
QUEST: Practical and Oblivious Mitigation Strategies for
COVID-19 using WiFi Datasets∗

Peeyush Gupta1, Sharad Mehrotra1, Nisha Panwar2, Shantanu Sharma1,
Nalini Venkatasubramanian1, and Guoxi Wang1

1University of California, Irvine, USA. 2Augusta University, USA.
Email: sharad@ics.uci.edu, shantanu.sharma@uci.edu

ABSTRACT
Contact tracing has emerged as one of the main mitigation strate-
gies to prevent the spread of pandemics such as COVID-19. Re-
cently, several efforts have been initiated to track individuals, their
movements, and interactions using technologies, e.g., Bluetooth
beacons, cellular data records, and smartphone applications. Such
solutions are often intrusive, potentially violating individual pri-
vacy rights and are often subject to regulations (e.g., GDPR and
CCPR) that mandate the need for opt-in policies to gather and use
personal information. In this paper, we introduce QUEST, a sys-
tem that empowers organizations to observe individuals and spaces
to implement policies for social distancing and contact tracing us-
ing WiFi connectivity data in a passive and privacy-preserving
manner. The goal is to ensure the safety of employees and oc-
cupants at an organization, while protecting the privacy of all
parties. QUEST incorporates computationally- and information-
theoretically-secure protocols that prevent adversaries from gaining
knowledge of an individual’s location history (based on WiFi data);
it includes support for accurately identifying users who were in the
vicinity of a confirmed patient, and then informing them via opt-in
mechanisms. QUEST supports a range of privacy-enabled applica-
tions to ensure adherence to social distancing, monitor the flow of
people through spaces, identify potentially impacted regions, and
raise exposure alerts. We describe the architecture, design choices,
and implementation of the proposed security/privacy techniques in
QUEST. We, also, validate the practicality of QUEST and evaluate
it thoroughly via an actual campus-scale deployment at UC Irvine
over a very large dataset of over 50M tuples.

Keywords
COVID-19, contact tracing, location tracing, social distancing,
crowd-flow, WiFi.

1. INTRODUCTION
The ongoing COVID-19 pandemic with rapid and widespread

global impact, has caused havoc over the past few months — at the
time of writing of this paper, over 3 million individuals have been
infected. The epidemic has caused over 200,000 global casualties,
and the world economy to come to a screeching halt. Several (non-
pharmacologic) steps are being taken by governments and organi-
∗We are thankful to Dhrubajyoti Ghosh for helping us in the system installation.
This material is based on research sponsored by DARPA under agreement number
FA8750-16-2-0021. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government. This work is partially sup-
ported by NSF grants 1527536 and 1545071.

zations to restrict the spread of the virus, including social distancing
measures, quarantining of those with confirmed cases, lock-down
of non-essential businesses, and contact-tracing methods to identify
and warn potentially exposed individuals. These tracking and trac-
ing measures utilize a range of technological solutions. Countries,
e.g., Israel, Singapore, China, Taiwan, and Australia, utilize cel-
lular data records or data from Bluetooth-enabled apps to perform
contact tracing. Other countries, e.g., India, have begun manual
contact tracing by interviewing patients.

Recently, commercial and academic solutions (e.g., Apple-
Google collaboration [1], European PEPP-PT [2], Israel’s The
Shield [3], Singapore’s TraceTogether [4], South Korea’s 100m [5],
and [40, 14, 28, 23, 57]) aim to provide secure contact tracing using
Bluetooth-based proximity-detection. Using this approach, users
can check if they have been exposed to a potential carrier of the
virus by performing a private set intersection of their data with the
secured public registry of infected people. While this approach is
a step towards protecting the privacy of individuals, there are sev-
eral limitations: First, the collection and sharing of such personal
information can compromise the privacy of individuals — there are
growing fears that this could also lead to misuse of data (now or in
the future), e.g., mass surveillance of communities and targeting of
specific populations [24, 57]. Second, such methods require users
to opt-in to broadcast, share, and collect the data using Bluetooth
— past work has highlighted limited adoption of such technolo-
gies, especially, in parts of the world where privacy is considered
to be a paramount concern [40, 19]. Third, contact tracing using
Bluetooth or GPS-based proximity sensing has been shown to have
false positives/negatives, leading to limited accuracy [23, 40]. Fi-
nally, past experiences have indicated that creating pathways for
large organizations to capture personal data can lead to data theft,
e.g., Facebook’s Cambridge Analytica situation and [51].

Contact tracing approaches are reactive in nature and aim to
detect exposure after it occurs. We argue that proactive and pre-
ventive approaches are critical to contain and mitigate the spread.
For instance, the ability to monitor public spaces (e.g., classrooms,
restaurants, malls), which are expected to have significant density
and population flow, can be used by organizations (e.g., campuses)
to observe the extent to which employees (and employers) are ad-
hering to social distancing directives. In fact, based on recent me-
dia articles [6, 7] and conversations with our university leadership,1

the importance of such applications will increase further as organi-
zations consider ways forward to reopen and resume operations.
Today, organizations are working to help strike the right balance
between onsite/online operations that afford both business continu-
ity and public safety.
1Including epidemiologists in the public health school.

1

ar
X

iv
:2

00
5.

02
51

0v
1 

 [
cs

.D
B

] 
 5

 M
ay

 2
02

0



This paper describes our proposed solution, entitled QUEST that
exploits existing WiFi infrastructure (prevalent in almost every
modern organization) to support a sleuth of applications that em-
power organizations to evaluate and tune directives for safe op-
eration, while protecting the privacy of the individuals in their
premises. Particularly, QUEST leverages WiFi connectivity data
(the data generated when a device connects to wireless access-
points, see §4 for details) to support applications for social dis-
tancing adherence, crowd-flow, contact tracing, and exposure noti-
fications within premises (both inside/outside buildings). The WiFi
data collected is appropriately secured to prevent leakage of person-
ally identifiable information (e.g., MAC address of the mobile de-
vice) and outsourced to a public (cloud) server. On the outsourced
data, QUEST allows application execution to occur in a privacy-
preserving manner.

QUEST supports two different cryptographic alternatives for se-
cure data processing; the choice of the approach is based on under-
lying security requirements of the organization. The first is a com-
putationally secure encryption-based mechanism, entitled CQUEST
that encrypts data using a variant of searchable encryption methods.
The second approach called IQUEST, based on a string-matching
technique [29] over secret-shares generated using Shamir’s secret-
sharing algorithm [54]. Both methods support the above-mentioned
applications. IQUEST offers a higher level of security, when using
untrusted servers, since it is information-theoretically secure, and
moreover, does not reveal access-patterns (i.e., the identity of tuples
satisfying the query). We have deployed QUEST at UC Irvine [8],
as well as, tested the system on large WiFi datasets. These datasets
were collected as a part of the TIPPERS smartspace testbed at
UCI [48] and will also be used for scalability studies.

QUEST offers several distinct advantages compared to other on-
going contact tracing efforts that have focused on using GPS, cel-
lular infrastructure, and proximity sensors (e.g., Bluetooth) [9, 4, 1,
23, 28, 40]. These include:

• A Decentralized organizational solution. QUEST is designed as a
tool to be used independently and autonomously by organizations
(e.g., universities, individual shops/shopping complexes, and air-
ports) to monitor adherence of their policies for social distancing,
crowd-flow, and, to warn people about possible exposure on their
premise. The organizational aspect of QUEST brings several ad-
vantages. First, the solution is amenable for organizational-level
control to ensure that warning and alerts are not misused to spread
false information, unlike some of the recent tools which are being
targeted by malicious adversaries to spread propaganda and misin-
formation [10, 11]. Second, unlike solutions such as the one being
designed by mobile OS platform vendors (viz. Apple and Google),
in QUEST, both data collection and usages remain decentralized to
the level of an organization and, thus, end-users do not need to trust
any single organization/authority with their data.

• A robust solution that works both inside buildings and outdoors.
Since QUEST is based on WiFi technology, it has a distinct advan-
tage of being able to monitor both inside buildings (organizational
premises) and in outside spaces, due to the ubiquitous nature of
WiFi coverage in both indoors and outdoors of campuses. The use
of WiFi data brings in several additional advantages: First, QUEST
does not require any additional hardware expenses or deployment
of any new technology that might be prohibitive in terms of cost
and limited in terms of deployment. Second, since WiFi connec-
tivity events are generated automatically by current WiFi proto-
cols, QUEST is entirely passive, i.e., it does not require users to

deploy any new applications or make changes to their mobile de-
vices. Third, the technology is platform independent, since data
collection is implemented entirely on the infrastructure side.

• Privacy-by-design. QUEST supports the above-mentioned applica-
tions in a privacy-preserving manner by exploiting computation-
ally secure and information-theoretically secure techniques. Thus,
QUEST does not provide additional information about people, their
locations, or their health status to any organization that they do
not already have. Also, an adversary cannot learn past behavior or
predict the future behavior of any user. Since the ciphertext repre-
sentations of a person across organizations are different, even from
jointly observing data of multiple organizations to know any spe-
cific person has been to the premises of one or more organizations.2

Outline. §3 provides the model and security properties. §4 pro-
vides an overview of QUEST and its applications. §5 provides
CQUEST protocol. §6 provides IQUEST protocol. We evalu-
ate QUEST in §7 and compare it with other state-of-the-art ap-
proaches, e.g., Intel Software Guard Extensions (SGX) [26] based
Opaque [62] and multi-party computation (MPC)-based Jana [17];
we discuss tradeoffs between security and performance.

2. RELATED WORK AND COMPARISON
In this section, we discuss the new approaches designed for

COVID-19 contact tracing, several prior research approaches have
explored proximity-based solutions to monitor the spread of infec-
tions, and compare against QUEST.

Comparison with COVID-19 proximity finding approaches.
Several recent approaches for preventing the spread of coronavirus
are based on Bluetooth data-based secure proximity detection. For
example, Canetti et al. [23] present a person proximity detec-
tion method based on Bluetooth-enabled devices. However, this
method requires to store parts of the data at the user device. [23],
also, argued that GPS-based proximity detection inside a build-
ing can give false results. Stanford University [9] is also devel-
oping applications based on Bluetooth data. Singapore’s TraceTo-
gether application [4], also, works based on Bluetooth-based track-
ing. However, [24] showed that TraceTogether jeopardizes the user
privacy. DP-3T (decentralized privacy-preserving proximity trac-
ing) [57] proposed a proximity tracing system based on Bluetooth
data. Google and Apple [1] are developing Bluetooth beacon-based
contact tracing, while preserving the user privacy and location pri-
vacy. Similar work is also proposed in [28, 40] for Bluetooth data-
based secure proximity detection, based on the private set intersec-
tion. Enigma MPC, Inc. [12] develops SafeTrace that requires users
to send their encrypted Google Map timeline to a server equipped
with Intel SGX [26] that executes contact tracing and finds whether
the person got in contact with an impacted person or not. A survey
of recent contact tracing application for COVID-19 may be found
in [56]. However, all such methods require either to install an ap-
plication [57, 4] at the device, to store some data [23, 28] at the
device, to execute computation [23, 12, 28] at the device, to explic-
itly opt-in to enable Bluetooth-based beacon exchange [1, 28, 40],
or jeopardize the user privacy [24].

