
DragonFly: Drone-Assisted High-Rise Monitoring
for Fire Safety

Fangqi Liu
University of California, Irvine, USA

fangqil2@uci.edu

Tzu-Yi Fan
National Tsing Hua University, Taiwan

joyfan2@gmail.com

Casey Grant
DSRAE, LLC, USA

cgrant.dsrae@gmail.com

Cheng-Hsin Hsu
National Tsing Hua University, Taiwan

chsu@cs.nthu.edu.tw

Nalini Venkatasubramanian
University of California, Irvine, USA

nalini@ics.uci.edu

Abstract—In this paper, we propose DragonFly, a drone-
based data collection framework to enhance real-time situational
awareness in high-rise buildings, focusing specifically on mission-
critical high-rise fire scenarios. The goal of our proposed solution
is to use multiple drones with visual sensors to collect reliable and
timely data for monitoring the exterior of a high-rise building.
Drones are especially useful in obtaining data from hard-to-access
regions in high-rise fires that are used to monitor fire/smoke
that might have propagated to higher floors, detect the presence
of humans requiring assistance near windows, and determine
window open/close states which can have a significant impact
on the speed and direction of fire spread. Given a dynamically
evolving set of events and multiple drones, the core challenge
addressed is to develop a plan for multiple drones to gather a set
of observations that can improve both the coverage (identify more
events) and accuracy (obtain fine-grained for improved event
detection). We develop a solution for the Multi-drone Waypoint
scheduling problem (NP-hard) in two steps: 1) allocation of moni-
toring tasks (AMT) to individual drones and 2) dynamic waypoint
scheduling (DWS) that determines the waypoint sequence for
each drone to visit. We evaluate our proposed approach using
a simulated high-rise fire scenario with a realistic fire spread
model and study the applicability and efficiency of the proposed
algorithms compared to baseline techniques. The simulation
results demonstrate the superior performance of the proposed
AMT-DWS algorithms. DragonFly achieve 33% fewer missing
events and up to 39 times gain in accuracy, captured as the
minimum weighted AUC (Area Under Curve) as compared to
baseline algorithms. DragonFly delivers over 85% missing events
and about 1.3 times the minimum weighted AUC in comparison
to current approaches.

Index Terms—High-rise fire, drone, observation accuracy, task
allocation, waypoint scheduling, optimization.

I. INTRODUCTION

The urban landscape of the future is expected to house over
half the world’s population; this is incentivizing the growth
of mega-cities with high-rise buildings and dense population

This work is supported by the UC Office of the President (#LFR-20-
653572), the United States Air Force and DARPA (#FA8750-16-2-0021 and
#FA8750-16-C-0011), the National Institute of Standards and Technology
(#70NANB17H285), the United States Navy and DARPA (#N66001-15-C-
4065, #N66001-15-C-4067, and #N66001-15-C-4070), Ministry of Science
and Technology (MOST) of Taiwan (#110-2221-E-007-102 and #107-2221-
E-007-091-MY3), a Qualcomm grant, and a NOVATEK Fellowship.

clusters. Ensuring the safety of humans and other assets
in such ”vertical” cities, especially during natural/man-made
disasters, is challenging – reliable and timely information is
required to provide situational awareness in extreme scenarios
such as high-rise fires. Today, advances in sensing, mobility,
and compute capabilities have made it feasible to create low-
cost aerial sensing technologies [1] - drones, UAVs. By serving
as ”eyes in the sky”, data obtained from a carefully coordi-
nated set of drones equipped with sensors have the potential
to enable continuous monitoring of mission-critical events.
Urban emergencies such as high-rise fires are characterized
by dynamic and fast-changing scenarios, where we need to
balance rapid identification of emerging events while ensuring
the data accuracy is paramount.

In this paper, we address the issue of how to effectively
coordinate aerial sensing devices to obtain reliable and timely
situational information – we utilize high-rise fires as a driving
use-case scenario to study the problem of multi-drone coordi-
nation. High-rise buildings have unique properties that make
the control of disasters such as fires particularly demanding
[2]. Normal response tactics and strategies become signifi-
cantly less effective with factors such as limited firefighter
access, fire spread potential due to dynamic internal air flows,
restricted water supplies, wind impact, minimal occupant
egress pathways, and special conditions, such as the stack
effect. Creating accurate and timely situational awareness is
critical for fire fighting forces at all levels. Understanding
the dynamic hazards and knowing their time-varying states in
high-rise buildings are important to both line firefighters and
incident commanders because situations can change rapidly
and dramatically. Real-time information is therefore crucial.

The use of drones for aerial surveillance and data gath-
ering has great promise as a key tool for urban emergency
responses [3]. Modern drones can be equipped with hetero-
geneous sensors (e.g., optical and hyper-spectral cameras)
that are useful for tasks such as scoping the region of the
event, heat source detection, and victim localization [4]. In the
context of high-rise fires, drones can bring additional values
by enabling rapid detection (and mitigation, when possible)
of emerging events such as: (i) detecting sudden changes in

the fresh air feeding fires such as with a window loss during
wind-driven fires, and (ii) tracking fires involving external
building facades or combustible exterior wall assemblies.
Wind-driven high-rise fire is a special concern to today’s fire
service. Among the most classic examples of this situation
is the 1998 New York City “Vandalia Ave” high-rise fire
that resulted in the deaths of three veteran FDNY firefighters
trapped in a 10th-floor hallway [5]. Particularly, sudden loss of
windows or similar building envelope components are known
to create unsurvivable situations [6]. Another major concern
for firefighters is the combustible exterior wall assemblies. In
parts of the world with significant high-rise constructions in
recent years, there is a realization that these buildings are at
risk of serious high-rises fire, where the fires may rapidly
spread along the exterior surface [7]. There have been multiple
such high-rise building fires, e.g., the 2017 Grenfell Tower fire
in London with 72 fatalities [8].

In this paper, we take a systematic approach to utilize
drones to create rapid and accurate situational awareness. The
fundamental methodology of deploying drones has a distinct
value in extreme events because of its ability to scale resources
and provide flexibility with real-time adjustments. When the
fire service is notified of high-rise building fires, the resources
arrive over time as the efforts are scaled up. Going forward,
this will include deploying drones for fire fighting surveillance
and providing live images or videos to fire fighting forces
for real-time situational awareness [9]. From a scalability
standpoint, the drones are movable units that can canvass the
building surfaces over extended time frames to provide real-
time surveillance. As drones are added, these resources can be
dedicated to specific areas of building facades, or scheduled
to provide more frequent updates at the fire scene.

In particular, we propose a multi-drone coordination system,
called DragonFly which automatically manages drone-based
sensing and monitoring at high-rise fire scenes. DragonFly
is activated upon the firefighters arrive at fire scenes. It then
continuously guides drones to collect sensor data for improv-
ing the situational awareness of firefighters. In DragonFly,
monitoring tasks are generated and updated by a task generator
based on the fire report and the acquired information by
drones. A monitoring task specifies the event to be detected,
along with some monitoring requirements (e.g., location, sig-
nificance, and desired monitoring frequency). Together with
fire agency partners, we have identified a set of critical events
to drive monitoring tasks [10]. DragonFly effectively allocates
drones to specific tasks and determines waypoint sequences
for drones on-the-fly (within a short decision-making time)
to accomplish those tasks. This paper makes the following
contributions:

• DragonFly system design for high-rise fire monitoring
(Sec. III).

• Formulation of the Multi-Drone Waypoint Scheduling
Problem (MWSP) with considerations of the tradeoff
between the observation accuracy and monitoring area
coverage under heterogeneous tasks (Sec. IV).

• Development of a two-step approach to solve the MWSP
(Sec. V).

• Evaluations of our solution using simulations (Sec. VI).

II. TACKLING THE HIGH-RISE FIRE SCENE

Fire service, especially for structural fires, is inherently a
human-in-the-loop activity coordinated by an Incident Com-
mander (IC) at the fire scene, where an Incident Command
Site (ICS) is established. The IC and a team of analysts digest
live data from camera, environments, and other sensors to
extract the states of the fire scene and coordinate responses.
Given the added challenges of dynamicity in high-rise fires
with the possibility of rapid changes due to wind-driven fires
and exterior combustibility, and reduced ability in (or lack of)
manual observations, the added visual monitoring results from
aerial sensing will help drive and navigate the search, rescue,
and mitigation missions of the fire service.

