
sideration the best choice to activate across all devices.

Figure 4b shows the comparison among different algo-
rithms in terms of the ratio of energy consumed for trans-
mission compared to the total energy cost. The resulting
measurements indicate that a significant component of
the total energy cost is consumed for communication
activities.

We next study the effect of using multiple network in-
terfaces on the overall energy consumption. Figure 4c il-

lustrates the energy consumed by the system-wide greedy
algorithm under three settings (only 1 interface for each
IoT node(Wi-Fi); from 2-4 interfaces; the extreme case
where all nodes have 4 interfaces (Wi-Fi,Bluetooth,NB-
IoT, LTE-M). As can be seen, increasing the connectivity
options allows the System-wide greedy algorithm to re-
duce the energy dissipation over time.

IoT Density and Scalability Studies:

Given that the above results that indicate the effi-
cacy of the proposed greedy techniques, we explore the
scalability of our approach in the context of the two
greedy algorithms - Node-approximation and System-
wide algorithms. Specifically, we focused on a one-hour
window, where we observe that both techniques deliver
near demanded accuracy - Figure 4d. An interesting
result can be seen in Figure 4e where the total number
of available IoT nodes in the one-hour segment is five.

The Node-approximation algorithm activates 3 out of
5 nodes to reach the demanded accuracy. In comparison,
the System-wide algorithm activates only 1 out of the
5 nodes. An indirect consequence of using fewer nodes
without sacrificing accuracy is that the System-wide
algorithm can support longer operational lifetimes and
hence increase reliable operation of the desired service.
In the next experiment, we studied the effect of node
density. As seen in Figure 4f, the System-wide greedy
algorithm bounded the energy cost even with a dense IoT
deployment, which is again beneficial in terms of system
reliability and sustainability.



VI. CONCLUSION

In this paper, we studied techniques to ensure energy
efficient perpetual IoT applications in smartspaces while
ensuring application service quality. In particular, we
considered how best to exploit the presence of multiple
sensing modalities and multiple network interfaces along
with knowledge of the application needs in the underly-
ing space to intelligently activate the underlying system
configuration.

In mission-critical environments (e.g. hospitals, chemi-
cal facilities, nuclear power plants), perpetual monitoring
is critical to ensure safe operation; the extraction and
exploitation of current operating context is critical for
timely response. The notion of space-state based moni-
toring and activation in this paper is a starting point to
support both efficiency and safety in these settings.

The ability for such cross-layer coordination (applica-
tion, networking and devices) is of increasing importance
as the number of IoT devices and connectivity choices
increase - such flexibility also enables providers to expand
on existing deployments as new technologies emerge. In
future work, we will scale-up this approach by consider-
ing multiple people in the space, multi-service resource
provisioning.
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