In contrast, QUEST does not require any effort by users, since
we rely on WiFi data that is generated when a device connects with
a WiFi network. QUEST discovers the most accurate proximity of
2Organizations today, if they so desire, can capture and trace individuals based on their
WiFi connectivity data. QUEST, obviously, cannot prevent such a use of WiFi data.
The key-point is that while QUEST stores secured WiFi data at the cloud, the data-at-
rest or query execution will not reveal any additional information to the organizations.

2



a person inside a building, unlike GPS-based approaches. Also,
while using the servers, IQUEST provides complete security, due
to using secret-sharing based technique. QUEST not only provides
contact tracing, but also provides other applications (Table 1).

Comparison with other proximity finding approaches.
Epic [15] and Enact [50] are based on WiFi signal strength, where
a dynamic user scans the surrounding’s wireless signals, access-
points, and records in their phones. The infected user sends this
information to a server that notifies other users and requests them
to find their chances of contact. However, Epic [15] and Enact [50]
consider trust in reporting by the infected users and requires
storing some information at the smartphone, like Bluetooth-based
solutions [57, 4, 23, 12, 28]. Another problem with such signal
strength-based methods is in developing models to compare WiFi
signals and have issues related to spatial, temporal, and infras-
tructural sensing [42]. NearMe [43], ProbeTag [47], [52], [49],
and [44] proposed similar approaches for proximity detection.
The seminal work [21] proposed distance-bounding protocol to
estimate an upper-bound on the physical proximity of the device
through the round-trip time measurements, by exchanging unique
challenge-response pairs between a sender and a receiver. [34]
provided a solution for proximity testing among the users while
hiding their locations by encryption and considered user-to-user-
and server-based proximity testing. Note that all such methods
require active participation from the users.

In contrast, QUEST does not require active participation from the
user, since it relies on WiFi connectivity data, which is, obviously,
generated when a device gets connected with a WiFi network.

Background on cryptographic techniques. We may broadly clas-
sify existing cryptographic techniques into two categories: (i) Com-
putationally secure solutions that includes encryption-based tech-
niques such as symmetric-searchable encryption (SSE) [55, 27, 45,
46], deterministic encryption [18, 20], and order-preserving en-
cryption (OPE) [13], (ii) information-theoretically secure solutions
that include secret-sharing-based techniques [54, 29] and multi-
party computation (MPC) techniques [17]. Computationally se-
cure solutions, such as SSE — PB-tree [45] and IB-tree [46], are
efficient in terms of computational time. However, they (i) reveal
access-patterns (i.e., the identity of the tuple satisfying the query),
(ii) do not scale to a large-dataset due to dependence of a spe-
cific index structure, (iii) are not efficient for frequent data inser-
tion, since it requires to rebuild the entire index at the trusted side,
and (iv) cannot protect data from a computationally-efficient adver-
sary or the government legislation/subpoena that may force to give
them the data in cleartext. In contrast, information-theoretically
secure solutions hide access-patterns, as well as, secure against a
computationally-efficient adversary or the government legislation/-
subpoena, (if the shares of the data are placed at the public servers
under the different jurisdiction). Instead of using any cryptographic
solution, one may also use secure hardware-based solutions that
include Intel Software Guard eXtension (SGX) [26] based sys-
tems, e.g., Opaque [62], Bunker and Fort [16], HardIDX [32], and
EncDBDB [33]. However, such solutions suffer from similar issues
as computationally secure solutions and suffer from additional side-
channel attacks, such as cache-line [38] and branching attacks [59]
that reveals access-patterns.

3. PRELIMINARY
This section explains the entities involved in deploying QUEST,

the adversarial model, and the desired security properties.

3.1 Entities
We have the following two major entities in QUEST.

1. An organization oi, who owns and deploys WiFi infrastruc-
ture (e.g., WiFi access-points), and hosts QUEST that receives
WiFi (connectivity) data (from the infrastructure) of the form:
〈di, li, ti〉, where di is the ith device-id and ti is the time when
di connects with a WiFi access-point li. Prior to outputting the
data, QUEST appropriately implements a cryptographic technique
to prevent misuse of the data from an adversary.

2. The untrusted public (cloud) servers that host the secured data, out-
sourced by QUEST, on which they execute applications. We as-
sume that the servers support any database system, e.g., MySQL.

Also, we assume two additional entities: a querier and a pub-
lisher (P). A querier (which may be the organization or any (au-
thenticated) person) is allowed to execute QUEST applications on
the secured data (via QUEST). Further, only for contact tracing ap-
plication, we assume a trusted publisher P (i.e., hospitals), who
publishes a secured list L of device-ids of confirmed infected per-
son. We assume that QUEST executes a secure authentication pro-
tocol with P to confirm the queried device-id as the device-id of an
infected person, before executing contact tracing application. Thus,
it prevents the querier to execute a query for any device-id.

3.2 Adversarial Model
As we have two entities in QUEST. Below, we discuss their ad-

versarial behavior and our assumptions.
Organizations. We assume that organizations have their own se-
curity keys (e.g., public and private keys). A system that hosts
QUEST, its security keys, and programs must be secured and un-
tampered by anyone including the organizations, and this is an in-
evitable assumption, as well as, similar to the database-as-a-service
(DaS) model [39], (where it is assumed that an adversary cannot fil-
trate the information stored at the database owners). Otherwise, any
cryptographic mechanism cannot be implemented on WiFi data.
Also, it is important to mention that oi can capture their infras-
tructure data and can do any computation on the data as per their
desire, without informing anyone. Controlling such organizations
and preventing the misuse of the data is not in the scope of QUEST.
Recall that QUEST’s goal is to prevent oi to track individuals or to
run any applications other than those supported by QUEST on the
data collected by QUEST.
Cloud servers. We assume that the public servers are honest-
but-curious (HBC) and/or malicious adversaries. Such adversarial
models are considered widely in data outsourcing techniques [39,
27, 22, 41, 29, 58, 61]. An HBC adversary may wish to learn
the user information by observing query execution, while a mali-
cious adversary deviates from the algorithm. Since dealing with a
malicious adversary, we use an information-theoretically secure so-
lution that uses Shamir’s secret-sharing [54]. Thus, we follow the
restriction of Shamir’s secret-sharing that the adversary cannot col-
lude with all (or possibly the majority of) the servers. Prior to send-
ing the data to the server, we assume that QUEST authenticates the
servers. Also, we assume that the secret-shared data transmission to
the servers is done using an anonymous routing protocol [36], and
it prevents an adversary to eavesdrop on a majority of communica-
tion channels between QUEST and the servers, and thus, preventing
the adversary to know the servers that store the secret-shares.

3



Organization C

Organization B

Organization A

Wi-Fi Infrastructure QUEST

Public Cloud 
Storage 

Notification

Access Points

Wireless 
Controller

4. Quer y 
submi ssi on

Trapdoor Generator

Publisher
 (Hospital/CDC)

Users

5. Conf i r mat i on

Secur ed 
dat aset

Quer y execut i on
  and  r esul t s

7. Resul t  r el ease 
or  Not i cat i ons

Data Encrypter2. Dat a 
i ngest i on

0. Devi ce 
associ at i on 
event

1. Devi ce associ at i on 
event s t hr ough AKE 
secur ed communi cat i on

Location 
Tracing

Contact 
Tracing

Social 
Distancing

Crowd 
Flow

Data Collector

Ingestor

0

1

2

3

4

5

6

7

4

8 Resul t s

Quer y

Figure 1: QUEST system.

3.3 Security Properties
In the above-mentioned adversarial model, an adversary wishes

to reveal user privacy by learning from data-at-rest and query ex-
ecution. Thus, a secure algorithm must prevent an adversary to
learn the data by just observing (ii) cryptographically-secure data
and (ii) query execution and deduce which tuples satisfy the query
(i.e., access-patterns). Also, we need to ensure that a querier cannot
execute a query for device-ids not published by P . Thus, we need
to maintain the following properties:
Ciphertext indistinguishability. In the proposed scheme, the data
contains user device-id. Thus, the indistinguishability of the user
device-ids and locations is a vital requirement. Thus, the adversary,
just by observing the secured dataset, cannot deduce that any two
tuples belong to the same user/location or not. Note that satisfy-
ing indistinguishability property also prevents the adversary from
learning any information from jointly observing two datasets be-
longing to two different organizations.
Secure query execution. It requires to maintain: (i) Query pri-
vacy that prevents the adversary from distinguishing between two
query predicates (for the same or different device-ids and locations)
by observing the query predicates or by observing the two queries’
execution, i.e., access-patterns. (ii) Execution privacy that enforces
the adversary to behave identically and to provide an identical an-
swer to the same query. (Since an adversary cannot distinguish
between two query predicates, it should follow the same protocol
for each query execution to prove its non-adversarial behavior.)

Satisfying these two properties achieve indistinguishability prop-
erty during data-at-rest/query execution and do not reveal any in-
formation about the device-ids/locations. We can, formally, define
it using the algorithm’s real execution at the servers against the al-
gorithm’s ideal execution at a trusted party having the same data
and the same query predicate. An algorithm reveals nothing if the
real and ideal executions of the algorithm return the same answer.

Definition: Query privacy. For any probabilistic polynomial time
(PPT) adversary having a secured relation and any two input query
predicates, say p1 and p2, the adversary cannot distinguish p1 or
p2, either by observing the query predicates or by query output.

Definition: Execution privacy. For any given secured relation,
any query predicate p issued by any real user U , there exists a PPT
user U ′ in the ideal execution, such that the outputs to U and U ′

for the query predicate p on the secured data are identical.

Note that satisfying the above two requirements (which are
widely considered in many cryptographic approaches [22, 41, 29])
will hide access-patterns, thus, the adversary cannot distinguish
two different queries and the satisfying output tuples. However,
such a secure algorithm (as given in §6) incurs the overhead. Thus,
we relax the access-pattern-hiding property (similar to existing
searchable encryption or secure-hardware-based algorithms) and,
also, present efficient access-pattern revealing algorithm, CQUEST
(§5). In Appendix A, we provide security property of CQUEST.