Existing work. Drones have frequently been utilized for
aerial sensing and surveillance during both non-disaster and
disaster times – e.g., building surveillance [11] and post-
disaster environment assessment [12]. Drones carrying spe-
cific payloads (e.g., fire retardants and extinguishing balls)
have been used in wildland fire scenarios [13], where target
monitoring areas are selected by fire fighting forces. Recent
efforts have also studied the possibility of early localization
of building fires using drones [14]. Other related literature
has focused on multi-agent waypoint scheduling in a variety
of settings, where long-term monitoring with different tar-
get perspectives is required [15]. These waypoint scheduling
problems are typically cast into combinatorial optimization
problems–also referred to as patrolling problems, that seek to
minimize the time between two visits of the same waypoint.
The literature also includes work on planning for persistent
monitoring in 2-D grids under uncertainty [16] and patrolling
multiple regions with changing features at different rates [17].
Region partitioning techniques in conjunction with inter-region
waypoint scheduling [18] aim to balance visiting workloads
across multiple regions. The cooperative approach of waypoint
scheduling among multiple drones has been formalized and
shown to be NP-hard [19]. A range of heuristic approaches
using Mixed Integer Linear Programming (MILP), Markov
Decision Process (MDP), and game theory have illustrated
the complexity of the problem [20]. The driving use cases
for these settings are military command-and-control missions,
where drones must move to target areas in the presence
of dynamic threats [21] and hostile environments [22]. For
example, the techniques for drones to rendezvous at unspec-
ified locations [23] or capture geo-dispersed targets in no-fly
zones [24] have both been studied in this setting.

Challenges in high-rise fires. In contrast to the above
efforts, the 3-D high-rise fire setting studied in this paper
introduces new levels of complexity as follows. First, the envi-
ronment is dynamic due to the fire spread, human movements,
and change of ventilation state (open/broken windows). Drones
should continuously monitor the whole fire scene to track time-
varying states. Because of the vision obstacles and the limited

sensor ranges, the number of drones might not be sufficient
to cover all high-rise building facades at a time. Thus, we
need to guide multiple drones to maximize the coverage and
minimize the data collection delay. Second, we should also
consider the diversity in the monitoring events at the fire
scene, when planning drone surveillance. The events, e.g., the
presence of fire or human, have their particular properties,
w.r.t. dynamics and information significance. Accordingly, the
monitoring requirements for them should be differentiated. For
example, monitoring the victims near fire sources must be
prioritized for emergency rescue, and regions close to fires
must be monitored more frequently for detecting fire spread.

Finally, the locations of drones and distances w.r.t. the
building affect the monitoring performance and detecting cov-
erage. Recent studies [25]–[27] indicate that object detection
accuracy levels with diverse sensors are significantly affected
by the distance between the camera and the observation target.
With this concern, we consider both coarse- and fine-grained
observations, where drones capture sensor data (images) at
different distances. Specifically, a drone gets a coarse-grained
observation when it takes images at a relatively far distance
to the building facade, which results in a larger coverage but
a lower accuracy level. In contrast, a fine-grained observation
is taken at a closer distance that leads to the smaller image
coverage but more accurate event detection.

Because of the above concerns, this paper formulates a
unique Multi-Drone Waypoint Scheduling Problem (MWSP)
for guiding multiple drones to perform monitoring tasks
considering the fire-scene dynamics and the heterogeneous
emergent events. In this problem, we carefully dictate coarse-
and fine-grained observations to exercise the best tradeoff
between accuracy and coverage. We solve this problem in two
steps: Allocation of Monitoring Tasks (AMT) and Dynamic
Waypoint Scheduling (DWS). Different from earlier 2-D task
allocation problems [16]–[18], our AMT solution strives to
balance the workload of drones while taking into account the
event properties (frequency, significance) in 3-D space. For the
DWS solution, we define the notion of information accuracy
(with decay) to drive the scheduling of drones for coarse- and
fine-grained observations when capturing task dynamics. We
note that prior studies on motion planning or drone patrolling
do not consider such diverse observations and their impacts
on the overall situational awareness.

III. THE DRAGONFLY FRAMEWORK

We next provide an overview of the DragonFly framework,
which is shown in Fig. 1.

Data receiver and analyzer. Drones with cameras and other
sensors are deployed outside a high-rise building to continu-
ously collect data under coarse- and fine-grained observations
by adjusting the observation distances to the building facades.
More specifically, each drone maintains three data links for
sensor data, telemetry (states, such as locations and battery
levels), and control commands. All these data are transmitted
to ICS, where sensor data are analyzed for detecting events
to reveal the states of fires, humans, and building ventilation.

Fig. 1: Overview of DragonFly framework.

Sample events include the presence/absence of fire, the exis-
tence of humans, and the open windows or doors. Besides, the
events can also be the changes of the fire intensity (temperature
and flame size), and the human movement (change of locations
or postures). All detected events are stored in a perception
table with their locations and observation time. This table is
initialized with the fire reports (see Table I for an example) and
automatically updated to record new detections (see Table II
for an example).

Task generator. Task generator creates monitoring tasks
stored in a task table (see Table III for an example) for
guiding drones to collect sensor data. Each monitoring task
is associated with a task generation time, a target event, e.g.,
the presence of a fire or human, a monitoring area, e.g., the
area contains Room 601’s windows, a significance level for
firefighting forces, and a desired frequency for observations.
The significance levels depend on the event to be detected and
the distance to the fire. For example, detecting humans near the
fire source is more critical. The desired frequency depends on
the dynamics of events. For example, monitoring fire intensity
should be done more frequently than monitoring window states
because fire intensity rapidly changes. Task generator initially
generates tasks according to the fire reports, and it may updates
tasks with the arrival of newly detected events. For example,
if a fire is detected, the task generator should assign a higher
significance level to that fire detection task. Such updates are
done according to the firefighting domain knowledge [10].
Table III gives the examples of the generated tasks, where
Win. in R601 and Win. on F6 denote the windows in Room
601 and all windows on the 6th floor, and the unit of frequency
is times per minute.

Drone coordinator. Drone coordinator consists of two
main components. The state tracker records the dynamic
drone state, e.g., the location and the power state. Such
information allows the DragonFly to track the states of each
drones, estimate the observation time of every monitoring
area, and predict the corresponding observation accuracy.
Multi-drone waypoint scheduling block takes states and user-
specified parameters to compute the waypoint sequence for

TABLE I: Initial Per-
ception

Event Location Time
Fire R601 10:00

TABLE II: Perception
at time 10:05

Event Location Time
Fire R601 10:03
Fire R602 10:04

Humans R605 10:02
Open R706 10:05Window

TABLE III: Task Table
Time Event Area Sig. Fre.

10:00 Fire
Win. on F6

3 0Win. on F7
Win. on F8

10:00 Human Win. on F6 2 0Win. on F7

10:03 Human Win. in R605 3 2Movement

10:03 Open Win. in R601
2 0.2Win. in R602

Window Win. in R603

10:04 Fire Win. in R601 3 2Intensity Win. in R602

each drone. Here, the waypoints specify the locations and
camera orientations of drones for observing the potential
events in coarse- or fine-grained ways. To cope with the
system dynamics and unpredictability, we solve the waypoint
scheduling problem (called MWSP in this paper) multiple
times, each for a fixed time period called plan duration.
More concretely, a new waypoint sequence would be generated
for each drone when the state tracker reports the previous
sequence is completed, the monitoring tasks are updated, or
drones are added/removed.

In this paper, we assume fire fighting forces have accessed to
the high-rise building structure information, such as the floor-
plans, locations of windows, and mapping between windows
and rooms. We believe such assumption is not too strong, as
fire fighting forces are part of local governments, while open-
data paradigm [28] is getting increasingly popular. We also
assume the commands, images, and states exchange between
the ICS and drones are over reliable communication networks,
such as LTE, 5G, or WiFi [29]. This is also reasonably given
the rapid increase in the penetration rate of mobile networks
and reliable drone APIs such as DJI Mobile SDK [30]. Last,
the design of image analysis algorithms are orthogonal to this
paper, any images (or sensor) data analysis algorithms can be
adopted by DragonFly and their accuracy levels are given.

IV. MULTI-DRONE COORDINATION FOR HIGH-RISE FIRES

A. Monitoring Tasks

We define a monitoring task k as a tuple (gk, ek, ok, σk, ηk),
where gk is the task generation time, ek is the target event, and
ok is the monitoring area, which is a bounding box containing
one or multiple windows, doors, or balconies on a building
facade. We choose ek from E, which is the set of all events
with |E|= E. Each monitoring task has its own significance
σk, and desired frequency ηk. We use K to denote the set of
monitoring tasks in the task table at ICS, with k ∈ K and
|K|= K. We let M = {m1, ...mM} indicate the set of all
possible monitoring areas at our fire scene. Each monitoring
area is defined as mi = ({vi1, vi2, vi3, vi4}, ~ni), i = 1, ..,M ,
where vi1 to vi4 are the four vertices of the monitoring area
and ~ni is its normal vector. Because the monitoring areas
are defined on the building facades, we use the local 2-D
coordinate systems of individual building facades to represent
the monitoring areas. The conversion between the local 2-D
and global 3-D coordinates is straightforward and thus omitted.

