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Abstract—Increasingly more surveillance cameras in smart
environments stream videos to storage servers for on-demand
video analytics queries in the future. Unlike on-demand video
services, in which maximizing the user-perceived video quality is
the design objective, the considered storage servers aim to retain
as much information as possible while offering enough space
for incoming video clips. In this paper, we design, optimize,
and implement an analytics-aware storage server on a smart
campus testbed at NTHU, Taiwan, which consists of eight smart
street lamps equipped with various sensors, network devices,
analytics servers, and a storage server. We focus on the design
and implementation of the storage server, and consider two
key research problems: (i) how to efficiently determine the
information amounts of individual video clips and (ii) how to
intelligently downsample individual video clips. More specifically,
the first problem is to sample video frames from the stored video
clips to analyze for approximations of the information amounts
without overloading the storage server. The resulting information
amounts are fed into the second problem to decide the video
downsampling approaches for retaining as much information
amount as possible without consuming excessive storage space.
We propose two efficient algorithms to solve these two problems
and compare their performance with the current practices via
real experiments on our smart campus testbed. Our experiment
results reveal the practicality and efficiency of our proposed
design and algorithms, e.g., compared to the current practices,
our storage server: (i) improves the per-request information
amount by up to ∼ 4 times, (ii) increases the total information
amount by at most ∼ 20%, (iii) boosts the number of saved video
clips by up to ∼ 35%, (iv) runs in real-time, and (v) scales well
with larger storage space.

I. INTRODUCTION

More and more cameras in smart spaces enable novel
and diverse analytic applications, such as object detection
and tracking [1], face recognition [2], health monitoring [3],
and traffic management [4]. Typically, the cameras upload
surveillance video clips to data centers for storage and an-
alytics [5][6][7]. Doing so however may lead to high opera-
tional cost and suffer from network congestion because each
surveillance camera produces a traffic stream at several Mbps.
A better way to manage the video clips is to store them on a
storage server in an edge network, as illustrated in Fig. 1. The
edge network interconnects multiple nearby Internet-of-Things
(IoT) devices, including surveillance cameras, and connects to
the Internet via a gateway through an access network. Without
uploading all the video clips to the cloud, the traffic load on
the access network is reduced. When users need to analyze the
surveillance videos, they instruct nearby analytics servers to
request for corresponding video clips from the storage server.
These analytics servers could be stationary serving smartphone

or laptop users; they could also be mobile ones installed on,
e.g., police cars.
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Fig. 1. An illustration of a sample IoT edge network, consisting of cameras
(and other sensors), a gateway, a storage server, and several analytics servers.

Keeping the surveillance video clips at the storage server,
however, may quickly fill up its disk. For example, storing
2 Mbps video clips from 10 surveillance cameras for merely
a week consumes 1.4 TB disk space, but surveillance video
clips are typically archived for much longer than a week. Upon
the storage space of the edge server is used up, we have to
get rid of some video clips to make room for incoming ones.
A naive way to do that is to delete the oldest video clips.
Doing so, however, may lead to too much information loss,
because video clips from different cameras and at different
time contain different amounts of information. In fact, video
clips that contain some information may better be downsam-
pled (temporal, spatial, fidelity, or other approaches) instead of
being completely deleted. The downsampled video clips can
still be analyzed for useful analytics results in the future.

In this paper, we design, implement, and optimize a storage
server for saving the surveillance video clips. The goal is to
retain video clips with the highest information amount and
selectively downsample the stored video clips to make room
for future ones. This is, however, no easy task for the following
reasons:

1) Different video clips contain diverse information
amounts, which depend on the dynamic demands of
video analytics.

2) Different downsampling approaches lead to diverse
amounts of information loss.

3) Quantifying the information amount requires executing
video analytics and downsampling video clips requires
video transcoding. Both video analytics and downsam-



pling are computationally intensive and thus need to be
carefully scheduled.