4. QUEST ARCHITECTURE
QUEST contains the following three major components (see Fig-

ure 1):
Data collector. It collects WiFi connectivity (or association event)
data of form 〈di, lj , tk〉, when a device di connects to a WiFi
access-point (AP) lj at time tk. Particularly, at the infrastructure
side, the collector contains a wireless controller that receives WiFi
data from several APs ( 0 ), via several methods, e.g., SNMP (Sim-
ple Network Management Protocol) traps [53, 63], recent network
management protocol NETCONF [30], or Syslog [35]) and for-
wards WiFi data to QUEST ( 1 ) over the network using the secure
networking protocol (e.g., SSH [60]). QUEST receives and han-
dles a large amount of streaming WiFi data at a very high rate ( 1 ).
However, the encrypter may not be able to handle a sudden burst
of data, due to the overhead of security techniques and may drop
some data. Thus, QUEST data collector includes an ingester (e.g.,
Apache Kafka, Storm, and Flume) that acts as a buffer between the
wireless controller and the encrypter ( 2 ).
Data encrypter. The encrypter collects data for a fixed inter-
val duration, called epoch (the reason of creating epochs will be
clear soon in §5) and then implements a cryptographic technique
(based on the desired security level, using CQUEST Algorithm 1 or
IQUEST 3) and outputs the secured data that is outsourced to the
servers ( 3 ).
Trapdoor generator. A query/application is submitted to the trap-
door generator ( 4 ) that generates the secure trapdoor (using Algo-
rithm 2 or 4) for query execution on secured data. For (user) contact
tracing, it confirms the submitted device-id as the real device-id of
an infected person or not, from the publisher ( 5 ). The trapdoors
are sent to the servers that execute queries and send back encrypted
results ( 6 ). The results are decrypted before producing the final

4



Figure 2: Social distancing application interface before lockdown.

Figure 3: Social distancing application interface after lockdown.

answer ( 7 ). Further, the organization may alert the users appropri-
ately (via emails or phones), if devices have allowed the organiza-
tion to inform about it, during their registration ( 8 ).

QUEST Applications. On the secured data, QUEST supports the
following diverse applications, which monitor/mitigate the spread
of COVID-19 (Table 1 lists the application in SQL):

1. Location tracing: traces all locations that were visited by an in-
fected person in the past 14 days (the possible incubation time of
coronavirus). Once the information of an infected person is pro-
vided to trapdoor generator, it, first, confirms from the publisher
about the infected person, and then, generates trapdoors to find the
locations visited by the person during the desired time interval.

2. User tracing: traces all users that were in the vicinity of an infected
person in the past 14 days. Note that this is a natural extension of
the previous application, by tracing all people who were at the in-
fected locations at the (bounded) interval time (e.g., +/-15minutes),
when an infected person was there.

3. Social distancing: finds the locations and/or users in the campus
that are not following social distancing rule. The idea is to use WiFi
dataset to create a predefined occupancy knowledge at the granu-
larity of buildings, floors, and regions within buildings. Now, the
dynamic occupancy levels of such buildings (along with the knowl-
edge of the capacity of rooms/floors/buildings) help in establishing
to what degree different parts of the buildings are (or have been)
occupied. Such a measure can help develop a quantitative metric,
a social distance adherence index (e.g., at UCI, 6 feet distancing
requirement was translated roughly into 12.5% occupancy).

Figure 2 shows the interface of social distancing application at UCI
before the lockdown was announced. Figure 2 shows social dis-
tancing at different granularity, such as regions, floors, and build-
ings, where red-colored dots show that the buildings are not fol-
lowing social distancing rule. Figure 3 shows the interface of social
distancing application at UCI after the lockdown was announced,

Figure 4: Crowd-flow application interface after lockdown.

where green-colored dots show that the buildings are following so-
cial distancing rule.

4. Crowd-flow: finds locations that were visited by many people in a
day, and hence, need frequent cleaning. Note that this is a natural
extension of social distancing application. This application pro-
vides information to individuals about the number of people vis-
iting a given region over a given time period. Such information
can be vital for people wishing to avoid crowded areas and also for
the cleaning staff to determine places where disinfecting might be
necessary. Figure 4 shows the interface of crowd-flow application
after the lockdown.

5. Notification: enables all (desired) users to receive notifications, if
they are tentative suspects. Note that often when connecting to a
WiFi network, it may ask email address or phone number; QUEST
exploits such information for notifications, (if allowed by the user).

5. CQUEST PROTOCOL
This section presents computationally-secure methods, CQUEST

to encrypt WiFi data and to execute queries on encrypted WiFi data.

Key generation. QUEST encrypter generates a symmetric key:
(sq ⊕ kpko)||attributei, i.e, the key is generated for each attribute
of R by XORing the secret-key of QUEST (sq) and public key of or-
ganization (kpko), and then concatenating with the attribute-id. We
denote the key for an attribute i by ki in Algorithm 1, and unless
not clear, we drop the notation ki from the description.

Data Encryption Method
Algorithm 1 provides pseudocode of proposed data encryption
method that is executed at QUEST encrypter. It takes tuples of an
epoch, produces an encrypted relation R with five attributes. Ta-
ble 2b shows an example of the produced outputs by Algorithm 1,
which works as follows:
Selecting epoch. We use the bulk encryption method. Note that
WiFi access-points capture time in milliseconds and ping the same
device after a certain interval, during which the device can move.
These two characteristics of WiFi data capture makes it hard to
track a person based on time.3 Thus, we discretize time into equal-
length intervals, called epoch, and store a special identifier for each
interval (that maps to the wall-clock time). An epoch x is denoted
by ∆x and is identified as a range of begin and end time. All sen-
sor readings during that time period are said to belong to that epoch.
There are no gaps between epochs, i.e., the end time of the previ-
ous epoch is the same as the begin time of the next epoch. For
simplicity, we identify each epoch by its beginning.
Encrypting device-ids: Attribute Aid (Lines 6-8). Since a device di
can appear multiple times in an epoch, we need to prevent the
3For example, a query to find a device’s location at 11:00am, cannot be executed in a
secure domain, due to unawareness of millisecond-level time generated by APs.

5



Applications SQL syntax
Location tracing SELECT DISTINCT l o c a t i o n I d

FROM WiFiData
INNER JOIN I n f e c t e d U s e r s ON WiFiData . macId = I n f e c t e d U s e r s . macId
WHERE t imes t amp > t1 AND t imes t amp < t2

Contact tracing SELECT DISTINCT Wif iDa ta . macId
FROM WiFiData LEFT OUTER JOIN I n f e c t e d U s e r s ON WiFiData . macID = I n f e c t e d U s e r s . macId

(SELECT l o c a t i o n I d , t imes t amp
FROM WiFiData
INNER JOIN I n f e c t e d U s e r s ON WiFiData . macId = I n f e c t e d U s e r s . macId
WHERE t imes t amp > t1 AND t imes t amp < t2 ) AS I n f e c t e d L o c a t i o n s

WHERE WiFiData . l o c a t i o n I d = I n f e c t e d L o c a t i o n s . l o c a t i o n I d
AND EXTRACT( WiFiData . t imes tamp , ∆ ) = EXTRACT( I n f e c t e d L o c a t i o n s . t imes tamp , ∆ )
AND I n f e c t e d U s e r s . macId IS NULL

Social distancing SELECT DISTINCT COUNT( MacId )
FROM WiFiData ,

(SELECT WiFiData . l o c a t i o n I d , t imes tamp , COUNT( DISTINCT MacId ) / c a p a c i t y AS s o c i a l D i s t a n c i n g
FROM WiFiData INNER JOIN L o c a t i o n ON WiFiData . l o c a t i o n I d = L o c a t i o n . l o c a t i o n I d
WHERE t imes t amp > t1 AND t imes t amp < t2
GROUP BY WiFiData . l o c a t i o n I d , t imes t amp /300
HAVING s o c i a l D i s t a n c i n g > maxAllowed}) AS V i o l a t i o n s

WHERE WiFiData . l o c a t i o n I d = V i o l a t i o n s . L o c a t i o n I d
AND EXTRACT( WifData . t imes tamp , d e l t a ) = EXTRACT( V i o l a t i o n s . t imes tamp , d e l t a )

Crowd-flow SELECT l o c a t i o n I d , COUNT( DISTINCT macId ) AS u s e r s V i s i t e d
FROM WiFiData
WHERE t imes t amp > t1 AND t imes t amp < t2
GROUP BY l o c a t i o n I d
ORDER BY u s e r s V i s i t e d DESC
LIMIT K

Table 1: A sample of supported applications by QUEST in SQL.

frequency-count attack, while data-at-rest. Also, during query exe-
cution, we want to know whether di is present in the desired epoch
at least once or not. To do so, we encrypt the first appearance of
di in the epoch as E(di, 1, x) and maintain a hash table with value
one for di in the epoch. Otherwise, we use any random number r
and encrypts as E(di, r). We add the epoch-id with E(di, 1, x) to
make di’s first appearance indistinguishable in other epochs.
Uniqueness of the device: Attribute Au (Lines 6-8). To execute ap-
plications such as social distancing and crowd-flow, we need to
know unique devices at each location in ∆x. Thus, when a de-
vice di appears for the first time at a location in yth tuple, we add
its uniqueness by E(1, y,∆x). (It will avoid QUEST to decrypt all
encrypted device-ids for knowing distinct devices in ∆x.)
Encrypting locations: Attributes AL and ACL (Lines 9-12). First,
we need to produce different ciphertexts for multiple appearances
of a location to prevent frequency-count attack, while data-at-rest.
To do so, we use a counter variable for each location and increment
by 1, when the same location appears again in a tuple of ∆x (and
could, also, add x, like di’s encryption). Second, we need to deal
with di that moves to different locations in ∆x. Note that based on
E(di, 1, x), we can search only the first appeared location of di in
∆x. Thus, we collect all locations visited by di in ∆x and add to
the combined-locations attributeACL in a tuple havingE(di, 1, x).
We pad the remaining values of ACL by encrypted fake values.
Epoch-ids: Attribute A∆ (Lines 13). Finally, we allocate an identi-
cal epoch identifier4 to all tuples belonging to ∆x and encrypts it.
It allows search based on time, e.g., based on epoch-id.5

Query Execution
Table 1 shows applications supported by QUEST in SQL, and Algo-
rithm 2 explains trapdoor generation process at QUEST (denoted by
4One may assign the begin time of each epoch as an identifier, e.g. 4:00, 4:15, and
4:30, while the epoch duration is 15 minutes, or an increasing counter.
5Based on epoch-ids, we can execute query to find device’s location at any desired
time, e.g., 11:00am.

Algorithm 1: Data Encryption Algorithm.
Inputs: ∆: duration. 〈di, lj , tk〉: A tuple. H: Hash function. E : encryption

function. PRF: a pseudo-random generator.
Output: R(Aid ,Au,AL, ACL,A∆): An encrypted relation R with five

attributes.
Variable: cli : A counter variable for location li.