We generate a waypoint sequence for each drone to follow
and accomplish the monitoring tasks. Each waypoint w is rep-

resented as a tuple (v′w, ~w
′
i), where v′w is the 3-D coordinates

and ~w′i is the orientation vector of the camera (or another
sensor). Upon reaching a waypoint, a drone makes an obser-
vation of the monitoring areas. Here, an observation refers
to capturing the sensor data, such as images. By selecting the
distance between a waypoint to the building, drones may make
coarse- or fine-grained observations to exercise the tradeoff
between the accuracy and coverage.

B. Candidate Waypoints

The number of candidate waypoints for the drones to select
for performing the monitoring tasks is infinite in theory. To be
practical, we discretize the waypoints using a user-specified
distance set D between the waypoints to the corresponding
building facades. It is not hard to see that a longer distance
d ∈ D results in a larger coverage area (fWd , fHd) of the
drone’s camera on the building facades, where fWd and fHd
are the width and height of the rectangular area covered in
the image captured by a drone hovering at distance d.

Given all monitoring areas M and possible distances D,
our problem is to build a set of promising waypoints W =
{w1, ...wW }, where each w ∈ W covers one or more
monitoring areas. Here, we say a waypoint w covers an area
mi = ({vi1, vi2, vi3, vi4}, ~ni) iff all the four vertices of mi are
within the coverage area of the drone’s camera when the drone
is at w. In addition to W, we define a coverage matrix
C = {C(w,m)}W×M to map waypoints to monitoring areas,
where C(w,m) = 1 if the drone at w can cover m, and
C(w,m) = 0 otherwise.

We build W as follows. Without loss of generality, we
assume (fWd , fHd) can cover at least an area m entirely;
otherwise, we skip the d and m. For each d ∈ D and m ∈M,
there are too many waypoints whose coverages (fWd , fHd)
contain m. For each m, we consider four1 waypoints, where
the coverage of each waypoint shares a corner with the
monitoring area m. Next, for each considered waypoint w,
we determine a subset of monitoring areas that fall in the
coverage (fWd , fHd). If the subset of monitoring areas w is
identical to any known w′ ∈W, w is no longer considered.
Otherwise, we add w to W and update C accordingly. We
check this to avoid having too many redundant waypoints that
offer the same coverage of monitoring areas. We return W
and C after checking all monitoring areas M and distances
D. Last, we use d(〈wi, wj〉) to denote the 3-D path length
between waypoints wi, wj ∈W considering the buildings as
obstacles, which can be readily computed using 2-D visibility
graph path planning method [31] with elevation difference.

C. Accuracy of Monitoring Tasks

Observation accuracy. Given image (data) analysis algo-
rithms and camera configurations, we deduce the accuracy
of the analysis for detecting events on images captured by
drones at different distances to building facades. Particularly,
we define the accuracy of monitoring task k at distance d –

1Denser waypoints can be considered at the cost of higher computational
complexity.

Time (Minute)

Fig. 2: Sample IAk(t) with ηk = 0.2 and gk = 0.

A(d, ek), with k ∈ K and d ∈ D, to represent the accuracy
for detecting event ek using images collected at distance d.

We use dwi
∈ D to denote the distance from waypoint wi to

the building facade, and write the accuracy of task k at wi as
A(dwi , ek). Suppose drones arrive at waypoints along a time
sequence Tar = [t1, t2, ...] at waypoints [w(t1), w(t2), ...]
during monitoring, where ∀ti, tj ∈ T ar: ti 6= tj if i 6= j.
We let OAk(t) be the observation accuracy of monitoring
task k at time t, which equals the accuracy of data captured
by drones at t for detecting event ek. It is calculated by:

OAk(t) =

{
A(dw(t), ek)× C(w(t), ok), t ∈ T ar

0, otherwise.
(1)

From Eq. (1), we can infer that OAk(t) = 0 if drones do not
arrive at any waypoint at t or waypoint w(t) doesn’t cover k’s
monitoring area ok; otherwise, OAk(t) = A(dwi

, ek).
Effective observation and information accuracy. Due

to the limited number of drones, monitoring areas are not
observed continuously. Therefore, whenever an event state of
task k ∈ K is queried at t, ICS returns the result of a recent
observation of k which is referred to as the last effective
observation. To measure the accuracy of the queried results,
we define the information accuracy of task k ∈ K at time t
as IAk(t), which equals to the estimated probability that the
analysis result of the k’s last effective observation is the same
as the practical current state of k at t.

We set IAk(gk) = 0, and assume the degrading of IAk(t)
follows a geometric distribution with a parameter ηk, unless
ICS gets an effective observation of task k. We consider
an observation of task k at t is an effective observation iff
OAk(t) > IAk(T lek (t))(1−ηk)(t−T

le
k (t)), where T lek (t) denotes

the time of the last effective observation of task k at time t,
with T lek (gk) = gk.

For simplicity, we rule that whenever ICS receives an
observation, it updates its perception table following the new
observation if it is an effective observation and ignores it
otherwise. The information accuracy IAk(t) is defined as
follows, whose sample dynamics is shown in Fig. 2:

IAk(t) =


0, t = gk;

max{IAk(T lek (t))(1− ηk)(t−T
le
k (t)),

OAk(t)}, t > gk.

(2)

We define the Area Under Curve (AUC) of monitoring
task k at time t′ as:

∫ t′
t=gk

IAk(t)dt to quantify the overall
information accuracy of k during time [gk, t

′].

D. Formulation of the Multi-Drone Waypoint Scheduling
Problem (MWSP)

We next formulate the Multi-Drone Waypoint Scheduling
Problem (MWSP) for scheduling N drones to fulfill moni-
toring tasks K by visiting a set of waypoints W during time
[t0, t0+T], where t0 is the current scheduling time and T is the
plan duration. The drones depart from their initial waypoints
[win(1), . . . , win(N)] at time t0 and are required to return to a
depot w0 by t0 + T .

We define a boolean matrix X = [xn,si,j], where wi, wj ∈W,
n ∈ [1, N] and s ∈ [1, S], to represent the waypoint sequences
of all drones. In particular, xn,si,j = 1 indicates that drone n
flies from waypoint wi to its s-th waypoint wj , and xn,si,j = 0
otherwise. Here, S represents the maximal length of waypoint
sequences of all drones.

Given X, we write the arrival times of drone n at waypoints
as Tar

n (X) = [T arn (1), ...T arn (S)], where T arn (s) denotes the
arrival time of drone n at its s-th waypoint, with s ∈ [1, S]
and T arn (s) ∈ [t0, t0 + T]. It is computed by:

T arn (s) = t0 +

s∑
s′=1

∑
wi,wj∈W

(
d(〈wi, wj〉)

Rfly
+ Tloi)x

n,s′

i,j , (3)

In this equation, Rfly is the drones’ flying speed, and Tloi is
the loiter time at each waypoint.

Then, we can derive OAnk (T arn (s),X), which indicates the
observation accuracy of task k when drone n arrives at each
waypoint by:

OAnk (T
ar
n (s),X) =

∑
wi,wj∈W

C(wj , ok)A(dwj , ek)x
n,s
i,j . (4)

We also let OAnk (t,X) = 0, ∀t /∈ Tar
n (X). Thus, we can

redefine OAk(t) of Eq. (1) by considering the possibility
that multiple drones cover a area simultaneously. The new
observation arraucy is:

OAk(t,X) = max
n∈[1,N]

{OAnk (t,X)} (5)

Given X, the information accuracy of each task k ∈ K during
t ∈ [t0, t0 + T] can be written as:

IAk(t,X) =

IAk(T
le
k (t0))(1− ηk)(t0−T

le
k (t0)), t = t0;

maxn∈[1,N]{IAk(T lek (t))(1− ηk)(t−T
le
k (t)),

OAnk (t,X)}, t > t0.
(6)

Considering that tasks K may be generated or fulfilled be-
fore the scheduling time t0, MWSP aims to schedule multiple
drones during [t0, t0 + T] to improve the AUC of all tasks
within t ∈ [gk, t0 + T]. This can be written as:∫ t0+T

t=gk

IAk(t,X)dt =

∫ T le
k (t0)

t=gk

IAk(t)dt+

∫ t0+T

t=T le
k

(t0)

IAk(t,X)dt.