We address the above three challenges as follows. We first
define the information amount to systematically guide the
decisions made on our storage server. We consider multiple
downsampling approaches for freeing up storage space. We
then study two key optimization problems of our analytics-
aware storage server. The first problem is to select the sample
video frames to analyze, in order to approximate the actual
information amount without overloading the storage server.
The second problem is to choose the downsample approaches
to preserve as much information as possible, while making
enough room for incoming video clips. For each of the
optimization problems, we discuss its design rationales and
propose an efficient algorithm to solve it.

We implement our solution in a real smart campus testbed.
Fig. 2 depicts our testbed consisting of eight street lamps
close to the EECS building at NTHU, Taiwan. The street
lamps, like the one shown in Fig. 2 (left), are equipped with
several sensors, including air-quality, temperature, humidity,
wind speed, and motion sensors. Four of the street lamps come
with IP cameras: three fixed bullet camera and one PTZ (Pan-
Tilt-Zoom) camera. The street lamps are interconnected by a
mixture of Gigabit Ethernet and WiFi mesh networks. Some of
the street lamps hold analytics servers, which can be compact
PCs, like Intel NUCs, or single-board computers, like Rasp-
berry Pis. Fig. 2 (right) reveals two sample analytics analyzing
the surveillance video clips. We have also deployed a compact
PC with an NVIDIA RTX-2060 GPU as the storage server.
Using this storage server, we conduct extensive experiments
to evaluate our proposed solution. Our experiments reveal that
our proposed solution: (i) improves the per-request information
amount by up to ∼ 4 times, (ii) increases the total information
amount by at most∼ 20%, and (iii) boosts the number of saved
video clips by up to ∼ 35%.

Fig. 2. The smart street lamp testbed at NTHU, Taiwan: (left) a sample street
lamp with cases for sensors, network devices, analytics servers, and a storage
server; (right) sample video analytics.

II. SYSTEM OVERVIEW

Fig. 3 gives an overview on our storage server in an edge
network, which is detailed in this section.
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Fig. 3. System overview of our storage server in the edge network.

A. Workflow

The surveillance cameras continuously stream coded videos
to the storage server. The video streams are saved on the
storage server at the maximal quality, i.e., with the full
information amount. The stored video clips can be requested
by analytics servers, which host multiple video analytics. We
add a video analytics platform to the storage server, which
runs video analytics that may be deployed on the analytics
servers. We employ an information amount estimator to select
some surveillance video clips (or frames) for analysis, in
order to approximate the information amount without incurring
long running time. When the storage server needs to free
some space, the video clips (or frames) with the lowest
information amount are downsampled. We also add a video
downsampling platform to the storage server, which hosts
various downsampling approaches. We employ a downsam-
pling decision maker, which carefully considers the tradeoff
among the remaining information amount, freed storage space,
and complexity of different downsampling approaches before
making the decisions.

Furthermore, we employ prediction tables to keep track
of available storage and computation resources for timely
executions of information amount analysis and video clip
downsampling. This is to ensure that enough storage space
is freed for new video clips before their arrival time. In
summary, the three key components of our storage server
are: information amount estimator, downsampling decision
maker, and prediction tables. These three components are
executed in parallel. We collectively refer to them as optimal
downsampling manager.

B. Components

We introduce the components of Fig. 3 in the following.

• Information amount estimator. This algorithm approxi-
mates the information amount of individual video clips
(or frames) to address challenge 1 in Sec. I.



• Downsampling decision maker. This algorithm controls
the information loss due to video clip (or frame) down-
sampling to address challenge 2.

• Prediction table. It supports online predictions of re-
source consumptions and information amounts models,
which are needed by the above two components to
ensure ontime completion of the video analytics and
downsampling approaches. This is to address challenge
3.

• Video analytics platform. It hosts multiple video analyt-
ics, which are also run by analytics servers.

• Video downsampling platform. It hosts multiple down-
sampling approaches, which free up storage space.