1 Function encrypt(∆x) begin
2 ∀ty = 〈di, lj , tk〉 ∈ ∆x:

`i ← create list device location(distinct(di ))
3 HTabid ← init hash table device(),

HTabL ← init hash table location()
4 for ty = 〈di, lj , tk〉 ∈ ∆x do
5 r ← PRF()
6 if HTabid [H(di)] 6= 1 then R.Aid [y]← Ek1(di, 1, x),

R.Au[y]← Ek2(1, y,∆x), αi[]← lj
7 else if HTabid [H(di)] == 1 ∧ lj /∈ αi[] then

R.Aid [y]← Ek1(di, r), R.Au[y]← Ek2(1, y,∆x),
αi[]← lj

8 else if HTabid [H(di)] == 1 ∧ lj ∈ αi[] then
R.Aid [y]← Ek1(di, r), R.Au[y]← Ek2(0, r)

9 ifH(lj) /∈ HTabL ∧ HTabid[H(di)] 6= 1 then
HTabid [H(di)]← 1, clj ← 1, R.AL[y]← Ek3(lj , clj ),
R.ACL[y]← Ek4(r, `i)

10 else ifH(lj) /∈ HTabL ∧ HTabid[H(di)] == 1 then
clj ← 1, R.AL[y]← Ek3(lj , clj ),
R.ACL[y]← Ek4(Fake, r)

11 else ifH(lj) ∈ HTabL ∧ HTabid[H(di)] 6= 1 then
HTabid [H(di)]← 1, R.AL[y]← Ek3(lj , clj + 1),
R.ACL[y]← Ek4(r, `i)

12 else ifH(lj) ∈ HTabL ∧ HTabid[H(di)] == 1 then
R.AL[y]← Ek3(lj , clj + 1), R.ACL[y]← Ek4(Fake, r)

13 R.A∆[y]← Ek5(∆x)
14 cmax ← max(cmax , clj ), ∀lj
15 Delete all hash tables for ∆x

Q) for those applications and query execution at the public server
(denoted by S).6

Location tracing (lines 1-5). First, Q verifies the identity of the
infected user device di from the publisher P (line 2). Then, Q
6For simplicity, we denote a queried device-id by di. In practice, depending upon
the publisher P , such a device-id might be encrypted. in which case Q may need to
securely obtain the real device-id from P during verification (line 2 Algorithm 2)

6



Algorithm 2: CQUEST query execution algorithm.
Inputs: H: Hash function. E : encryption function. capacityli

: The capacity
of location li. distanceIndex: Maximum % of allowed people. Registry[]:
The list of users allowed sending them notifications.

Output: Answers to queries.
1 Function Location Trace(q(di,Time)) begin
2 if Q↔ P: Verify di Successful then
3 Q: Generate trapdoors E(di, 1,∆t): t covers the requested Time
4 S→ Q: loc[]← Location values fromACL corresponding to

E(di, 1,∆t)
5 Q: Decrypt loc[] and produce answers

6 Function User Trace(q(di,Time)) begin
7 Q: loc[]← Location Trace(q(di,Time))
8 Q: Generate trapdoors: ∀li ∈ loc: E(li,m),

m ∈ {1,max counter for any location}
9 S→ Q: id[]← Values fromAid corresponding to E(li,m)

10 Q: Decrypt id[] and Notification(id[])

11 Function Social Distance(q(Time)) begin
12 Q: Generate trapdoors: E(1, y,∆t), y is max rows in any epoch, t covers

the requested Time
13 S→Q: loc[]← Location values fromAL corresponding to E(1, y,∆t)
14 Q: ∀li ∈ Decrypt(loc[]), countli ← countli + 1

15 Q: if countli > capacityli
× distanceIndex then Issue alarm

16 Function Crowd Flow(q(Time)) begin
17 Q: Social Distance(q(Time))

18 Function Notification(id[]) begin
19 Q: if ∀i, id[i] ∈ Registry[] them Send notification to id[i]

creates and sends trapdoors for di as: E(di, 1,∆t), where t is the
epoch-identifiers that can cover the desired queried time (line 3). S
executes a selection query for fetching the values of ACL column
corresponding to all encrypted query trapdoors (line 4). The an-
swers to the selection query are given to Q that decrypts them to
know the impacted locations (line 5).
Example 5.1. Suppose d1 belongs to an infected person in Table 2b,
and all four tuples belong to an identical epoch x. To execute lo-
cation tracing, Q creates trapdoor for d1, as: E(d1, 1, x). S checks
the trapdoor in Aid column and sends the corresponding value of
ACL column, i.e., Ek4(r, l1, l2) to Q. On decrypting the received
answer, Q knows the impacted locations as l1 and l2.

User tracing (lines 6-10). First, Q executes Location Trace() to
know the impacted locations by the infected person (line 7). Then,
Q creates trapdoors for all such locations (line 8), as: E(li,m),
where li is the ith impacted location andm is the maximum counter
value for any location in any epoch, as obtained in Algorithm 1’s
line 14.7 S executes a selection query for the trapdoor (or a join
query between a table having all trapdoors and another table having
the encrypted WiFi data) to know the corresponding values of Aid

column (line 9). All such values are transmitted to Q that decrypts
them to know the final answer (line 10). If any of the impacted users
have subscribed to notification service, then they are informed.
Example 5.2. Suppose, we wish to know the impacted people that
may in contact with the infected person whose device-id is d1.
From Example 5.1, we know that 〈l1, l2〉 are the impacted loca-
tions. Suppose the maximum counter value for any location (cmax )
is two. Thus, Q generates trapdoors as follows: E(l1, 1), E(l1, 2),
E(l2, 1), E(l2, 2), and sends them to S. S executes a selection query
over AL column for such trapdoors and sends device-ids from Aid

column, corresponding to the trapdoors. After the decryption, Q
knows that d2 is the device of a person that was in contact with the
infected person whose device-id is d1.

Social distancing (lines 11-15). Q generates and sends trapdoors
E(1, y,∆t) to S to find the unique devices in the desired epochs
7Generating and sending trapdoors for impacted locations equals to the maximum
counter value may incur computation and communication overheads. Thus, we will
suggest an optimization for preventing this.

(line 12).8 S executes a selection query for the trapdoors (or a join
query between a table having all trapdoors and another table having
the encrypted WiFi data) to know the unique devices in the desired
epochs and sends the qualified values from AL column (line 13)
to Q. Q decrypts the received locations and counts the appearance
of each location (line 14). Then, Q issues an alarm, if the counter
value for a location exceeds the predefined rule for social distanc-
ing, denoted by distanceIndex (line 15).

Aside. Note that we can also know the devices that do not follow
the predefined rule for social distancing, by fetching the qualified
values from Aid along with values of AL.
Example 5.3. Assume that if more than one person appear at a loca-
tion during a given epoch, then it shows that people at the location
are not following the predefined social distancing rules, i.e., in this
example, distanceIndex = 1. Q generates the following four trap-
doors: E(1, 1, x), E(1, 2, x), E(1, 3, x), and E(1, 4, x). Based on
these trapdoors, S sends E(l1, 1), E(l2, 1), and E(l2, 2). On re-
ceiving the encrypted location values, Q decrypts them, counts the
number of each location, and finds that the location l2 is not fol-
lowing the social distancing rule.

Information leakage discussion. Although the data-at-rest does
not reveal any information, the query execution reveals access-
patterns (like SSEs or SGX-based systems [38, 59, 62, 31, 33]).
Thus, an adversary, by just observing the query execution, may
learn additional information, e.g., which of the tuples correspond
to an infected person (by observing Location Trace), how many
people may get infected by an infected person (by observing
User Trace), which tuples correspond to unique devices by ob-
serving queries on Au or ACL, and which locations are frequently
visited by users (by observing Social Distance). Also, since
CQUEST is based on encryption, a computationally-efficient adver-
sary can break the underlying encryption technique.

Pros. Though the approach is simple, CQUEST maintains hash
tables during encryption of tuples belonging to an epoch. Nev-
ertheless, the size of hash tables is small for an epoch, (see §7).
CQUEST efficiently deals with dynamic data, due to independence
from an explicit indexable data structure, (unlike indexable SSE
techniques [45, 46] that require to rebuild the entire index due to
data insertion at the trusted size). Algorithm 2 avoids reading, de-
crypting the entire data of an epoch to execute a query, (unlike
SGX-based systems [62]); thus, saves computational overheads.
Also, the key generation by XORing sq and kpko prevents the ad-
versary to learn any information by observing at the encrypted data
belonging to two different organizations, since one of the keys will
be surely different at different organizations.

Cons. Algorithm 1 increases the dataset size by adding two ad-
ditional columns. Algorithm 2 reveals access-patterns; hence, the
adversary may deduce information based on access-patterns. Sim-
ilar to DaS model [39], the trapdoor generator has to decrypt the
retrieved tuples, possibly to filter them, and to execute a small com-
putation (e.g., group by operation line 14 of Algorithm 2). Also, as
we mentioned earlier that QUEST has a limitation that encrypter or
trapdoor modules should not be tampered, by anyone, likewise DaS
model [39].

Optimizations. We provide four optimizations: two for trapdoor
generation in User Trace(), and the other two for trapdoor gen-
eration for Social Distance(). §7 will show the impact of such
optimizations.
8Sending trapdoors that are equal to the number of tuples in the desired epoch may
incur communication overheads. Soon, we will provide optimizations for avoiding
such trapdoor generation and transmission.

7



Dev Loc Time
1 d1 l1 t1
2 d2 l2 t2
3 d1 l2 t1
4 d1 l1 t3

(a) WiFi dataset.

Aid Au AL ACL A∆

1 Ek1(d1, 1, x) Ek2(1, 1, x) Ek3(l1, 1) Ek4(r, l1, l2) Ek5(x)
2 Ek1(d2, 1, x) Ek2(1, 2, x) Ek3(l2, 1) Ek4(r, l1) Ek5(x)
3 Ek1(d1, r, x) Ek2(1, 3, x) Ek3(l2, 2) Ek4(Fake, 3) Ek5(x)
4 Ek1(d1, r, x) Ek2(0, r) Ek3(l1, 2) Ek4(Fake, 4) Ek5(x)

(b) Encrypted WiFi relation for an epoch.
Asmid Asid Asu AsmL AsL A∆

1 SSS(d1) S(d1) S(1) SSS(l1) S(l1) x
2 SSS(d2) S(d2) S(1) SSS(l2) S(l2) x
3 SSS(d1) S(d1) S(1) SSS(l2) S(l2) x
4 SSS(d1) S(d1) S(0) SSS(l1) S(l1) x

(c) Secret-shared WiFi relation for an epoch.

Table 2: Original WiFi dataset, encrypted WiFi dataset using Algorithm 1, and secret-shared WiFi dataset using Algorithm 3.

Location counters. Note that Line 8 of Algorithm 2 requires us to
generate the number of trapdoors equals to the maximum counter
values (i.e., maximum connection events at a location in any epoch
(Line 14 of Algorithm 1)). It may incur overhead in generating
trapdoors and sending them to the server. Thus, we can reduce the
number of trapdoors by keeping two types of counters: (i) counter
per epoch to contain the maximum connection events at a loca-
tion in each epoch, and (ii) counter per epoch and per location to
contain the maximum connection events at each location in each
epoch.
Trapdoor generation for uniqueness finding. Line 12 Algorithm 2
requires QUEST’s encrypter to generate and send the number of
trapdoors equals to the maximum number of tuples in any epoch.
We can avoid sending many trapdoors by encrypting uniqueness
of the device, as follows: Ek(Ek′(1,∆x), y) (at Line 6-8 of Algo-
rithm 1), where k is known to S and k′ = (sq⊕kpko)||attribute is
unknown to S. Thus, for social distancing query execution, Q needs
to send to S only γ = Ek′(1,∆x), and then, S can generate all the
desired trapdoors as Ek(γ, y), where y is the number of rows in the
desired epoch.