(7)
Here, we assume the state tracker in the drone coordinator
who is continuously tracking the monitoring history provides∫ T le

k (t0)

t=gk
IAk(t)dt, T lek (t0), and Rk(T lek (t0)) of all monitoring

task K at each scheduling time t0. In this way, MWSP takes
the various completion status of tasks at t0 into account when
performing waypoint scheduling.

With above notations, we formulate the MWSP as follows:

max min
k∈K
{ 1

σk

∫ t0+T

t=gk

IAk(t,X)dt
1

t0 + T − gk
} (8a)

s.t.

S∑
s=1

(
d(〈wi, wj〉)

Rfly
+ Tloi)

∑
wi∈W

∑
wj∈W

xn,si,j ≤ T ; (8b)

∑
wi∈W

xn,si,h ×
∑
wi∈W

xn
′,s′

i,h 6= 1,

∀wh ∈W \ {w0}, T arn (s) = T arn′ (s′), n 6= n′; (8c)∑
wi∈W

∑
wj∈W

xn,si,j = 1; (8d)

∑
wj∈W

xn,1in(n),j =
∑
wi∈W

xn,Si,0 = 1; (8e)

∑
wi∈W

xn,si,0 ≤ x
n,s+1
0,0 ; (8f)∑

wi∈W

xn,s
′′

i,j =
∑
wz∈W

xn,s
′′+1

j,z , ∀s′′ ∈ [1, S − 1]; (8g)

xn,si,j ∈ {0, 1}; (8h)

∀wi, wj ∈W, s, s′ ∈ [1, S], n, n′ ∈ [1, N].

The objective function in Eq. (8a) maximizes the minimal
weighted information accuracy across all monitoring tasks,
where 1

t0+T−gk is a normalization factor. The intuition of
introducing weight 1

σk
here is to provide higher information

accuracy to more significant tasks. The constraint in Eq. (8b)
ensures that the total time spent by each drone is within
the plan duration T . Eq. (8c) guarantees that at most one
drone reaches a waypoint at a specific time, which avoids
collisions and interference among drones. A drone visits one
waypoint in each step, which is captured by the constraint
in Eq. (8d). The constraints in Eqs. (8e) and (8f) set the
initial and final waypoints for all drones. Eq. (8g) ensures
the connectivity of the generated waypoint sequences. Last,
Eq. (8h) specifies that xn,si,j is a boolean value. MWSP is
NP-hard, which can be proven through reducing the Traveling
Salesman Problem (TSP) [32] to a special case of MWSP,
which has a single drone, only one kind of task with ηk = 0,
a constant observation distance with accuracy 1, t0 = gk for
all tasks and plan duration T =∞.

The max-min objective function in Eq. (8a) strives for fair-
ness, as additional resources are always allocated to the task
with the lowest information accuracy. Nonetheless, alternative
objective functions are possible, such as

max
∑
k∈K

∫ t0+T

t=gk

σkIAk(t,X)dt
1

t0 + T − gk
, (9)

if the average information accuracy is more important than
the max-min fairness. If not otherwise specified, we adopt the
max-min objective function throughout the paper because the
worst-case scenario carries much higher weight in high-rise
fires.

V. PROPOSED ALGORITHMS FOR MWSP

Given the real-time nature of the MWSP problem and
associated complexity (NP-hard), we propose to solve this
problem by two steps, in each of which a sub-problem is
solved heuristically. The first step solves the Allocation of
Monitoring Tasks (AMT) problem, which allocates a set of

monitoring tasks to each drone. The second step solves the Dy-
namic Waypoint Scheduling (DWS) problem, which determines
a waypoint sequence for each drone to visit. Fig. 3 illustrates
the workflow of our MWSP solution, which is detailed in the
following.

LU
Algorithm

Return
Task

allocation

Initial tasks or
updates

Initial tasks

Task
allocation

Updates

Step 1: Get initial
allocation

Step 2: Allocation
improvement

AMT Algorithm

…

Allocation of
Monitoring Tasks

(AMT)

Start

Wait for the input of
tasks, or updates of tasks

or number of drones

Waypoint sequence
for drone 2

Task allocation

Dynamic Waypoint
Scheduling (DWS)

Waypoint sequence
for drone 1

Dynamic Waypoint
Scheduling (DWS)

Return

Step 1:Waypoint
selection

Step 2: Waypoint
scheduling

DWSF Algorithm

Waypoint sequence
for next plan duration

Fig. 3: Workflow of our proposed algorithms.

A. Allocation of Monitoring Tasks: AMT

Given monitoring tasks K, we first derive the set of mon-
itoring areas: MK where MK ⊆M and ok ∈MK ∀k ∈ K.
The AMT problem spatially allocates MK into N disjoint
subsets M′ = {M′1, ...,M′N}, with MK =

⋃N
n=1 M

′
n. Given

M′, we allocate all monitoring tasks K into N disjoint subsets
represented by K′ = {K′1, ...K′N} with K =

⋃N
n=1 K

′
n. Here

K′n is the set of tasks assigned to drone n which are within
the monitoring area M′n, i.e., K′n = {k | k ∈ K, ok ∈M′n}.

We employ the graph structure to represent the spatial
correlations among monitoring areas. More specifically, we
define a complete graph G = (MK,E), where the nodes
indicate the monitoring areas MK, and edges E = {〈mi,mj〉 |
mi,mj ∈ MK} are the pairwise links between any two
monitoring areas. We use the center of area m ∈ MK to
represent each node location, and d(〈mi.mj〉) to denote the
edge length which equals to the 3-D path length between two
areas considering building as obstacles2.

Based on MWSP’s objective function in Eq. (8a), we come
up with two intuitions. First, the optimal task allocation
minimizes the overall (maximum) time consumption of drones
for traveling among areas to accomplish all their allocated
tasks. Second, it offers more observation opportunities to the
areas with monitoring tasks having higher significance or
frequency. With the above intuitions, we define the desired
number of observations of area mi ∈ MK throughout plan
duration T as B(mi), which is a function of task significance
and frequency. More precisely, we write it as:

B(mi) =

{
1, maxk∈K,ok=mi

{ηk} = 0,∃k ∈ K : ok = mi;

dT ×maxk∈K,ok=mi
{σk × ηk}e, otherwise.

(10)

2Distance d(〈mi.mj〉) between two areas is calculated in the same way
as that between two waypoints defined in Sec. IV-A.

Then, we define the expected time consumption for moni-
toring set M′n ∈M′ as the time drone n spends for observing
all monitoring tasks for desired numbers of times as:

ET (M′n) =
∑

mi∈M′
n

B(mi)(
2× d(〈mi, m̂n)〉

Rfly
+ Tloi), (11)

where 2×d(〈mi,m̂n)〉
Rfly

is the round trip time between m̂n and
mi, Tloi is the loitering time of drones at each monitoring
area, and m̂n is the center node of M′n with

m̂n = arg minmi∈M′
n
{

∑
mj∈M′

n

B(mj)d(〈mj ,mi〉)}.

With the above notations, we write the objective of the AMT
problem as:

min max
M′

n∈M′
{ET (M′n)}}. (12)

The AMT problem is also NP-hard, which can be proven
by reducing a load balancing problem [33] to it by setting
d(〈mi,mj〉) for all mi,mj ∈MK to the same value. Hence,
we propose a heuristic AMT algorithm as follows.

First, AMT algorithm solves the k-medoids clustering
problem [34] for an initial allocation. Here, we
modify the objective function of the traditional k-
medoids problem into the desired observation times,
i.e., min

∑N
n=1

∑
mi∈M′

n
B(mi)d(〈mi, m̂n〉). We then

augment the Voronoi iteration method [35] to solve the
k-medoids clustering problem. That is, instead of randomly
selecting initial medoids, we choose the first medoid m̂1

from the nodes with the highest B(mi), and iteratively select
the next medoid by letting m̂i+1 = arg maxmi∈MK\{m̂}
B(mi)d(〈mi, m̂i〉). Second, we perform a local search to
adjust the initial allocation for reducing the AMT objective
value through multiple iterations. In each iteration, we
generate Ne neighbors of the current allocation in one of the
two ways: (i) transfer, in which we move one area from a
subset to another, and (ii) swap, in which we exchange two
areas originally allocated to two subsets. In either transfer or
swap, we identify the best neighbor which can minimize the
AMT objective function and use it as the allocation for the
next iteration. We randomly select the augmentation ways in
each iteration and stop whenever we exceed a user-specified
maximal running time Mu, or no neighbor can improve the
current allocation. The pseudo code of our AMT algorithm
is given in Algorithm 1.