• Configuration manager. It is an interface for system
administrators to control the storage server. For example,
system administrators may add/remove video analytics
and downsampling approaches, or visualize the video
clips in the time-series database.

III. KEY RESEARCH PROBLEMS

We formally define the two research problems in this
section.

A. Information Amount Estimator

We consider A video analytics. Each analytics a (a ∈ [1, A])
analyzes surveillance video clips to detect certain events. We
let xa be the output of analytics a, where xa can be either a
discrete or a continuous value. Examples of discrete outputs
include illegal parking (boolean) and queue length at a bus
stop (integer); examples of continuous outputs include flood
monitoring (depth) and fog detection (visibility). For analytics
a with discrete outputs, we let na be the normal output. That
is, if xa = na, analytics a detects no event. For analytics a
with continuous outputs, we define a tolerance level δa and
consider no event is detected if |xa − na| ≤ δa. Because the
outputs of different analytics have diverse scales, xa needs to
be normalized. We first let x̃a be the maximal absolute value
of the output from analytics a1. We then define the normalized
information amount as:

ea =

{
0 |xa − na| ≤ δa;
|xa/x̃a| otherwise,

(1)

where δa is set to zero for analytics with discrete outputs.
Generally, larger ea values indicate that more information is
detected by analytics a.

The outputs of individual video analytics depend on the
inputs, which are the surveillance video clips. We consider
C video clips stored in a time-series database on the storage
server. Each video c (c ∈ [1, C]) has fc frames in length.
Moreover, we let W be a C × A matrix, where Wc,a (c ∈
[1, C] and a ∈ [1, A]) represents the weight of analytics a on
clip c, which indicates the importance. W is configurable by
the system administrators, for prioritizing different analytics

1Without loss of generality, we assume x̃a 6= 0. Otherwise, analytics a is
not worthy of being executed.

and clips. With the symbols defined above, we formally write
the information amount of all video frames (F) of all video
clips (C) with all video analytics (A) as:

E(C,F,A) =

C∑
c=1

A∑
a=1

Wc,aec,fc,a · fc
/ C∑

c=1

A∑
a=1

Wc,a. (2)

Notice that ec,fc,a denotes the per-frame information amount
across all frames of clip c without any sampling. The summa-
tions iterate through all analytics and clips, and are normalized
with weight Wc,a.

For a given C, F, and A, computing E(C,F,A) using
Eq. (2) is extremely time consuming as it dictates executing
all analytics on all frames of all clips. The storage server,
unfortunately, is unlikely to be able to perform analysis in
real-time, and an approximation of E(C,F,A) with a shorter
execution time is required. The sample frames need to be
carefully chosen, e.g., selecting a few consecutive frames may
lead to biased results due to the temporal locality across
the frames. To cope with this issue, we equally divide each
clip c into l video chunks where each chunk contains up
to d fcl e consecutive frames. We then form a segment of l
frames by selecting the middle frame from each chunk2. With
the concept of segment, we may adjust the l value to trade
off the computational complexity (slower with larger l) and
information amount accuracy (more accurate with larger l).
The definition of per-frame information amount is written as:

ec,l,a =

{
0 |xc,l,a − nc,l,a| ≤ δa;∣∣∣xc,l,a/l

x̃a/l̃

∣∣∣ otherwise,
(3)

where l̃ represents the sampling length when we get the
maximal absolute value x̃a. To select the l values, we write a
C ×A matrix L, where Lc,a denotes the sampling length l of
analytics a on clip c. Note that Lc,a = 0 implies that analytics
a is not applied on clip c at all. The approximated information
amount is therefore written as:

E′(L) =
∑

Wc,a 6=0

Wc,aec,Lc,a,a · fc
/ ∑

c∈C,a∈A

Wc,a. (4)

Computing E′(L) with Eq. (4) is less computationally inten-
sive compared to computing E(C,F,A) with Eq. (2). The
challenge is to maximize the E′(L) by carefully selecting the
best L. This is the job of our information amount estimator.