In the above-mentioned optimization, QUEST’s encrypter does
not need to generate all trapdoors and sends them the server, and the
server will generate the desired trapdoors. While it will reduce the
communication cost, the computation cost at the server will remain
identical to the method given in Algorithm 2 Lines 9. Thus, in order
to reduce the computation cost at the server, we can also outsource
the hash table created for locations (HTabL, Line 3 Algorithm 1),
after each epoch. Now, to execute the social distancing application,
QUEST needs to ask the server to send the encrypted hash tables for
all the desired epochs. Since the hash table contains the number of
unique devices at each location, it will provide the correct answer
to the social distancing application after decryption at QUEST.

6. IQUEST PROTOCOL
To overcome the information leakages due to CQUEST, we pro-

vide a completely secure solution, IQUEST that is based on string-
matching operation [29] on secret-shares [54].

Background: String-matching over secret-shares. As a building
block, first, we explain the string matching of Dolev et al. [29]
using the following example.
Data Owner: outsourcing searchable-secret-share (SSS). Assume
there are only two symbols: X and Y; thus, X and Y can be written
as 〈1, 0〉 and 〈0, 1〉. Suppose, the owner wishes to outsource Y;
thus, she creates unary vector 〈0, 1〉. But, to hide exact numbers in
〈0, 1〉, she creates secret-shares of each number using polynomials
of an identical degree (see Table 3) and sends shares to servers.

Values Polynomials Ist shares IInd shares IIIrd shares
0 0 + 2x 2 4 6
1 1 + 8x 9 17 25

Table 3: Secret-shares of 〈1, 0, 0, 1〉, created by the owner.
User: SSS query generation. Suppose a user wishes to search for
Y. She creates unary vectors of Y as 〈0, 1〉, and then, creates secret-
shares of each number of 〈0, 1〉 using any polynomial of the same
degree as used by the owner (see Table 4). Note that since a user can
use any polynomial, it prevents an adversary to learn an equality
condition by observing query predicates and databases.

Values Polynomials Ist shares IInd shares IIIrd shares
0 0 + 3x 3 6 9
1 1 + 7x 8 15 22

Table 4: Secret-shares of 〈1, 0, 0, 1〉, created by the user.

Servers: String-matching operation. Now, each server has a secret-
shared database and a secret-shared query predicate. For executing
the string-matching operation, the server performs bit-wise multi-
plication and then adds all outputs of multiplication (see Table 5).

Server 1 Server 2 Server 3
2× 3 = 6 4× 6 = 24 6× 9 = 54
9× 8 = 72 17× 15 = 255 25× 22 = 550
78 279 604

Table 5: Servers’ computation.

User: result reconstruction. User receives results from all servers
and performs Lagrange interpolation [25] to obtain final answers:

(x−2)(x−3)
(1−2)(1−3)

× 72 +
(x−1)(x−3)
(2−1)(2−3)

× 255 +
(x−1)(x−2)
(3−1)(3−2)

× 550 = 1

Now, if the final answer is 1, it shows that the secret-shared
database at the server matches the user query.

Data Outsourcing Method
IQUEST uses Algorithm 3 for creating secret-shares of input WiFi
relation R. Note that Algorithm 3 when creating SSS or Shamir’s
secret-shares of a value (denoted by SSS(v) and S(v), respec-
tively), randomly selects a polynomial of an identical degree. Ta-
ble 2c shows an example of the output of Algorithm 3. Algorithm 3
selects an epoch duration (like CQUEST (§5)) and produces an ith

secret-shared relation S(R)i with six attributes, denoted by Asmid ,
Asid , Asu , AsmL, AsL, and A∆. Note that if the adversary cannot
collude any two non-communicating servers, then we can use poly-
nomials of degree one, and in this case, there is no need to create
more than 2l + 2 shares, where l is the maximum length of a se-
cret, to obtain an answer to a query in one communication round
between the user and servers. Algorithm 3 works as follows:
Secret-shares of devices: Attributes Asmid , Asid (Lines 4-5). We
create two types of shares of each device id, one is SSS that is used

8



Algorithm 3: Secret-share creation algorithm.
Inputs: ∆: duration. 〈di, lj , tk〉: A tuple. H: A hash function known to only

IQUEST. z: a secret of proxy, unknown to organization.
Output: S(R)i(Asmid , Asid , Asu , AsmL, AsL, A∆): An ith encrypted

relationR with six attributes.
Functions: SSS(v): A function for creating searchable secret-shares of v .

S(v): A function for creating Shamir’s secret-shares of v .
1 Function create shares(∆x) begin
2 HTabid ← init hash table device()
3 for ty = 〈di, lj , tk〉 ∈ ∆x do
4 val ← last v bits(H(di))
5 R.Asmid [y]← SSS(val), R.Asid [y]← S(val)
6 if HTabid [H(di)] 6= 1 then R.Asu [y]← S(1), αi[]← lj
7 else if HTabid [H(di)] == 1 ∧ lj /∈ αi[] then

R.Asu [y]← S(1), αi[]← lj
8 else if HTabid [H(di)] == 1 ∧ lj ∈ αi[] then

R.Asu [y]← S(0)
9 R.AsmL[y]← SSS(lj ), R.AsL[y]← S(lj )

10 R.A∆[y]← identifier(∆x), HTabid [H(di)]← 1

for string matching operation and stored in Asmid , and another is
just a Shamir’s secret-share of the entire device-id stored in Asid .
The purpose of storing the same device-id in two different formats
is to speed-up the computation. Particularly, values in Asmid

help in string-matching operation, when we want to search for a
device-id (e.g., location tracing application), and values in Asid

helps in fetching the device-id (e.g., user tracking application for
retrieving device-ids based on infected locations).

Aside. Recall that creating secret-shares for string matching re-
quires to convert the device-id into a unary vector; as shown in
Table 3. However, it increases the length of device-ids significantly
(i.e., 12 × 16 = 192, often a device-id (MAC-ID) contains 12
hexadecimal digits (a combination of numbers 0, 1, . . . , 9 and al-
phabets A, B, . . . F), and thus, every single MAC-ID digit will use
a unary vector of size 16). Thus, we, first, execute a hash func-
tion (only known to IQUEST) on each device-id to map to a smaller
length string, by taking the last v < 12 digits of the digest. Hashing
may result in a collision, by mapping two different device-ids to the
same digest, with a very low probability. For example, for a 256-bit
hash function, the probability of collision in mapping all possible
32-bit integers is 264/2256+1 = 1/2193, which is negligible.
Uniqueness of devices: Attribute Asu (Lines 6-8). Similar to
CQUEST’s Algorithm 1, we assign value one when di appears for
the first time at a location in an epoch; otherwise, zero. After that
we create secret-shares of the value.
Secret-shares of location: Attributes Asmid , Asid (Line 9). Like-
wise two types of secret-shares for device-ids, we create two
types of shares of each location, one is SSS – stored in AsmL, and
another is a Shamir’s secret-share of the location stored in AsL.
Outsourcing epoch-ids: Attributes A∆ (Line 10). Finally, for all tu-
ples of ∆x, we outsource an epoch identifier in cleartext.

Differences between data outsourcing methods of CQUEST and
IQUEST. Though CQUEST is an encryption-based method and
IQUEST is a secret-sharing-based method, they, also, differ the way
of keeping metadata (in Algorithms 1 and 3). First, IQUEST does
not keep a hash table for locations to maintain their occurrences
in tuples of an epoch. Second, IQUEST does not need to first find
all locations visited by a device during an epoch and adds them
in a special attribute; hence, IQUEST does not keep attribute ACL.
Note that these differences occur, due to exploiting the capabili-
ties of SSS and selecting different polynomials for creating shares
of any value, thereby, different occurrences of an identical value
appear different in secret-shared form.

Algorithm 4: IQUEST query execution algorithm.
Inputs: H: Hash function. capacityli

: The capacity of location li.
distanceIndex: Maximum % of allowed people.

Output: Answers to queries.
Functions: SSS(v) and S(v): From Algorithm 3. interpolate(shares): An

interpolation function that takes shares as inputs and produces the secret value.
1 Function Location Trace(q(di,Time)) begin
2 Q↔ P : Verify di
3 Q→ S: γ ← SSS(di), ∆t: t covers the requested Time
4 S: sLoc[]← (Asmid [j]⊗ γ)× AsL, j ∈ {1, y}, y = #tuples in ∆t

5 Q: location[]← interpolate(sLoc[])

6 Function User Trace(q(di,Time)) begin
7 Q: location[]← Location Trace(q(di,Time))
8 Q→ S: sssLoc[]← SSS(location[]), ∆t: t covers the requested

Time
9 S: ∀i ∈ {1, |sssLoc[]|}, ∀j ∈ {1, y}, y = #tuples in ∆t,

sID[i, j]← (sssloc[i]⊗ AsmL[j])× Asid [j]
10 Q: id[]← interpolate(sID[∗, ∗]), ∀i ∈ {1, |sID[∗, ∗]|}
11 Q: Notification(id[]) of Algorithm 2

12 Function Social Distance(q(Time)) begin
13 Q→ S: ∆t: t covers the requested Time
14 S→ Q: sLoc[j]← Asu [j]× AsL[j], ∀j ∈ ∆t

15 Q: location[]← interpolate(sLoc[])
16 Q: ∀li ∈ location[], countli ← countli + 1

17 Q: if countli > capacityli
× distanceIndex then Issue alarm

18 Function Crowd Flow(q(Time)) begin
19 Q: Social Distance(q(Time))

Query Execution
Algorithm 4 explains secret-shared query generation at IQUEST
(denoted by Q), query execution at the server (denoted by S), and
final processing before producing the answer at Q. Note that in
Algorithm 4, ⊗ denotes string-matching operation and × denotes
normal arithmetic multiplication. Below, we explain query execu-
tion for different applications over secret-shares.