We note that it may not be worth to rerun the AMT
algorithm from scratch every single time. For example, when
the fire spreads, the ICS may add additional monitoring tasks.
An efficient Local Update (LU) algorithm which greedily
allocates the new tasks to the drone that leads to the minimal
increase of the AMT’s objective value. The LU algorithm can
also be applied when changing the number of the drones.
When drones are out of power, we reassign their tasks to the
remaining drones also using the same LU algorithm. When
additional drones are added, we run the AMT algorithm using
the current allocation as the initial allocation.

The complexity of AMT algorithm is dominated by the local
search method. The computational complexity for getting and
evaluating a neighbor is O(|MK|2) and thus the complexity

Algorithm 1 Allocation of Monitoring Task (AMT)
Input: MK, K, number of drones N . The number of neighbors Ne in each

iteration, running time limit Mu

Output: Allocation of areas M′ = {M′1, ...,M′N}, and task allocation:
K′ = {K′1, ...,K′N}.

/* Step 1: Get the initial allocation. */
1 Greedily select the initial medoids {m̂1, ..., m̂N}.
2 Get the initial clustering: M′ = {M′1, ...,M′N} using Voronoi Iteration [35].
3 Get B(mi) for all mi ∈MK by Eq. (10).
4 Min← maxM′

i
∈M′{ET (M′i)}; Sum←

∑
M′

i∈M
′{ET (M′i)}.

/* Step 2: Allocation improvement. */
5 while RunTime ≤Mu do
6 num← 0; Shuffle list M′ in random order.
7 if Random() < 0.5 then
8 for pair (M′i,M

′
j) ∈M′ and m′a ∈M′i do

9 Get M′′ by transferring ma to M′j ; num++.
10 Min ′ ← maxM′

i
∈M′′{ET (M′i)}

11 Sum′ ←
∑

M′
i
∈M′′ ET (M′i).

12 if Min ′ < Min or (Min′ =Min and Sum ′ < Sum then
13 BestNeigh ←M′new; Min←Min′; Sum← Sum′.
14 if num = Ne then break

15 else
16 for pair (M′i,M

′
j) ∈M′ and ma ∈M′i and mb ∈M′j do

17 Get M′′ by swapping ma with mb; num++.
18 Get BestNeigh by running lines 10–14.

19 if BestNeigh 6= None then M′ ← BestNeigh . else break

20 Get K′ based on M′; Return M′ and K′.

of the whole AMT algorithm is O(ImaxNe|MK|2), where
Ne is the number of neighbors in each iteration, and Imax is
the number of iterations (within Mu). Suppose there are Na
additional monitoring areas to be added, the complexity of the
LU algorithm is O(Na|MK|2).

B. Dynamic Waypoint Scheduling: DWS

Upon getting task allocation K′ = {K′1, ...,K′N} from
the task allocation step, the waypoint sequences of individual
drones are computed in parallel for upcoming duration be-
tween t0 and t0+T . The DWS problem generates the waypoint
sequence for each drone n to maximize the weighted AUC of
tasks in K′n. Its objective function can be written as:

max min
k∈K′

n

{ 1

σk

∫ t0+T

t=gk

IAk(t,Y)dt
1

t0 + T − gk
}. (13)

We note that the DWS problem is essentially the MWSP prob-
lem with a single drone (N = 1). Therefore, its NP-hardness
can be proved similarly. Hence, we propose a heuristic DWS
algorithm which has two main steps.

In the first step, DWS algorithm adopts a classic greedy
algorithm of the set cover problem [36] to select the waypoints.
More precisely, we select the next waypoint that can cover
the most new areas until all assigned monitoring areas are
covered. Once the waypoints are chosen, we go to the Step
2, which greedily schedules the waypoints to maximize the
weighted minimum AUC of all tasks from gk to t0 +T using
Eq. (6). In particular, we iteratively append the waypoint that
maximizes the ratio of the improvement of the minimum way-
point AUC and the flying time. To break ties on the minimum
weighted AUCs, we append the waypoint that maximizes the
ratio between the number of tied tasks and the flying time.
Upon appending one more waypoint, we update the AUCs

of individual tasks before getting into the next iteration. The
pseudocode of our DWS algorithm is shown in Algorithm 2.

Algorithm 2 Dynamic Waypoint Scheduling (DWS)
Input: Task K′n, monitoring areas M′n, observation accuracy AD×E , way-

point set W, observation distance dw for w ∈W, coverage matrix
C, observation distances D.

Output: Waypoint sequence P for drone n within [t0, t0 + T].
1 P← [win(n)]; t← t0, w′ ← win(n), W′ = ∅
/* Step 1: Select waypoints to cover all areas. */

2 for d ∈ D do
3 M′′n ←M′n; Wd ← {wi|wi ∈W, dwi = d}.
4 while M′′n 6= ∅ do
5 Get wi = argmaxwa∈Wd

{|{m|m ∈M′′n, C(wa,m) = 1}|}.
6 W′.add(wi); M′′n ←M′′n \ {m|m ∈M′′n, C(wi,m) = 1}.

/* Step 2: Waypoint scheduling. */
7 while t+ d(〈w′, w0〉)/Rfly < t0 + T do
8 Min ← mink∈K′

n
{ 1
σk
AUC(k)}.

9 M̂← {ok|k ∈ K′n, AUC(k)
σk

= Min}; Count ← |M̂|.
/* Predict the AUC if drone visits a waypoint. */

10 for wi ∈ {w|w ∈W′, t+ d(〈w′,w〉)+d(〈w,w0〉)
Rfly

+Tloi ≤ t0 +T} do
11 Update AUC′(k) with k ∈ {k′|k′ ∈ K′n, C(wi, ok′) = 1} if

drone n visit wi next by Eq. (6).
12 Min[i]← mink∈K′

n
{ 1
σk
AUC′(k)}.

13 M̂[i]← {ok|k ∈ K′n, AUC′(k)/σk = Min[i]}.
14 Count [i]← |M̂[i]|.

/* Select the next waypoint. */
15 if minwi∈W{Min[i]} < Min then
16 ρ← argmaxwi∈W′

Min−Min[i]
d(〈w′,wi〉)/Rfly+Tloi

.

17 else ρ← argmaxwi∈W′
Count−Count[i]

d(〈w′,wi〉)/Rfly+Tloi
.

/* Update t, w′, P and the AUC of tasks. */
18 t← t+ d(〈w′, ρ〉)/Rfly + Tloi; w′ ← ρ; P.add(ρ).
19 for k ∈ {k′|k′ ∈ K′n, C(ρ, ok′) = 1} do
20 Update lk(t), Rk(lk(t)) and AUC(k) by Eq. (6).

21 return P

Besides, we propose a DWS variant algorithm for faster
coverage. The idea is to visit the monitoring tasks with 0 AUCs
first before considering other tasks. More concretely, each
drone flies to the waypoint that maximizes the ratio between
the covered tasks and the flying time. Once no monitoring task
has 0 AUC, we run DWS algorithm to complete the waypoint
sequence. We refer to this algorithm as DWSF.

The computational complexity of the waypoint selection
step of DWS is O(Nc |W|2), where Nc is the maximum num-
ber of areas a waypoint can cover. The complexity of the way-
point scheduling step of DWS is O(T |W′| |K|), where W′

is the number of selected waypoints. The time complexity of
the DWS and DWSF algorithms is O(Nc |W|2+T |W′| |K|).

VI. EVALUATIONS

In this section, we evaluate the performance of our proposed
algorithms for solving the Allocation of Monitoring Tasks
(AMT) and Dynamic Waypoint Scheduling (DWS) problems.
We refer to these two problem as allocation and scheduling
problems in our discussion for brevity.

A. Simulator Implementations and Setup

We have implemented a detailed simulator in Python, which
is modularized and can work with different allocation and

scheduling algorithms. Because Multi-agent Traveling Sales-
man Problem (MTSP) is a special case of our MWSP, we
choose representative near-real-time MTSP techniques as our
baseline algorithms for comparison. More specifically, we have
implemented the K-Medoids (KM) algorithm [34] to compare
with our AMT algorithm for solving the task allocation
problem. The KM algorithm clusters monitoring areas using
Euclidean distance. For the waypoint scheduling problem, in
addition to our proposed DWS and DWSF algorithms, we
also have implemented: (i) the Minimum Improvement (MI)
algorithm, which greedily selects the waypoint that improves
the task with the lowest AUC in each iteration, (ii) the Nearest
Neighboring (NN) algorithm, which generates a recurring TSP
tour using a nearest-neighboring approximation [37], and (iii)
the Minimum Spanning Tree (MST) algorithm, which also
generates a recurring TSP tour using a minimum spanning tree
approximation [38]. We consider all pairs of the allocation and
scheduling algorithms, as illustrated in Table IV.