B. Downsampling Decision Maker

We next introduce how we save the storage space via
different downsampling approaches. For concrete discussion,
we introduce temporal and fidelity approaches, while spatial
or others can be readily adopted by our storage server. The
first approach is temporal subsampling, which keeps the
first frames of recurring non-overlapping time windows. For
instance, temporal subsampling with a frame-skip of 4 means
keeping 1 out of every 4 frames (i.e., frames 4k+1 ∀k ∈ N).

2Other sampling approaches, e.g., taking the first or the last frame of each
chunk, would also work.



Any future video analytics on deleted video frame f are
approximated with the immediately preceding frame that is
kept, which is 4b f−14 c + 1 in this example. Second, fidelity
downsampling approach essentially transcodes the video clips
with a lower bitrate. The resulting video clips have the same
number of video frames, although their analytics outputs may
be different from the ones from the original video clips.

We let P0 be all possible downsampling decisions, where
each approach specifies a frame rate and a bitrate. We let P be
a 1 dimensional downsampling decision matrix, with a size of
C. Pc indicates the downsampling approach (e.g., 12 frame-
per-second, or fps, at 500 kbps) selected for clip c. Pc = 0
and Pc = −1 indicate deleting clip c and keeping c as it is,
respectively. The approximation of information amount after
taking downsampling decision P is written as:

E′(P) =
∑
Pc 6=0

(
A∑

a=1

Wc,aê(c, a,Pc) · fc
/ A∑

a=1

Wc,a

)
.

(5)
We assume that each video clip can be downsampled more
than once with different decisions. The challenge is to maxi-
mize E′(P) by carefully selecting the best P. This is the job
of our downsampling decision maker.

IV. OPTIMAL DOWNSAMPLING MANAGER

In this section, we present our design of optimal downsam-
pling manager. We start from the prediction tables, which are
followed by the two algorithms solving the research problems
described above.

A. Prediction Tables

The resource consumption of video analytics and down-
sampling approaches depends on: (i) analytics/downsampling
types, (ii) analytics/downsampling parameters (i.e., L and
P), and (iii) context information. Context information refers
to external information that serves as hint for more accu-
rate predictions. Examples of context information include
weather (fewer people taking buses in rainy days), day-of-the-
week (campus buses are busier on weekdays), time-of-the-day
(fewer pedestrians crossing an intersection in late evenings),
and parking lot occupancy (illegal parking are more likely
when the lots are more full). We let function t(c, a,Lc,a)
be the per-frame execution time when analyzing sampling
frames with length Lc,a of video clip c using analytics a.
The context information of c is stored in the same time-series
database along with c itself. Similarly, we use t̂(c,Pc) to
represent the downsampling time of approach d with decision
Pc on video clip c. In addition, the storage space saved by
downsampling can be quantified using the compression rate
r(c,Pc) = ôc,Pc

/oc, where ôc,Pc
represents the compressed

video clip size and oc is the size of clip c in the database.
There are several ways of predicting the resource consump-

tions under different parameters and context. One possibility
is to adopt general regression models with arbitrarily chosen
parameters under diverse context. Doing so, however, requires
too many samples to train the regression models, which

is fairly expensive. We argue that the parameters need not
be arbitrarily chosen because they are determined by the
administrators of the storage server. In other words, as long as
our predictions are accurate with a few pre-selected parameters
values, the storage server will work as good as, if not better
than, having general regression models. Hence, we propose
to employ lookup tables indexed by analytics/downsampling
decisions and context. The tables are built and updated online
with a sliding window of λ samples to accommodate the
environmental dynamics. Whenever there is a ground-truth
sample coming from the video downsampling platform or
analytics servers, we update the sliding window and the tables.
When a prediction is needed, the values in the lookup tables
are returned. When a cell is not populated (is empty), we
use the value in the closest cell (in the sense of context) for
prediction.