Location tracing (lines 1-5). First, Q verifies the device id di (as
the real device of an infected person) from the publisher P (line 2).
Then, Q creates SSS of di (denoted by γ) and sends it to each
non-communicating server along with the desired epoch identifier
(line 3). Each server executes string-matching operation over each
value of Asmid against γ in the desired epoch, and it will result
in either 0 or 1 (recall that string-matching operation results in
only 0 or 1 of secret-shared form). Then, the ith result of string-
matching operation is multiplied by ith value of AsL, resulting in
the secret-shared location, if impacted by the user; otherwise, the
secret-shared location value will become 0 of secret-shared form
(line 4). Finally, Q receives shares from all servers, interpolates
them, and it results in all locations visited by the infected person
(line 5).
Example 6.1. Suppose d1 belongs to an infected person in Ta-
ble 2c. To execute location tracing, Q generates SSS of d1, say
γ. S checks γ against the four shares (via string-matching opera-
tion) inAsmid and results in 〈1, 0, 1, 1〉 (of secret-shared form) that
is position-wise multiplied by 〈S(l1), S(l2), S(l2), S(l1)〉. Thus,
S sends 〈l1, 0, l2, l1〉 of secret-shared form to Q that interpolates
them to obtain the final answer as 〈l1, l2〉.
User tracing (lines 6-11). First, Q executes Location Trace() to
know the impacted locations by the infected person (line 7). Then,
Q creates SSS of all impacted locations (denoted by sssLoc[]) and
sends them to the servers along with the desired epoch-identifer
(which is the same as used when knowing infected locations in
line 7). S executes string-matching operation over each value of
AsmL against each value of sssLoc[] in the desired epoch, and it
will result in either 0 or 1 of secret-shared form). Then, the ith re-
sult of string-matching operation is multiplied by ith value ofAsid ,
resulting in the secret-shared device-ids, if impacted by the infected
person; otherwise, the secret-shared location value will become 0

9



of secret-shared form (line 9). Finally, Q receives shares of all im-
pacted people from all servers, interpolates them, and it results in
all impacted people (line 10). All such impacted users are notified
using Notification(∗) function of Algorithm 2.
Example 6.2. We continue from Example 6.1, where d1 was the de-
vice of an infected person in Table 2c and impacted locations were
〈l1, l2〉 that were known to Q after executing Location Trace(∗)
(line 1). Now, to find impacted people, Q generates SSS of l1
and l2, say γ1 and γ2, respectively. S checks γ1 and γ2 against
the four shares (via string-matching operation) in AsmL. It will
result in two vectors: 〈1, 0, 1, 1〉 of secret-shared form corre-
sponding to γ1 and 〈0, 1, 0, 0〉 of secret-shared form correspond-
ing to γ2. Then, the vectors are position-wise multiplied by
〈S(d1), S(d2),S(d1), S(d1)〉. Thus, S sends 〈d1, 0, d1, d1〉 and
〈0, d2, 0, 0〉 of secret-shared form to Q. Q interpolates the vectors
and knows that the device d2 belongs to an impacted person.

Social distancing (lines 12-17). Q sends the desired epoch iden-
tifier to the servers (line 13). Based on the desired identifier, each
server multiplies the ith value of Asu with the ith value of AsL,
and it results in all locations having the unique devices. The server
sends all such locations to Q (line 14). First, Q interpolates the re-
ceived locations (line 15) and then, counts the appearance of each
location (line 16). Finally, Q issues an alarm, if the counter value
for a location exceeds the predefined rule for social distancing, de-
noted by distanceIndex (line 17).

Aside. Note that we can also know the devices that do not fol-
low the predefined rule for social distancing, by multiplying the ith

value of Asu with the ith value of Asid in the desired epoch, and
in experiment section §7, we will find all such device-ids in our
experiments.
Example 6.3. Suppose that distanceIndex = 1, i.e., if there are
more than one person at a location during a given epoch, then it
shows that people at the location are not following the predefined
social distancing rules. Suppose all four tuples of Table 2c belongs
to an epoch. S executes position-wise multiplication and send the
output of the following to Q: 〈S(1)×S(l1), S(1)×S(l2), S(1)×
S(l2), S(0)× S(l1)〉. Q interpolates the received answers, counts
the number of each location (as l1 = 1 and l2 = 2), and finds that
the location l2 is not following the social distancing rule.

Information leakage discussion. Since Algorithm 3 uses differ-
ent polynomials of the same degree for creating shares of a secret,
an adversary cannot learn anything by observing the shares. Al-
gorithm 4 creates secret-shares of a query predicate that appears
different from the secret-shared data. Thus, the adversary by ob-
serving the query predicate cannot learn which tuples satisfy the
query. Furthermore, since Algorithm 4 performs an identical op-
eration on each share (e.g., lines 4,9,14), it hides access-patterns;
thus, the adversary cannot learn anything from the query execution,
also. Hence, in IQUEST provides stronger security than CQUEST.

Pros. Due to hiding access-patterns, IQUEST provides stronger se-
curity and satisfies the security properties given in §3.3, i.e., query
and execution privacy. Also, it prevents a computationally efficient
adversary to know anything from the ciphertext. Also, it is fault-
tolerant, due to using multiple servers.

Cons. As known, a fully secure system incurs performance over-
heads. Due to executing an identical operation on each share, and
hence, not using any index structure, IQUEST incurs the computa-
tional cost at the server. Also, since the servers send a secret-shared
vector (having 0 or the desired value) of size equals to the numbers
of tuples in the desired epoch, it incurs the communication cost.
Nevertheless, §7) will show that such overheads are not very high.

Optimization. In social distancing application using IQUEST, it
may turn out that we need to send a significant amount of data
from the servers to QUEST. To avoid such communication, Q can
send SSS of all the locations (denoted by smLoc[]) to servers. The
servers can do the following:

count i ← Σ1≤j≤y(AsmL[j]⊗ sssLoc[i])×Asu [j],∀i ∈ {1, |smLoc[]|}
The servers execute string-matching operation for each location

of smLoc[] against each value of AsmL in each desired epoch and
adds the output of string matching operation. Thus, for each desired
epoch, the servers send |sssLoc[]| numbers to Q that interpolates
them to know the number of unique devices at each location in the
desired epochs. Note that this method will outperform the method
given in Algorithm 4 Line 13, if the number of tuples in each epoch
are more than the number of locations in smLoc[].

7. EXPERIMENTAL EVALUATION
QUEST is deployed at UCI, where it is being used to support

social distancing and crowd flow applications [8]. This section
evaluates the scalability of QUEST to evaluate its practicality for
larger deployments and for all supported applications. We used
AWS servers with 192GB RAM, 3.5GHz Intel Xeon CPU with
96 cores and installed MySQL to store secured dataset. A 16GB
RAM machine at the local-side hosts QUEST that communicates
with AWS servers.
Dataset. We used WiFi association data generated using SNMP
traps at the campus-level WiFi infrastructure at UCI that consists
of 2000 access-points with four controllers. Experiments used real-
time data received at one of the four controllers (that collects real-
time WiFi data from 490 access-points spread over 40+ buildings).
Using this WiFi data, we created two types of datasets, refer to
Table 6. For evaluating IQQUEST, we created nine shares, since at
most 2(x+ y) + 1 shares are required, where x = 3 (the length of
device-ids, line 4 Algorithm 3) and y = 1 (a single secret value in
column AsL, line 9 Algorithm 3).

#rows Cleartext size Days covered Encrypted size Secret-Share size
10M 1.4GB 14 5GB 25GB
50M 7.0GB 65 13GB 65GB

Table 6: Characteristics of the datasets used in experiments.

Queries. We executed all queries (Q1: social distancing, Q2: Con-
tact tracing, Q4: Crowd-flow), see Table 1. We modified ‘Q3: so-
cial distancing query’ by also fetching device-ids that do not follow
distancing rules, in addition to fetching locations information.

Exp 1: Throughput. In order to evaluate the overhead of CQUEST
and IQUEST at the ingestion time, we measured the throughput
(rows/minute) that QUEST can sustain. CQUEST Algorithm 1 can
encrypt ≈494,226 tuples/min, and IQUEST Algorithm 3 can cre-
ate secret-shares of ≈38,935 tuples/min. While the throughput of
Algorithm 3’s is significantly less than Algorithm 1, as it needs to
create 9 (different) shares, it can sustain UCI level workload on the
relatively weaker machine used for hosting QUEST.

Exp 2: Metadata size. Recall that Algorithm 4 (Algorithm 2)
for IQUEST (CQUEST) maintains hash-tables for a certain duration.
Table 7 shows the size of hash tables created for epochs of different
sizes: 15min, 30min, and 60min. Note that the metadata size for
CQUEST is larger than IQUEST, since CQUEST uses two hash tables
(line 3 Algorithm 2) and one list of visited places by each device,
while IQUEST uses only one hash table (line 2 Algorithm 4) and
the list. Metadata overheads remain small for both techniques.

10



Q1 Q2 Q3 Q40

100

200

300

400

500

600
Ex

ec
ut

io
n 

Ti
m

e(
s)

cQuest(10 Million)
cQuest(50 Million)
iQuest(10 Million)
iQuest(50 Million)

(a) 1-infected, 1-day.

Q1 Q2 Q3 Q40

100

200

300

400

500

600

Ex
ec

ut
io

n 
Ti

m
e(

s)

cQuest(10 Million)
cQuest(50 Million)
iQuest(10 Million)
iQuest(50 Million)

(b) 100-infected, 1-day.

Q1 Q2 Q3 Q40

100

200

300

400

500

600

Ex
ec

ut
io

n 
Ti

m
e(

s)

cQuest(10 Million)
cQuest(50 Million)
iQuest(10 Million)
iQuest(50 Million)

(c) 1-infected, 14-days.

Q1 Q2 Q3 Q40

100

200

300

400

500

600

Ex
ec

ut
io

n 
Ti

m
e(

s)

cQuest(10 Million)
cQuest(50 Million)
iQuest(10 Million)
iQuest(50 Million)

(d) 100-infected, 14-days.

Figure 5: Exp 3: Scalability test of 10M and 50rows with varying other parameters.

Q1 Q2 Q3 Q40

100

200

300

400

500

600

Ex
ec

ut
io

n 
Ti

m
e(

s)

cQuest
iQuest
Opaque
Jana

(a) 1-infected, 1-day.

Q1 Q2 Q3 Q40

100

200

300

400

500

600
Ex

ec
ut

io
n 

Ti
m

e(
s)

cQuest
iQuest
Opaque
Jana

(b) 100-infected, 1-day.

Q1 Q2 Q3 Q40

100

200

300

400

500

600

Ex
ec

ut
io

n 
Ti

m
e(

s)

cQuest
iQuest
Opaque
Jana

(c) 1-infected, 14-days.

Q1 Q2 Q3 Q40

100

200

300

400

500

600

Ex
ec

ut
io

n 
Ti

m
e(

s)

cQuest
iQuest
Opaque
Jana

(d) 100-infected, 14-days.

Figure 6: Exp 4: Using other systems (secure hardware based Opaque and MPC-based Jana) vs CQUEST and IQUEST on 10M.

Epoch duration CQUEST IQUEST

15min 1.96MB 0.93MB
30min 3.40MB 1.37MB
60min 5.84MB 2.10MB

Table 7: Exp 2: Size of hash tables, for different epoch sizes.
Exp 3: Scalability. We measured the scalability of QUEST in three
scenarios, by varying the number of infected people, days for trac-
ing, and dataset size. Figure 5 shows results for 1-100 infected
users for Q1, Q2 and execution of Q1-Q4 over 1-14 days duration
on 10M, 50M rows. In Q1, a device has visited between 1 to 55
locations in 1 epoch. Note that Q1 using CQUEST took less time
in all four cases, since it uses an index on Aid column (line 4 Al-
gorithm 2); while IQUEST took more time, since it scans all data
depending on the queried interval (line 4 Algorithm 4). As the
number of infected people increases, the query time increases too.
Cost analysis follows the same argument as Q2 that is an extension
of Q1.