TABLE IV: Considered Algorithmic Combinations

Allocation

Scheduling
DWS DWSF MI NN MST

AMT AMT-DWS AMT-DWSF AMT-MI AMT-NN AMT-MST
KM KM-DWS KM-DWSF KM-MI KM-NN KM-MST

We estimate the observation accuracy levels of several
concerned events using the experiment results in the liter-
ature [25], [26]. Table V gives the estimated observation
accuracy of five representative events. For realistic simulations,
we consider a building with 12 floors and 384 windows,
as illustrated in Fig. 4. For each simulation, several rooms
are randomly chosen as the fire sources. Each room has a
10% probability to have humans, and each window has a 5%
probability to be open. We simulate the fire dynamics using
the fire spread model with recommended parameters [39].
Moreover, humans may be trapped in a room that is close to
a fire scene. Otherwise, humans randomly leave rooms with
random states. If not otherwise specified, we generate random
states using normal distributions.

Fig. 4: The building used in
our simulations.

TABLE V: Observation Ac-
curacy

Event Acc. Acc.
(ek) A(15, ek) A(5, ek)
Fire 0.70 0.99
Fire 0.38 0.89Intensity

Human 0.69 0.98
Human 0.37 0.90Activity
Open 0.32 0.80Window

According to the practical monitoring requirements [10], we
split the whole drones surveillance process into two phases:
discovery and monitoring phases. During the discovery phase,
the ICS strives to get an overview of the high-rise fire scene
by detecting fires, humans, and open windows in the building.
Next, we enter the monitoring phase, except for the above
tasks, ICS also monitors the changes of the fire intensity

TABLE VI: Task Types
Type Event (ek) Sig. Fre.

(σk) (ηk)
1 Fire 1 0.2
2 Fire 3 0.5

3 Fire 2 0.5Intensity
4 Human 1 0.25
5 Human 3 0.5

6 Human 2 1Movement
7 Open Window 1 0.2
8 Open Window 3 0.5

TABLE VII: Simulation Pa-
rameters

Para. Value Para. Value
Rfly 3 m/s Tloi 5 s
D 5 m, 15 m Ne 100

fH5 3.26 m Ts 30 s

fW5 2.18 m fW15 9.79 m

fH15 6.54 m Mu 40 s

and tracks the human movements. We set following rules to
generate monitoring tasks, based on the task types in Table VI.

(a) During discovery phase, the types 1, 4, 7 tasks are added
at all windows in the building.

(b) If a fire source is reported, types 2, 5, and 8 tasks are
added for all windows on that floor and the floor above.

(c) If fire is reported in a room, type 3 tasks are added at
the room’s windows; if humans are detected in a place,
types 6 tasks are added for covering windows there.

(d) If human is no longer observed in a room, types 4, 5
or 6 tasks in that room are removed; if open window is
detected, types 7 and 8 tasks are removed.

We run each simulation for 30 minutes, with each plan
duration is T = 5 minutes. During the simulation, we record
all events in the perception table and check its state every 1
minute to generate new tasks for the new perceptions. The
recorded events include the presence of fires, humans, open
windows in the discovery phase. In addition, the changes of
fire intensity and human movements are also recorded in the
monitoring phase. For the overall performance per simulation
run, we adopt a sampling rate of Ts. The performance metrics
in our simulation are:
• Missing events: The number of undetected events based

on the perception table at each time instance.
• Minimum weighted AUC: MWSP’s objective function.
• Weighted accuracy: We compute the minimum accuracy

among the tasks in each significance level. We then
compute the weighted accuracy across all significance
levels.

• Weighted reliability: We consider a task is reliable if
its accuracy exceeds a threshold Θd. We then calculate
the ratio of reliable tasks in each significance level. We
define weighted reliability as weighted ratio across all
significance levels.

• Running time: Computation time of the algorithms.
Table VII summarizes the key parameters adopted in our sim-
ulations. We also vary several parameters in our simulations,
including the number of tasks between 96 and 314, and the
number of drones between 3 and 12 to study the scalability of
our solution. Our simulation parameters are empirically chosen
for the high-rise fire situation at hand. For example, we stop
increasing the number at 12 drones since the resulting missing
events are very few. For statistically meaningful results, we
repeat each experiment 25 times and report the average results
with 95% confidence intervals if applicable.

B. Simulation Results

Scheduling algorithms. Fig. 5 compares our proposed
DWSF with other baseline algorithms when using the AMT
algorithm for task allocation. We give sample results from
simulations with 5 drones and 177 tasks. Figs 5(a)–(d) reveal
that our AMT-DWSF algorithm always outperforms the base-
line scheduling algorithms in all aspects throughput a sample
simulation run. Figs 5(e)–(h) report the overall performance
from diverse scheduling algorithms across 25 runs. These
figures depict that, on average, the AMT-DWSF algorithm
achieves 33% fewer missing events, 39 times gain on weighted
minimum AUC, 1.2 times gain on weighted accuracy, and
2.8 times gain on the weighted reliability, compared with
the AMT-MST algorithm. Fig. 5 reveals that scheduling al-
gorithms solely based on Euclidean distance (NN and MST)
cannot handle heterogeneous tasks at fire scenes. It is more
evident in the monitoring phase (after about 10 minutes) when
monitoring tasks have higher heterogeneity. In contrast, the
DWSF algorithm better accommodates the task heterogeneity
and exercises the trade-off between the coverage and accuracy
for better performance. Another interesting observation on Fig.
5(a) is that the slope of accumulative missing events is steeper
when the simulation just starts. This is because the perception
table is empty initially; once fires, humans, and open windows
are detected after the drones visited all monitoring areas at
least once, the missing events only occur when fire scene states
change. Fig. 5(b) also shows that the minimum weighted AUC
is 0 during the first 8 minutes, which indicates that not all
tasks have been performed until the 8-th minute. Overall, our
proposed AMT algorithm performs well in both discovery and
monitoring phases.

Allocation algorithms. Fig. 6 compares the performance
of the two allocation algorithms (AMT and KM) with two
representative scheduling algorithms (DWSF and DWF). We
report sample results from simulations with 5 drones and 177
tasks. We omit the other three scheduling algorithms since
they give similar results. Figs. 6(a)–(d) present the average
performance results across the 25 simulations. Compared
to KM, our AMT algorithm always delivers fewer missing
events, higher minimum weighted AUC (20% improvement on
average), higher weighted accuracy (16% increase on average),
and higher weighted reliability (46% boost on average) when
working with DWS and DWSF algorithms. Fig. 6 reveals
the superior performance of our proposed AMT algorithms,
compared to the baseline ones.

Scalability of our proposed algorithm. We next consider
larger MWSP problems with different number of drones
(between 3 and 9) and different number of tasks (between
96 to 314). First, we employ the AMT algorithm for the al-
location problem and compare the performance of scheduling
algorithms in Fig. 7. Figs. 7(a) and (b) present the performance
of different scheduling algorithms under different number of
drones. Both the figures reveal that as the number of drones
increases, our AMT-DWSF algorithm has fewer accumulative
missing events (by up to 42%), and higher minimum weighted

(a)

0 5 10 15 20 25 30
Time (minute)

0.00

0.05

0.10

0.15

0.20

0.25

M
in

im
um

 W
ei

gh
te

d
AU

C

AMT-DWSF
AMT-DWS
AMT-MI

AMT-NN
AMT-MST

(b)

0 5 10 15 20 25 30
Time (minute)

0

2

4

6

8

10

W
ei
gh

te
d
Ac
cu
ra
cy

AMT-DWSF
AMT-DWS
AMT-MI

AMT-NN
AMT-MST

(c)

0 5 10 15 20 25 30
Time (minute)

0

2

4

6

8

10

12

14

W
ei

gh
te

d
Re

lia
bi

lit
y

AMT-DWSF
AMT-DWS
AMT-MI

AMT-NN
AMT-MST

(d)

AMT-DWSFAMT-DWS AMT-MI AMT-NN AMT-MST
Methods

0

100

200

300

400

500

600

Ac
cu
m
ul
at
iv
e

M
is

si
ng

 E
ve

nt
s

(e)

AMT-DWSFAMT-DWS AMT-MI AMT-NN AMT-MST
Methods

0.00

0.02

0.04

0.06

0.08

M
in

im
um

 W
ei

gh
te

d
AU

C

(f)

AMT-DWSFAMT-DWS AMT-MI AMT-NN AMT-MST
Methods

0

1

2

3

4

5

6

W
ei

gh
te

d
Ac

cu
ra

cy

(g)

AMT-DWSFAMT-DWS AMT-MI AMT-NN AMT-MST
Methods

0

1

2

3

4

W
ei

gh
te

d
Re

lia
bi

lit
y

(h)

Fig. 5: Performance of DragonFly (integrated AMT-DWSF algorithm) on: (a), (e) accumulative missing events, (b), (f) minimum
weighted AUC, (c), (g) weighted accuracy, and (d), (h) weighted reliability.