TABLE I
SAMPLE LOOK-UP VALUES OF PREDICTION TABLES

Index Sample Values
Analytics {People counting, Illegal parking, . . .}

Downsampling Decision {(12 fps, 500 kbps), (6 fps, 125 kbps), . . . }
Day-of-the-week {Weekday, Weekend}
Time-of-the-day {0, 2, . . . , 22}

We also need to predict the per-frame information amount
ec,Lc,a,a. Following the same design rationale of the resource
prediction, we build an information amount table ê(·) indexed
by analytics, downsampling decision, and context. We give
a sample lookup table in Table I. We estimate ec,Lc,a,a by
ê(·) and update ê(·) with the moving averages, which in turns
allows us to derive E′(L), and E′(P) using Eqs. (4) and (5),
respectively.
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Fig. 4. Inputs/outputs of: (a) the information amount estimation and (b) the
downsample decision making problems.

B. Information Amount Estimator

Design Rationale. Given that the computing power is
limited, we aim to invest more computing power on the clips
and analytics with higher information amounts, so that we
have more accurate estimation on them. We consider a storage
server with storage space O. The deadline for completing the
sample analytics is δi mins, while the problem is solved once
every δ′i hours. Both δi and δ′i are configurable parameters.
The goal is to find the sample analytics matrix L∗, so that: (i)
the analytics can be completed by δi and (ii) the estimated
information amount E′(L∗) is as close to E(C,F,A) as
possible. Fig. 4(a) summarizes the inputs of the problem,
which are: (i) weights W, (ii) deadline δi, and (iii) prediction
tables. The output is the optimal analytics samples L∗.



Algorithm 1 Greedy Estimation (GE) Algorithm
Inputs: Weight W, Deadline δi, Sampling Lengths L0, and Predic-
tion Tables ê(·).
Output: Optimal Sampling Matrix L∗.

1: Let Lc,a = max(L0), ∀c ∈ [1, C], a ∈ [1, A]
2: while

∑
∀c,a t(c, a,Lc,a) · Lc,a > δi do

3: Find (c, a) = argmin
(c,a)

Wc,aê(c,a,Lc,a)·fc
t(c,a,Lc,a)

, where

Lc,a 6= min(L0)
4: Let Lc,a be the next smaller length in L0

5: return L as L∗

Greedy Estimation (GE) Algorithm. We propose an algo-
rithm called Greedy Estimation (GE). This algorithm is based
on an intuition: the execution time and accuracy of information
amount are both reduced once the sampling length is shorter.
Algorithm 1 gives the pseudocode of the GE algorithm. In
line 1, we initialize the sampling lengths Lc,a of all clip c and
analytics a to be the largest value in L0. If doing so can fit into
deadline δi, we take that L as L∗, because it gives the most
accurate information amount. The while-loop starts from line
2 checks if the total execution time of L exceeds the deadline.
If yes, line 3 chooses the (c, a) pair that contains the least
information amount, among all pairs whose sampling length
can still be decreased. We decrease the sampling length of
(c, a) in line 4 because it doesn’t contain too much information
anyway. Upon L meets δi, we return L as the optimal sampling
matrix L∗ in line 5. It is not hard to see that GE has a time
complexity of O(δi), and a space complexity of O(CA).

C. Downsampling Decision Making Problem

Design Rationale. Given that the storage space is limited,
we aim to downsample the video clip with the smallest per-
unit-size information amount until we free up enough storage
space. We set watermarks to indicate determine when to
make decisions. The downsampling decision making problem
is solved once the used space of the storage server reaches
a high watermark Ov′ . The video downsampling must be
done by a deadline δd, and the resulting used storage space
should be lower than a low watermark Ov . Ov′ , Ov , and δd
are user-configurable. Fig. 4(b) summarizes the inputs of the
problem, which are: (i) low watermark Ov , (ii) weights W,
(iii) deadline δd, and (iv) prediction tables. The output is the
optimal downsampling decision P∗.