For Q3 and Q4 in Figures 5a and 5b, IQUEST took less time than
CQUEST. The reason is: IQUEST performs multiplication on ith

values of AsL and Asu (line 14 Algorithm 4), and the cost depends
on the number of tuples in the desired epochs. However, CQUEST
joins a table of size y×∆t × x with the encrypted WiFi data table
on AL column to obtain the number of locations having unique
devices (line 13 Algorithm 2), where y is the maximum appearance
of a location in any epoch (can be of the order of 10,000, causing
a larger join table size), ∆t is the number of desired epochs, and
x is the number of locations. Also, note that for Q3 and Q4 in
Figures 5c and 5d, IQUEST took more time than CQUEST, since
the increase in the cost of multiplication operations (due to larger
dataset of 14-days tracing period) in IQUEST overtook the increase
in the cost of join in CQUEST. It shows CQUEST is more scalable
than IQUEST.

Exp 4: Using other existing systems to support QUEST ap-
plications. We note an alternative solution, where one may
output non-deterministically encrypted [37] or secret-shared WiFi

data (via QUEST’s encrypter), on which the queries can be exe-
cuted using existing SSEs [45, 46], secure hardware-based systems,
e.g., Opaque [62], or MPC-systems. Note that this solution does
not need to develop any encryption or query execution algorithm.
However, it may allow an adversary to deduce the user locations
by observing datasets belonging to different organizations and may
incur the high computational cost, as will be clear below.

Thus, to see the impact of using existing systems to support
QUEST applications, we used SGX-based Opaque [62] and MPC-
based Jana [17] on 10M rows only (since these systems were
available to us and work on any dataset). Now, we can com-
pare CQUEST against computationally-secure Opaque and IQUEST
against information-theoretically-secure Jana. We inserted data, us-
ing non-deterministic encryption in Opaque and using the underly-
ing secret-sharing mechanism in Jana. Then, we used their query
execution mechanisms for queries Q1-Q4. Figure 6 shows the im-
pact of using different systems for supporting our four queries on
10M rows. We drop any query that took more than 1000s.

Observe that CQUEST works well compared to Opaque, since
CQUEST uses index-based retrieval, while Opaque reads entire data
in secure memory and decrypts it. CQUEST and Opaque pro-
vides the same security, i.e., ciphertext indistinguishability, and re-
veals access-patterns. Note that CQUEST reveals access-patterns
via index-scan, while Opaque reveals access-patterns due to side-
channel (cache-line [38] and branch-shadow [59]) attacks. Also,
IQUEST is efficient compared to Jana that takes more than 1000s
in each query. The reason is: IQUEST does not require commu-
nication among servers due to using string-matching over secret-
shares [29], while Jana requires communication among servers,
since Jana is based on MPC techniques that require communica-
tion among server during a computation to compute the answer.
But, IQUEST and Jana provide identical security by hiding access-
patterns, due to executing identical operations on each tuple.

Exp 5: Impact of optimization. We implemented improved meth-
ods to minimize the value of max location counter (§5) and mea-

11



1 5 10 15 20 25Query Runs

0

2000

4000

6000

8000

10000
Ro

w 
Nu

m
be

r

(a) Access-patterns of CQUEST.

1 5 10 15 20 25Query Runs

0

2000

4000

6000

8000

10000

Ro
w 

Nu
m

be
r

(b) Access-patterns of IQUEST.
Figure 7: Exp 6: Access-patterns created by QUEST.

sured the performance improvement over 10M rows, while fixing
the number of infected people to 100 and interval duration to 1-day.
When we used counter per epoch for Q2, it reduced the computa-
tion time from 63 (Figure 5b) to≈35s and used 128KB more space
to maintain the counter; while using counter per epoch and per lo-
cation, Q2 took only≈2sec with 55MB space to store the counters.

We also implemented the improved method for uniqueness find-
ing by outsourcing encrypted hash tables for each epoch. It re-
duced the time of Q4 (that finds unique devices in each epoch) from
179.4s to 1s. Further, we incorporated this improved method in Q3
(that also finds the devices that does not follow social distancing
rule) with counter per epoch and per location optimization, and it
reduced the time of Q3 from 206s to 2s.

Exp 6: Access-patterns. Figure 7 shows a sequence of memory
accesses by CQUEST and IQUEST. For this, we run Q2 multiple
times, selecting different device-ids each time over a fixed set of
epochs. It is clear that IQUEST accesses the same memory locations
(accesses all the rows of the given set of epochs) and produces an
output for each accessed row for different queries, while CQUEST
accesses different memory locations (different rows for different
device-ids) for answering different queries.

Exp 7: Impact of communication. Table 8 shows the amount of
data transfer using CQUEST and the data transfer time using dif-
ferent transfer speeds. From Table 8, it is clear that CQUEST is
communication efficient, while CQUEST reveals information from
access-patterns. In particular, without using optimization methods
(as described in §5), Q3 and Q4 incur significant communication
overheads, i.e., fetch ≈95MB data from the server. However, the
optimization methods reduce such data size to ≈57KB.

Criteria Q1 Q2 Q3 Q4
Without optimization 1.4KB 42.2KB 95MB 95MB
With optimization N/A N/A 56.6KB 14.4KB
Trans. speed 25MB/s Neg. Neg. ≈2.5m Neg.
Trans. speed 100MB/s Neg. Neg. ≈1m Neg.
Trans. speed 500MB/s Neg. Neg. ≈11s Neg.

Table 8: Exp 7: CQUEST: amount of data transfer and required
time (Neg. refers to negligible).

Table 9 shows the amount of data transfer using IQUEST and the
data transfer time using different transfer speeds. From Table 9, it is
clear that IQUEST incurs communication overhead, while IQUEST
provides a high-level of security. In particular, Q1 requires us to
fetch ≈32MB data from each server when tracing period was 14-
days for an infected person. As Q2 requires two communication
rounds (the first for knowing the impacted location and another for
knowing the impacted device ids), it incurs signification communi-
cation cost by fetching ≈3.5GB data from each server. The reason
is: we need to fetch data corresponding to 55 locations that a user
can visit during an epoch. Q3, also, incurs the same communication

overhead. Q4 requires to download ≈32MB data from each server
for executing social distancing over 14-days. However, when we
use the improved method (as described in §6) for Q4, we need to
fetch only 2.1MB data.

Criteria Q1 Q2 Q3 Q4
Without optimization 32MB 3.6GB 3.6GB 32MB
With optimization N/A N/A N/A 2.1MB
Trans. speed 25MB/s Neg. ≈2.5m ≈2.5m Neg.
Trans. speed 100MB/s Neg. ≈1m ≈1m Neg.
Trans. speed 500MB/s Neg. ≈11s ≈11s Neg.

Table 9: Exp 7: IQUEST: amount of data transfer and required time
(Neg. refers to negligible).

8. LESSONS LEARNT
In this paper, we designed, developed, and validated a system,

called QUEST for privacy-preserving presence and contact tracing
at the organizational level using WiFi connectivity data to enable
community safety in a pandemic. QUEST incorporates a flexible
set of methods that can be customized depending on the desired
privacy needs of the smartspace and its associated data. We antici-
pate that capabilities provided by QUEST are vital for organizations
to resume operations after a community-scale lockdown — the pas-
sive approach to information gathering in QUEST can enable con-
tinuous information awareness to encourage social distancing mea-
sures and identify settings and scenarios, where additional caution
should be exercised. Ongoing discussions with campus adminis-
tration at UC Irvine to utilize QUEST’s capabilities for a staged
and guided reopening of campus have highlighted the value of the
privacy and security features embedded in QUEST. The living lab
experience at UC Irvine will enable us to tune the underlying cryp-
tographic protocols for other useful applications including dynamic
occupancy counts and context-aware messaging to encourage safe
operations.

9. REFERENCES
[1] Apple’s and Google’s COVID-19 contact tracing technology,

available at: https://tinyurl.com/wfw9ojr.
[2] Pan-European Privacy-Preserving Proximity Tracing:

available at: https://www.pepp-pt.org/.
[3] Israel’s The Shield: available at:

https://tinyurl.com/y75bqjj9.
[4] TraceTogether, available at:

https://www.tracetogether.gov.sg/.
[5] South Korea’s 100m: available at:

https://tinyurl.com/yb5mj9o6.
[6] Georgia’s daily coronavirus deaths will nearly double by

August with relaxed social distancing, model suggests,
available at: https://tinyurl.com/ydy53cfc.

[7] Polls: Americans dont want to end social distancing policies
despite financial devastation, available at:
https://tinyurl.com/ybvtfn9a.

[8] QUEST Applications: available at:
https://tippersweb.ics.uci.edu/covid19/
d/IwAc1O9Wk/
covid-19-effort-at-uc-irvine?orgId=1.

[9] Stanford University’s COVID-Watch, available at:
https://covid-watch.org/.

[10] Fake news about the coronavirus is hazardous to your health.
Don’t fall for it: Doctor, available at:
https://tinyurl.com/ybk4b5lo.

12

https://tinyurl.com/wfw9ojr
https://www.pepp-pt.org/
https://tinyurl.com/y75bqjj9
https://www.tracetogether.gov.sg/
https://tinyurl.com/yb5mj9o6
https://tinyurl.com/ydy53cfc
https://tinyurl.com/ybvtfn9a
https://tippersweb.ics.uci.edu/covid19/d/IwAc1O9Wk/covid-19-effort-at-uc-irvine?orgId=1
https://tippersweb.ics.uci.edu/covid19/d/IwAc1O9Wk/covid-19-effort-at-uc-irvine?orgId=1
https://tippersweb.ics.uci.edu/covid19/d/IwAc1O9Wk/covid-19-effort-at-uc-irvine?orgId=1
https://covid-watch.org/
https://tinyurl.com/ybk4b5lo


[11] During this coronavirus pandemic, ‘fake news’ is putting
lives at risk: UNESCO, available at:
https://tinyurl.com/y78jhdbl.

[12] SafeTrace, available at:
https://github.com/enigmampc/safetrace.

[13] R. Agrawal et al. Order-preserving encryption for numeric
data. In SIGMOD, pages 563–574, 2004.

[14] A. Aktay et al. Google COVID-19 community mobility
reports: Anonymization process description (version 1.0).
CoRR, abs/2004.04145, 2020.

[15] T. Altuwaiyan et al. EPIC: efficient privacy-preserving
contact tracing for infection detection. In ICC, pages 1–6,
2018.

[16] G. Amjad et al. Forward and backward private searchable
encryption with SGX. In Proceedings of the 12th European
Workshop on Systems Security, EuroSec@EuroSys 2019,
Dresden, Germany, March 25, 2019, pages 4:1–4:6, 2019.