AMT-DWSF KM-DWSF AMT-DWS KM-DWS
Methods

0

50

100

150

200

250

300

350

400

Ac
cu

m
ul

at
iv

e
M

is
si

ng
 E

ve
nt

s

(a)

AMT-DWSF KM-DWSF AMT-DWS KM-DWS
Methods

0.00

0.02

0.04

0.06

0.08

M
in

im
um

 W
ei

gh
te

d
AU

C

(b)

AMT-DWSF KM-DWSF AMT-DWS KM-DWS
Methods

0

1

2

3

4

5

6
W

ei
gh

te
d

Ac
cu

ra
cy

(c)

AMT-DWSF KM-DWSF AMT-DWS KM-DWS
Methods

0

1

2

3

4

W
ei

gh
te

d
Re

lia
bi

lit
y

(d)

Fig. 6: Impact of task allocation strategy on: (a) accumulative missing events, (b) minimum weighted AUC, (c) weighted
accuracy, and (d) weighted reliability.

AUC (by up to 110 times), compared to the AMT-MST
algorithm. Figs. 7(c) and (d) depict the statistics of the various
scheduling algorithms under different number of tasks. Our
AMT-DWSF algorithm always results in the lowest number of
accumulative missing events (by up to 40%), and the highest
minimum weighted AUC (by up to 110 times) compared with
those of the AMT-MST algorithm. From Fig. 7, we validate
that our proposed AMT-DWSF outperforms other scheduling
algorithms under diverse number of drones and tasks.

Next, we explore the performance of the AMT algorithm in
different scenarios and report the results in Fig. 8. Figs. 8(a)
and 8(b) show the normalized value of the accumulative
missing events and the minimum weighted AUC by that
of KM-DWS algorithms. These figures show that as the
number of drones increases, the AMT algorithm always leads
to fewer missing events (by up to 15%), higher minimum
weighted AUC (by up to 87%), compared to those of the
KM algorithm using the same scheduling algorithm. It also
delivers higher weighted accuracy (by up to 20%), higher
weighted reliability (by up to 92%), compared with the KM-
DWS algorithm (figures not shown for brevity). Figs. 8(c) and
8(d) compare the AMT and KM algorithms with 7 drones

under the different number of tasks normalized to the KM-
DWS algorithm. These figures show that the AMT algorithm
constantly outperforms the KM algorithm when the number of
tasks increases. For example, with 177 tasks, the accumulative
missing events achieved by AMT-DWSF is only about 87%
of the KM-DWSF algorithm. AMT-DWSF also results in
higher weighted minimum AUC (about 1.3 times) than theKM-
DWSF, achieves higher weighted accuracy (about 1.2 times),
and higher weighted reliability (about 1.9 times) than KM-
DWSF (some figures are not shown due to space limit). Fig. 8
demonstrates that our proposed AMT algorithm offers superior
performance under different (larger) problem size. We also
observe that the performance gain of the AMT algorithm
shrinks as the number of tasks increases. This is partially due
to the limited running time for the local search.

Last, we investigate the running time of our proposed
algorithms. Here, we focus on the LU algorithm, because the
full-fledged AMT is only invoked once in each simulation,
which can be done offline in about 40 seconds. Fig. 9 reports
the running time of the LU algorithm plus the waypoint
scheduling algorithms under diverse scenarios. The running
times are collected from an Intel i7 workstation. This figure

3 5 7 9
Number of Drones

0.5

0.6

0.7

0.8

0.9

1.0
No

rm
al
iz
ed

 A
cc
um

ul
at
iv
e
M
is
si
ng

 E
ve
nt
s

AMT-DWSF
AMT-DWS
AMT-MI

AMT-NN
AMT-MST

(a)

3 5 7 9
Number of Drones

0

50

100

150

200

250

No
rm

al
iz
ed

 M
in

im
um

 W
ei

gh
te

d
AU

C AMT-DWSF
AMT-DWS
AMT-MI

AMT-NN
AMT-MST

(b)

96 177 250 314
Number of Tasks

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
iz

ed
 A

cc
um

ul
at

iv
e

M
is

si
ng

 E
ve

nt
s

AMT-DWSF
AMT-DWS
AMT-MI

AMT-NN
AMT-MST

(c)

96 177 250 314
Number of Tasks

0

50

100

150

200

250

No
rm
al
iz
ed
 M
in
im
um
 W
ei
gh
te
d
AU
C AMT-DWSF

AMT-DWS
AMT-MI

AMT-NN
AMT-MST

(d)

Fig. 7: Performance of DragonFly (integrated AMT-DWSF algorithm) under: (a), (b) 177 tasks with 3 to 9 drones, (c), (d)
7 drones with 96 to 314 tasks. (a), (c) give normalized accumulated missing events, and (b), (d) give normalized minimum
weighted AUC.

3 5 7 9
Number of Drones

0.75

0.80

0.85

0.90

0.95

1.00

1.05

No
rm

al
iz
ed

 A
cc

um
ul

at
iv

e
M

is
si
ng

 E
ve

nt
s

AMT-DWSF
AMT-DWS

KM-DWSF
KM-DWS

(a)

3 5 7 9
Number of Drones

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

No
rm

al
iz
ed

 M
in
im

um
 W

ei
gh

te
d
AU

C AMT-DWSF
AMT-DWS

KM-DWSF
KM-DWS

(b)

96 177 250 314
Number of Tasks

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

No
rm

al
iz

ed
 A

cc
um

ul
at

iv
e

M
is

si
ng

 E
ve

nt
s

AMT-DWSF
AMT-DWS

KM-DWSF
KM-DWS

(c)

96 177 250 314
Number of Tasks

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

No
rm

al
iz
ed

 M
in
im

um
 W

ei
gh

te
d
AU

C AMT-DWSF
AMT-DWS

KM-DWSF
KM-DWS

(d)

Fig. 8: Impact of task allocation strategy under diverse problem sizes: (a), (b) 177 tasks with 3 to 9 drones, (c), (d) 7 drones
with 96 to 324 tasks.(a), (c) give normalized accumulated missing events, and (b), (c) give normalized minimum weighted
AUC.

3 5 7 9
Number of Drones

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ru
nn

in
g
Ti
m
e
(s
)

LU+DWSF
LU+DWS
LU+MI

LU+NN
LU+MST

(a)

100 150 200 250 300
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ru
nn
in
g
Ti
m
e
(s
)

LU+DWSF
LU+DWS
LU+MI

LU+NN
LU+MST

(b)

Fig. 9: Total running time of the LU and scheduling algorithms
under different numbers of (a) drones and (b) tasks. Sample
results from simulations with (a) 177 tasks and (b) 7 drones.

clearly shows that our LU and DWSF algorithms terminate
within 0.6 second, which is negligible compared to the plan
duration that lasts for minutes. Moreover, from Fig. 9(b), we
also observe that the running time of our LU and DWSF
algorithms increases linearly to the number of tasks. Hence,
Fig. 9 depicts that our LU and DWSF algorithms react fast
even with larger problem size.

VII. CONCLUSION AND FUTURE WORK

In this paper, we designed Dragonfly, a framework for
guiding drones to monitor dynamic fire scenes. We formulated
and developed techniques for solving the Multi-drone Way-
point Scheduling Problem (MWSP) to have multiple drones
continuously monitor high-rise fires with both coarse- and
fine-grained observations for optimal overall accuracy. The
MWSP problem is NP-hard, and we proposed a two-step

solution that first allocated tasks/regions among drones, and
then scheduled the assigned waypoints of each drone. Our
extensive evaluations demonstrated the superior performance
of our solution under heterogeneous tasks at a dynamic fire
scene. Future work will involve the integration of vision
processing techniques into the workflow to better tune the
complexity associated with event detection to where it is most
needed. Novel image processing workflows and models are
also required to capture fire severity using AI-enabled methods
to localize building features (e.g., windows or doors) on the fly.
The use of multi-sensor fusion approaches can help improve
coverage-accuracy tradeoffs. We also plan to leverage formal
methods to reason about the tradeoffs between the reliability
and timeliness of data collection, especially in mission-critical
scenarios [40], [41]. Considering aerial sensing in the areas
of poor network conditions, such as wildfire monitoring, we
plan to establish IoT platforms for drones, based on Software
Defined Networking (SDN) technologies [42]–[44] to enable
effective data collection and transmission in the scenarios of
heterogeneous sensing requirements and access technologies,
such as LTE, 5G, WiFi, and ZigBee.