Greedy Decision (GD) Algorithm. We propose an algo-
rithm called Greedy Decision (GD). The algorithm is based
on an intuition: the video clip with the smallest per-unit-
size information amount should be scarified first, while the
degree of its downsampling approach should be kept as small
as possible. Algorithm 2 gives the pseudocode of the GD
algorithm. Line 1 initializes the downsampling decisions of all
clips c to be −1, which means keeping clip c as is. The same
line also initializes S and T as the used storage space and total
execution time, respectively. The while-loop starting from line
2 iterates as long as the used storage space is higher than the
low watermark or the total execution time does not exceed

Algorithm 2 Greedy Decision (GD) Algorithm
Inputs: Weight W, Deadline δd, Watermark Ov , and Prediction
Tables ê(·).
Output: Optimal Downsampling Matrix P ∗.

1: Let Pc = −1,∀c ∈ C; S =
∑
∀c∈C

oc; T = 0;

2: while S > Ov or T > δd do
3: c = argmin

∀c∈C,Pc 6=0

∑A
a=1 Wc,aê(c,a,L

∗
c,a)·fc

ôc,Pc ·
∑A

a=1 Wc,a

4: d = argmin
∀ôc,Pc≥ôc,d

(ôc,Pc − ôc,d)

5: S = S − ôc,Pc + ôc,d;
6: T = T − t̂(c,Pc) + t̂(c, d);
7: Pc = d
8: return P as P∗

the deadline. The numerator in line 3 accounts for the overall
information amount of clip c, and the denominator accounts for
the overall size. That is, line 3 selects clip c with the smallest
per-unit-size information amount to be downsampled. Line 4
chooses the decision d with the smallest downsampling step,
and hope applying d on c is sufficient to bring the used storage
space to the low watermark Ov . Lines 5–7 apply the changes
on P, S, and T , before going back to line 2. We note that line
4 may end up with d = 0, which indicates that clip c is going
to be deleted. Upon the low watermark and deadline are met,
line 8 returns P as the optimal decision matrix P∗. It is not
hard to see that the time complexity of the GD algorithm is
O(Ov + δd), while its space complexity is O(C).
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V. EVALUATIONS

We conduct real experiments to evaluate the performance
of our storage server.

A. Implementations

We have implemented the proposed storage server on our
smart street lamp testbed at NTHU, Taiwan, which is shown
in Fig. 2. Our testbed implementation is summarized in Fig. 5,
which complies with the design in Fig. 3. Most implemented
components belong to the storage server, which is written in
Python. We leverage: (i) InfluxDB [8] to realize the time-
series database, (ii) Darknet [9] to realize the video analytics
platform and analytics servers, and (iii) FFmpeg [10] to
realize the video downsampling platform. We implement the
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Fig. 6. Our storage server works effectively: (a) the used storage space, (b) the running time of the sample video analytics, and (c) the running time of the
video downsampling decision. Sample results from day 2 (weekend) are shown.

optimal downsampling manager in a modularized manner,
where different components communicate using the socket
API. This allows us to readily replace various algorithms in
our storage server for comparisons. While our storage server
can: (i) receive surveillance video streams from the four IP
cameras on our smart street lamps and (ii) serve queries
through analytics servers from actual users, doing so results
in unpredictable workload, which may prevent us from fairly
comparing different storage server designs. To cope with this
limitation, we also implement: (i) a virtual camera, which
emulates a camera in our testbed by replaying the surveillance
videos and (ii) a query generator, which emulates the requests
from analytic servers. The two components allow us to impose
exactly the same workload on different storage server designs.

B. Setup

For comparisons, we have also implemented the following
storage server designs, which are the current practices:
• Equal-Fidelity (EF) downsamples the old video clips to

a pre-defined bitrate (100 kbps if not otherwise specified)
when more storage space is needed. EF only downsam-
ples each video clip once, i.e., a previously downsampled
video clip is deleted when EF is invoked again.