[17] D. W. Archer et al. From keys to databases - real-world
applications of secure multi-party computation. Comput. J.,
61(12):1749–1771, 2018.

[18] M. Bellare et al. Deterministic and efficiently searchable
encryption. In CRYPTO, pages 535–552, 2007.

[19] C. Bi et al. Familylog: A mobile system for monitoring
family mealtime activities. In PerCom, pages 21–30, 2017.

[20] A. Boldyreva et al. On notions of security for deterministic
encryption, and efficient constructions without random
oracles. In CRYPTO, pages 335–359, 2008.

[21] S. Brands et al. Distance-bounding protocols (extended
abstract). In EUROCRYPT, pages 344–359, 1993.

[22] R. Canetti et al. Adaptively secure multi-party computation.
In STOC, pages 639–648, 1996.

[23] R. Canetti, A. Trachtenberg, and M. Varia. Anonymous
collocation discovery:taming the coronavirus while
preserving privacy, 2020.

[24] H. Cho, D. Ippolito, and Y. W. Yu. Contact tracing mobile
apps for covid-19: Privacy considerations and related
trade-offs, 2020.

[25] R. M. Corless and N. Fillion. A graduate introduction to
numerical methods. AMC, 10:12, 2013.

[26] V. Costan and S. Devadas. Intel SGX explained. IACR
Cryptology ePrint Archive, 2016:86, 2016.

[27] R. Curtmola et al. Searchable symmetric encryption:
Improved definitions and efficient constructions. Journal of
Computer Security, 19(5):895–934, 2011.

[28] D. Demirag et al. Tracking and controlling the spread of a
virus in a privacy-preserving way. CoRR, abs/2003.13073,
2020.

[29] S. Dolev et al. Accumulating automata and cascaded
equations automata for communicationless information
theoretically secure multi-party computation. Theor. Comput.
Sci., 795:81–99, 2019.

[30] R. Enns et al. Netconf configuration protocol. Technical
report, RFC 4741, December, 2006.

[31] S. Eskandarian et al. Oblidb: Oblivious query processing for
secure databases. Proc. VLDB Endow., 13(2):169–183, 2019.

[32] B. Fuhry et al. Hardidx: Practical and secure index with SGX
in a malicious environment. Journal of Computer Security,
26(5):677–706, 2018.

[33] B. Fuhry et al. Encdbdb: Searchable encrypted, fast,
compressed, in-memory database using enclaves. CoRR,
abs/2002.05097, 2020.

[34] R. Gelles et al. Multiparty proximity testing with dishonest
majority from equality testing. In ICALP, pages 537–548,
2012.

[35] R. Gerhards et al. Rfc 5424: The syslog protocol. Request for
Comments, IETF, 2009.

[36] D. M. Goldschlag et al. Onion routing. Commun. ACM,
42(2):39–41, 1999.

[37] S. Goldwasser and S. Micali. Probabilistic encryption. J.
Comput. Syst. Sci., 28(2):270–299, 1984.

[38] J. Götzfried et al. Cache attacks on Intel SGX. In EUROSEC,
pages 2:1–2:6, 2017.

[39] H. Hacigümüs et al. Providing database as a service. In
ICDE, pages 29–38, 2002.

[40] A. Hekmati et al. CONTAIN: privacy-oriented contact
tracing protocols for epidemics. CoRR, abs/2004.05251,
2020.

[41] Y. Ishai et al. Private large-scale databases with distributed
searchable symmetric encryption. In RSA, pages 90–107,
2016.

[42] M. B. Kjærgaard et al. Challenges for social sensing using
wifi signals. In Workshop on Mobile systems for
computational social science, pages 17–21, 2012.

[43] J. Krumm et al. The nearme wireless proximity server. In
UbiComp, pages 283–300, 2004.

[44] J. C. Krumm et al. Proximity detection using wireless signal
strengths, Mar. 24 2009. US Patent 7,509,131.

[45] R. Li et al. Fast range query processing with strong privacy
protection for cloud computing. PVLDB, 7(14):1953–1964,
2014.

[46] R. Li et al. Adaptively secure conjunctive query processing
over encrypted data for cloud computing. In ICDE, pages
697–708, 2017.

[47] M. Maier et al. Probetags: Privacy-preserving proximity
detection using wi-fi management frames. In WiMob, pages
756–763, 2015.

[48] S. Mehrotra et al. TIPPERS: A privacy cognizant iot
environment. In PerCom W, pages 1–6, 2016.

[49] J.-L. Meunier. Peer-to-peer determination of proximity using
wireless network data. In PerComW, pages 70–74, 2004.

[50] A. Prasad and D. Kotz. ENACT: encounter-based
architecture for contact tracing. In WPA@MobiSys, pages
37–42, 2017.

[51] L. Radaelli et al. Quantifying surveillance in the networked
age: Node-based intrusions and group privacy. CoRR,
abs/1803.09007, 2018.

[52] P. Sapiezynski et al. Inferring person-to-person proximity
using wifi signals. IMWUT, 1(2):24:1–24:20, 2017.

[53] C. Schlener and S. Vasudev. Flexible snmp trap mechanism,
Jan. 30 2001. US Patent 6,182,157.

[54] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[55] D. X. Song et al. Practical techniques for searches on
encrypted data. In SP, pages 44–55, 2000.

[56] Q. Tang. Privacy-preserving contact tracing: current
solutions and open questions. CoRR, abs/2004.06818, 2020.

[57] C. Troncoso et al. Decentralized privacy-preserving
proximity tracing overview of data protection and security.
2020. Available at:
https://github.com/DP-3T/documents.

[58] C. Wang et al. Secure ranked keyword search over encrypted
cloud data. In ICDCS, pages 253–262, 2010.

13

https://tinyurl.com/y78jhdbl
https://github.com/enigmampc/safetrace
https://github.com/DP-3T/documents


[59] W. Wang et al. Leaky cauldron on the dark land:
Understanding memory side-channel hazards in SGX. In
CCS, pages 2421–2434, 2017.

[60] T. Ylonen et al. The secure shell (ssh) protocol architecture,
2006.

[61] S. Yu et al. Attribute based data sharing with attribute
revocation. In ASIACCS, pages 261–270, 2010.

[62] W. Zheng et al. Opaque: An oblivious and encrypted
distributed analytics platform. In NSDI, pages 283–298,
2017.

[63] M. Zhou et al. EDUM: classroom education measurements
via large-scale wifi networks. In UbiComp, pages 316–327,
2016.

APPENDIX
A. SECURITY PROPERTY FOR ACCESS-

PATTERN-REVEALING SOLUTIONS
In order to define security property of CQUEST, we follow the

standard security definitions of symmetric searchable encryption
techniques [27] that define the security in terms of leakages: setup
leakage Ls (that includes the leakages from the encrypted database
size and leakages from metadata size) and query leakage Lq (that
includes search-patterns (i.e., revealing if and when a query is exe-
cuted) and access-patterns (i.e., revealing which tuples are retrieved
to answer a query)). Based on these leakages, the security notion
provides a guarantees that an encrypted database reveals no other
information about the data beyond leakages Ls and Lq .

Now, before defining security property, we need to formally de-
fine CQUEST’s query execution method that contains the following
three algorithms:

1. (K,R))← Setup(1k, R): is a probabilistic algorithm that takes
as input a security parameter 1k and a relationR. It outputs a secret
key K and an encrypted relation R. This algorithm (as given in
Algorithm 1) is executed at QUEST’s encrypter, before outsourcing
a relation to the cloud.

2. trapdoor{1, . . . , q} ← Trapdoor Gen(K, query): is a deter-
ministic algorithm that takes as input the secret key K and a query
predicate query , and outputs a set of query trapdoors, denoted by
trapdoor{1, . . . , q}. This algorithm (as given in Algorithm 2) is
executed at QUEST’s trapdoor generator and trapdoor{1, . . . , q}
are sent to the server to retrieve the desired tuples.

3. results ← Query Exe(trapdoor{1, . . . , q},R): is a determinis-
tic algorithm and executed at the server. It takes the encrypted
relation R and the encrypted query trapdoors trapdoor{1, . . . , q}
as the inputs. Based on the inputs, it produces the results.

In order to define the security notion, we adopt the real and ideal
game model security definition [27]. Based on this game, what
the security property is provided is known as indistinguishability
under chosen-keyword attack (IND-CKA) model [27]. IND-CKA
prevents an adversary from deducing the cleartext values of data
from the encrypted relation or from the query execution, except
what is already known.

Security Definition.
Let Ψ = (Setup,Trapdoor Gen,Query Exe) be a tuple of

algorithms. Let A be an adversary. Let Ls be the setup leakage,
and let Lq be the query leakage.

• RealΨ,A(k): The adversary produces a relation R and sends it to
a simulator. The simulator runs Setup algorithm and produces an
encrypted relations R that is sent to A. The adversary A executes

a polynomial number of queries on the encrypted relations R by
asking trapdoors for each of the queries from the simulator. Then,
the adversary A executes queries using Query Exe() algorithm
and produces a bit b.
• IdealΨ,A(k): The adversary A produces a relation R′. Note that

this relation may or may not be identical to the relation R, pro-
duced in RealΨ,A(k). However, Ls in the ideal world should be
identical to the real world. The simulator has neither access to the
real dataset R, nor access to the real queries. Instead, the simula-
tor has, only, access to Ls and Lq . The simulator simulates Setup
and Trapdoor Gen algorithms. Given Ls and Lq , the simulator
produces an encrypted relation R′ and the trapdoors for all queries
that were previously executed. The adversary executes the queries
and produces a bit b.

We say Ψ is (Ls,Lq)-secure against non-adaptive adversary, iff
for any probabilistic polynomial time (PPT) adversary A, there
exists a PPT simulator such that: |Pr [RealΨ,A(k) = 1] −
[Pr [IdealΨ,A(k) = 1]| ≤ negl(k), where negl() is a negligible
function.

The above real-ideal game provides the following intuition: an
adversary selects two different relations, R1 and R2, having an
identical number of attributes and an identical number of tuples.
RelationsR1 andR2 may or may not overlap. The simulator simu-
lates the role of QUEST encrypter to produce an encrypted relation
and provides it to the adversary. On the encrypted data, the ad-
versary executes a polynomial number of queries. The adversarial
task is to find the relation encrypted by the simulator, based on the
query execution. The adversary cannot differentiate between the
two encrypted relations, since if the adversary cannot find which
encrypted relation is produced by the simulator with probability
non-negligibly different from 1/2, then the query execution reveals
nothing about the relation.

14


	1 Introduction
	2 Related Work and Comparison
	3 Preliminary
	3.1 Entities
	3.2 Adversarial Model
	3.3 Security Properties

	4 Quest Architecture
	5 cQuest Protocol
	6 iQuest Protocol
	7 Experimental Evaluation
	8 Lessons Learnt
	9 References
	A Security Property for Access-Pattern-Revealing Solutions