ACKNOWLEDGMENT

The authors thank Amanda Kimball at Fire Protection
Research Foundation, Bart van Leeuwen at Netage B.V., Prof.
Marco Levorato and his team, members in DSM, TIPPERS,
and Sparx-Cal projects at UCI, for their valuable input on
the work. We acknowledge Katelyn Itano and Sarika Rau for
initial building models on this effort.

REFERENCES

[1] FireRescue1, “5 Drone Technologies for Firefighting,” Mar. 2014, https:
//tinyurl.com/y4ldl8mf, Last accessed on 2019-11-10.

[2] Measure a 32 Advisor Company, “Drones for Disaster Response and
Relief Operations,” Apr. 2015, https://tinyurl.com/yy2pp6tc,.

[3] Sarah Calams, “6 takeaways on how fire departments are using
drones and the barriers preventing purchase,” 2018, https://tinyurl.com/
y2qhs43x,.

[4] R. Nakata and C. et al., “Rf techniques for motion compensation of
an unmanned aerial vehicle for remote radar life sensing,” in Intl.
Microwave Symp., 2016.

[5] National Institute for Occupational Safety and Health (NIOSH),, “Three
Fire Fighters Die in a 10-Story High-Rise Apartment Building - New
York,” August 1999, https://tinyurl.com/y63p84j7,.

[6] M. et al., Fire fighting tactics under wind driven conditions: laboratory
experiments. Fire Protection Research Foundation, 2009.

[7] N. White and M. Delichatsios, Fire hazards of exterior wall assemblies
containing combustible components. Springer, 2015.

[8] M. Moore Bick, “Grenfell tower inquiry: Phase 1 report overview -
report of the public inquiry into the fire at grenfell tower on 14 june
2017,” 2019, https://www.grenfelltowerinquiry.org.uk/phase-1-report.

[9] National Institute of Justice, “A Guide for Investigating Fire and Arson,”
May 2009, https://tinyurl.com/yy48k9wq.

[10] United States Fire Administration National Fire Academy, “Incident
Command for Highrise Operations ICHO-Student Manual,” 2006.

[11] C. Reardon and J. Fink, “Air-ground robot team surveillance of complex
3D environments,” Intl. Symp. on Safety, Security and Rescue Robotics,
pp. 320–327, 2016.

[12] E. et al., “UAV aerial imaging applications for post-disaster assessment,
environmental management and infrastructure development,” Intl. Conf.
on Unmanned Aircraft Systems, pp. 274–283, 2014.

[13] A. Ilah N. Alshbatat, “Fire Extinguishing System for High-Rise Build-
ings and Rugged Mountainous Terrains Utilizing Quadrotor Unmanned
Aerial Vehicle,” Intl. Journal of Image, Graphics and Signal Processing,
vol. 10, no. 1, pp. 23–29, 2018.

[14] P. Pecho, P. Magdolenová, and M. Bugaj, “Unmanned aerial vehicle
technology in the process of early fire localization of buildings,”
Transportation Research Procedia, vol. 40, pp. 461–468, 2019.

[15] Y. Chevaleyre, “Theoretical analysis of the multi-agent patrolling prob-
lem,” Intl. Conf. on Intelligent Agent Technology, 2004.

[16] A. Wallar, E. Plaku, and D. A. Sofge, “Reactive Motion Planning
for Unmanned Aerial Surveillance of Risk-Sensitive Areas,” IEEE
Transactions on Automation Science and Engr., vol. 12, 2015.

[17] S. L. Smith and D. Rus, “Multi-robot monitoring in dynamic envi-
ronments with guaranteed currency of observations,” IEEE Conf. on
Decision and Control, 2010.

[18] V. Sea, A. Sugiyama, and T. Sugawara, “Frequency-based multi-agent
patrolling model and its area partitioning solution method for balanced
workload,” Lecture Notes in Computer Science, vol. 10848 LNCS, 2018.

[19] K. P. Valavanis and G. J. Vachtsevanos, Handbook of unmanned aerial
vehicles. Springer, 2015.

[20] T. W. McLain and R. W. Beard, “Coordination variables, coordination
functions, and cooperative-timing missions,” Journal of Guidance, Con-
trol, and Dynamics, vol. 28, 2005.

[21] R. W. Beard and T. W. M. et al., “Coordinated target assignment and
intercept for unmanned air vehicles,” IEEE Transactions on Robotics
and Automation, vol. 18, 2002.

[22] Y. Kim, D. W. Gu, and I. Postlethwaite, “Real-time optimal mission
scheduling and flight path selection,” IEEE Transactions on Automatic
Control, vol. 52, no. 6, pp. 1119–1123, 2007.

[23] J. Lin, A. S. Morse, and B. D. O. Anderson, “The multi-agent rendezvous
problem,” in Intl. Conf. on Decision and Control, vol. 2, 2003.

[24] S. Leary, M. Deittert, and J. Bookless, “Constrained UAV mission
planning: A comparison of approaches,” Proceedings of the IEEE Intl.
Conf. on Computer Vision, pp. 2002–2009, 2011.

[25] N. Lakshminarayana, Y. Liu, K. Dantu, V. Govindaraju, and N. Napp,
“Active face frontalization using commodity unmanned aerial vehicles,”
arXiv preprint arXiv:2102.08542, June 2021.

[26] X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler, and R. Urtasun, “3D object
proposals using stereo imagery for accurate object class detection,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40, no. 5,
pp. 1259–1272, May 2017.

[27] J. Shermeyer and A. Van Etten, “The effects of super-resolution on
object detection performance in satellite imagery,” in Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2019, pp. 0–0.

[28] Netage B.V., “Smart Data for Smarter Firefighters,” https://netage.nl/
resc-info/.

[29] G. Yang and X. e. a. Lin, “A telecom perspective on the internet of
drones: From lte-advanced to 5g,” arXiv preprint, 2018.

[30] DJI, “Mobile SDK,” https://developer.dji.com/mobile-sdk/.
[31] M. N. Bygi, “3D Visibility Graph,” Computer Engr., 2007.
[32] M. R. Garey and D. S. Johnson, Computers and intractability. freeman

San Francisco, 1979, vol. 174.
[33] J. Kleinberg and E. Tardos, Algorithm Design. USA: Addison-Wesley

Longman Publishing Co., Inc., 2005.
[34] E. Schubert and P. J. Rousseeuw, “Faster k-medoids clustering: Improv-

ing the pam, clara, and clarans algorithms,” in Similarity Search and
Applications, G. e. a. Amato, Ed. Springer Intl. Publishing, 2019.

[35] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids
clustering,” Expert systems with applications, vol. 36, 2009.

[36] A. Caprara, M. Fischetti, and P. Toth, “A heuristic method for the set
covering problem,” Operations research, vol. 47, 1999.

[37] P. M. e. a. França, “The m-traveling salesman problem with minmax
objective,” Transportation Science, vol. 29, no. 3, pp. 267–275, 1995.

[38] M. Held and R. M. Karp, “The traveling-salesman problem and mini-
mum spanning trees: Part ii,” Mathematical programming, vol. 1, 1971.

[39] H. Cheng and G. V. Hadjisophocleous, “Dynamic modeling of fire
spread in building,” Fire Safety Journal, vol. 46, pp. 211–224, 2011.

[40] N. Venkatasubramanian, C. Talcott, and G. A. Agha, “A formal model
for reasoning about adaptive qos-enabled middleware,” ACM Trans.
Softw. Eng. Methodol., vol. 13, no. 1, p. 86âC“147, Jan. 2004.

[41] G. Denker, N. Dutt, S. Mehrotra, M.-O. Stehr, C. Talcott, and
N. Venkatasubramanian, “Resilient dependable cyber-physical systems:
a middleware perspective,” Journal of Internet Services and Applica-
tions, vol. 3, no. 1, pp. 41–49, 2012.

[42] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubra-
manian, “A software defined networking architecture for the internet-of-
things,” in 2014 IEEE Network Operations and Management Symposium
(NOMS), 2014, pp. 1–9.

[43] K. E. Benson, G. Bouloukakis, C. Grant, V. Issarny, S. Mehrotra,
I. Moscholios, and N. Venkatasubramanian, “Firedex: A prioritized iot
data exchange middleware for emergency response,” in Middleware
Conference, 2018, pp. 279–292.

[44] K. E. Benson, G. Wang, N. Venkatasubramanian, and Y.-J. Kim, “Ride:
A resilient iot data exchange middleware leveraging sdn and edge
cloud resources,” in 2018 IEEE/ACM Third International Conference
on Internet-of-Things Design and Implementation (IoTDI), 2018, pp.
72–83.