• Equal-Frame-Rate (EFR) is similar to EF, except that it
downsamples the old video clips to a pre-defined frame
rate (6 fps if not otherwise specified) instead of bitrate.

• First-In-First-Out (FIFO) always deletes the oldest
video clips to free disk space for incoming video clips.

The considered system parameters are as follows, where the
bold font (if any) indicates the default value.
• Sampling lengths: L0 ∈ {5, 10, 25, 50, 100}.
• Downsampling decisions: P0 ∈ {(fr, br), where fr ∈
{24, 12, 6, 1} fps and br ∈ {1000, 500, 100, 10} kbps}.

• Storage space O ∈ {5, 20, 100} GB.
Moreover the high/low watermarks are set to be 100% and
60% of the storage space in our experiments. We let δi = 15
mins, δ′i = 6 hrs, and δd = 6 hrs. We report the sample results
from unit weight matrix due to space limitations. We consider
two sample analytics (which are illegal parking and people
counting) and let λ = 12 throughout the experiments. During

the peak hours, the illegal parking events occur at 60% of the
time, while the average people count is 5.91. We consider the
following performance metrics: (i) information amount, (ii)
used storage space, (iii) number of the stored video clips, and
(iv) running time of the algorithms.

To drive our virtual camera, we select video clips recorded
in November 2019 from an IP camera facing a major intersec-
tion. The video clips are encoded in HEVC [11] at 1 Mbps in
2048×1536 resolution. Each video clip lasts for 1 min at 24
fps. For each experiment, we run the storage server for five
days using the video clips starting from the 9-th (Saturday).
After replaying the video clips of the first five days, we
generate random queries on the day 6, where the queried video
clips uniformly span over the 1st–5th days. For each of the
two considered analytics applications, we employ a Poisson
process to generate random queries, so that there are 10 queries
per hour on average. We repeat the same experiments with our
proposed GE/GD algorithms, as well as FIFO, EF, and EFR
storage server designs.

C. Results

Our storage server and GE/GD algorithms are effective.
Fig. 6 plots the sample results on used storage space and the
running time of sample video analytics and downsampling
decision from day 2. Results from other days are similar.
Fig. 6(a) confirms that: (i) the downsampling decision maker
is invoked once the used storage space reaches the high water-
mark and (ii) the used storage space drops to the low water-
mark as designed. Figs. 6(b) and 6(c) report the total running
time of the video analytics and downsampling approaches.
These two figures demonstrate that both deadlines (δi and
δd) are met in real experiments. In fact, the downsampling
approaches are done with merely 9% of the deadline. Fig. 6
shows the effectiveness of our design and implementations.

Our GE/GD algorithms preserve more information
amount. Fig. 7 plots the sample results on the preserved in-
formation amount from days 2 and 3. Results from other days
are similar. Figs. 7(a) and 7(d) give the per-query information
amount. We first observe that EFR and FIFO lead to zero
information amount for almost all queries (some samples are
overlapping and harder to see). This is because the queries are
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Fig. 7. Our algorithms preserve more information amounts: (a), (d) per-query information amount; (b), (e) total information amount of stored video clips;
(c), (f) number of stored video clips. Sample results from day 2 (weekend): (a), (b), (c); sample results from day 3 (weekday): (d), (e), (f).
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Fig. 8. Running time of GE and GD algorithms. Sample results from day 2
(WE) and day 3 (WD).

generated on day 6; at that time, video clips of earlier days
are already removed. EF works slightly better than EFR and
FIFO. Our GE/GD algorithms significantly outperforms EF by
up to ∼ 4 times on days 2 (weekend) and ∼ 3 times on day
3 (weekday). Figs. 7(b) and 7(e) show the total information
amount of stored video clips. We make two observations on
these two figures. First, the four lines overlap with one another
in Fig. 7(b) until about 20:00. This is because the used storage
space has not reached the high watermark. Second, after video
downsampling is needed, our GE/GD algorithms significantly
outperform all other designs. Compared to the runner-up, we
outperform EF by at most ∼ 30% on day 2 and ∼ 20% on day
3. Figs. 7(c) and 7(f) depict the number of stored video clips.
These figures show that our GE/GD algorithms save at most
∼ 13% more clips on day 2 and ∼ 35% more clips on day
3, compared to EF. Fig. 7 shows that our GE/GD algorithms

indeed preserve more information amount compared to the
current practices.

Our GE/GD algorithms run in real-time. Fig. 8 reports
the sample running time of our algorithms from days 2 and 3.
Results from other days are similar. The figure confirms that
our algorithms run in real-time, at most 53 ms for GE and 368
ms for GD. The running time is indeed negligible compared
to the deadlines, which are in the order of mins if not hrs.
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Fig. 9. Our GE/GD algorithms scale well with larger storage spaces: (a) total
information amount of stored video clips and (b) number of stored video clips.

Our GE/GD algorithms scale well with larger storage
spaces. Fig. 9 reports the per-day performance of our GE/GD
algorithms under different the storage spaces. We observe that
GE/GD perform well across the five days. Moreover, GE/GD
also perform well with larger storage spaces: both in terms of
total information amount and number of video clips.



VI. RELATED WORK

Video analytics applications are considered as the killer
app of edge computing [12], which have been studied in
the literature. For example, Liu et al. [13] present EdgeEye,
which is an edge computing framework for real-time video
analytics applications. Such studies are however orthogonal
to our proposed storage server, as they did not consider the
information amount. Video downsampling is usually achieved
by transcoding, which has been studied in the literature. For
example, Li et al. [14] propose to transcode videos in an on-
demand manner to reduce the cloud resource consumptions.
Such studies are also orthogonal to our proposed storage
server, as they did not consider the information loss. There
have been a few recent studies on the designs of video storage
servers in smart environments, which are closer to our work.
For example, Shao et al. [15] study the correlation among
the cameras at different locations to detect the abnormal
behaviors, which is achieved by building a risk table. Each
clip is then determined to be deleted, partially deleted, or
kept. Unfortunately, the strategy of making such decisions
are not detailed in their paper. Usman et al. [16] propose
an intrusion-driven model, which encodes videos clips with
different encoding parameters. They assume the video clips
can only be downsampled once. Different from our work, these
two studies [15,16] did not propose systematic approaches
to: (i) quantify the information amounts, nor (ii) decide the
downsampling approaches and parameters.

VII. CONCLUSION

In this paper, we detailed the design, optimization, and
implementation of an analytic-aware storage server for surveil-
lance videos from smart environments. The design goal of the
storage server is to retain as much information amounts as
possible under the constraints on storage space and computa-
tional power. We achieved the design goal in three steps. We
first carefully defined the information amount and proposed an
efficient table design for predicting resource consumptions and
information amount. The prediction is then capitalized to solve
two key research problems: (i) information amount estimation,
which computes a sampling length matrix to approximate
the information amounts without overloading the storage
server and (ii) downsampling decision maker, which selects a
downsampling decision matrix to retain the most information
amount without consuming excessive resources (both com-
putation and storage). We conducted extensive experiments
to compare the performance of our proposed algorithms and
system against the current practices. The experiment results
demonstrate the merits of our solution, which:

1) improves the per-request information amount by up to
∼ 4 times;

2) increases the total information amount by at most ∼
20%;

3) boosts the number of saved video clips by up to ∼ 35%.
Our proposed storage server can be extended in several

directions. First, more comprehensive information prediction,

such as those built upon Reinforcement-Learning (RL) ap-
proaches may be adopted; and the implication of more accurate
predictions on the performance storage server can be quanti-
fied. Second, a wider array of analytics applications may be
considered, so that the information overlap among them can
be investigated and potentially leveraged in the storage server
design. Last, approximation algorithms can be developed to
solve the two research problems with performance guarantees
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