
HAL Id: hal-03171358
https://hal.archives-ouvertes.fr/hal-03171358

Submitted on 16 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PrioDeX: a Data Exchange middleware for efficient
event prioritization in SDN-based IoT systems

Georgios Bouloukakis, Kyle Benson, Luca Scalzotto, Paolo Bellavista, Casey
Grant, Valérie Issarny, Sharad Mehrotra, Ioannis Moscholios, Nalini

Venkatasubramanian

To cite this version:
Georgios Bouloukakis, Kyle Benson, Luca Scalzotto, Paolo Bellavista, Casey Grant, et al.. PrioDeX:
a Data Exchange middleware for efficient event prioritization in SDN-based IoT systems. ACM Trans-
actions on Internet of Things, ACM, 2021, 2 (3), pp.1-32, Article No.: 19. �10.1145/3456301�. �hal-
03171358�

https://hal.archives-ouvertes.fr/hal-03171358
https://hal.archives-ouvertes.fr

PrioDeX: a Data Exchange Middleware for Efficient Event
Prioritization in SDN-based IoT systems

GEORGIOS BOULOUKAKIS, SAMOVAR, Télécom SudParis, IP Paris, France

KYLE BENSON, RTI, USA
LUCA SCALZOTTO, Injenia S.r.l., Bologna, Italy
PAOLO BELLAVISTA, Univ. of Bologna, Italy
CASEY GRANT, NFPA, USA
VALÉRIE ISSARNY, INRIA Paris, France

SHARAD MEHROTRA, UC Irvine, USA

IOANNIS MOSCHOLIOS, Univ. of Peloponnese, Greece
NALINI VENKATASUBRAMANIAN, UC Irvine, USA

Real-time event detection and targeted decision making for emerging mission-critical applications require

systems that extract and process relevant data from IoT sources in smart spaces. Oftentimes, this data is

heterogeneous in size, relevance, and urgency, which creates a challenge when considering that different

groups of stakeholders (e.g., first responders, medical staff, government officials, etc) require such data to be

delivered in a reliable and timely manner. Furthermore, in mission-critical settings, networks can become

constrained due to lossy channels and failed components, which ultimately add to the complexity of the

problem. In this paper, we propose PrioDeX, a cross-layer middleware system that enables timely and reliable

delivery of mission-critical data from IoT sources to relevant consumers through the prioritization of messages.

It integrates parameters at the application, network, and middleware layers into a data exchange service

that accurately estimates end-to-end performance metrics through a queueing analytical model. PrioDeX

proposes novel algorithms that utilize the results of this analysis to tune data exchange configurations

(event priorities and dropping policies), which is necessary for satisfying situational awareness requirements

and resource constraints. PrioDeX leverages Software-Defined Networking (SDN) methodologies to enforce

these configurations in the IoT network infrastructure. We evaluate our approach using both simulated and

prototype-based experiments in a smart building fire response scenario. Our application-aware prioritization

algorithm improves the value of exchanged information by 36% when compared with no prioritization; the

addition of our network-aware drop rate policies improves this performance by 42% over priorities only and

by 94% over no prioritization.

CCS Concepts: •Networks→ Programming interfaces;Network performancemodeling; •Computer
systems organization→ Reliability; • Software→Message oriented middleware.

Additional Key Words and Phrases: Publish/Subscribe Middleware, Event Prioritization, Utility Functions,

Queueing Networks, SDN

Authors’ addresses: Georgios BouloukakisSAMOVAR, Télécom SudParis, IP Paris, France, georgios.bouloukakis@telecom-

sudparis.eu; Kyle BensonRTI, USA, kebenson@ics.uci.edu; Luca ScalzottoInjenia S.r.l., Bologna, Italy, luca.scalzotto@studio.

unibo.it; Paolo BellavistaUniv. of Bologna, Italy, paolo.bellavista@unibo.it; Casey GrantNFPA, USA, cgrant@nfpa.org;

Valérie IssarnyINRIA Paris, France, valerie.issarny@inria.fr; Sharad MehrotraUC Irvine, USA, sharad@ics.uci.edu; Ioannis

MoscholiosUniv. of Peloponnese, Greece, idm@uop.gr; Nalini VenkatasubramanianUC Irvine, USA, nalini@uci.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2577-6207/2019/0-ART0 $15.00

https://doi.org/0000001.0000001

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

https://doi.org/0000001.0000001

0:2 G. Bouloukakis et al

ACM Reference Format:
Georgios Bouloukakis, Kyle Benson, Luca Scalzotto, Paolo Bellavista, Casey Grant, Valérie Issarny, Sharad

Mehrotra, Ioannis Moscholios, and Nalini Venkatasubramanian. 2019. PrioDeX: a Data Exchange Middleware

for Efficient Event Prioritization in SDN-based IoT systems. ACM Trans. Internet Things 0, 0, Article 0 (2019),
30 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
The integration of the Internet of Things (IoT) into daily life promises to revolutionize societal-scale

operations. It integrates pervasive sensing/actuation, dynamic data analytics and communications,

which encourages domains such as transportation, home automation, healthcare, and emergency

response to become increasingly IoT-enabled. Smart spaces such as office buildings, tend to increase

the deployment of novel networking infrastructures along with state-of-the-art IoT devices; this

provides data-driven insights to improve the situational awareness of a space. This is particularly

useful in mission-critical applications for enabling timely and reliable communication in smart

spaces. Recent smart city efforts such as the SmartAmerica and Global City Teams Challenges have

showcased the integration of IoT into a variety of application domains [9, 11, 35, 61].

A distributed data exchange system that manages relevant data flows to/from IoT devices and

individuals (data producers and consumers) is a critical centerpiece of IoT deployments. In smart

spaces, such devices are deployed at the Edge (closer to individuals) and thus, data exchange

systems must support a flexible Edge networking infrastructure to manage data flows with varying

quality levels. Producers of data correspond to IoT sensors, events to data produced/consumed, and

consumers of data to interested entities (i.e., human stakeholders or other IoT devices and services).

The data exchange system routes information to actuators (e.g., alarms) or human stakeholders.

In mission-critical emergency scenarios, IoT devices can forward raw sensor data to interested

recipients (e.g., first responders, medical staff, public safety officers, government officials, etc)

through data exchange systems to help coordinate the response effort.

Key challenges arise for enabling timely data exchange to a diverse set of recipients, includ-

ing: (i) managing heterogeneous information with varying size, format, relevance and urgency;

(ii) seamless dynamic integration of new IoT data sources with pre-existing sources and information;

(iii) supporting reliable and timely communication over constrained networks – e.g., due to lossy

channels and failed components. For instance, during a structural fire, firefighters require timely re-

ception of up-to-date situational awareness information. Given the heterogeneity of this information

and the limited networking resources for delivering notifications, we believe event prioritization is

necessary in such mission-critical settings. Existing data exchange systems [6, 38, 50, 54, 58, 65]

provide mechanisms for event prioritization either by manually assigning priorities to specific

data flows or by dynamically assigning them based on the application-level data flows/types (e.g.,

video data) or even QoS-specific requirements (e.g., delay-sensitive apps). However, such systems

cannot be customized to support mission-critical applications with dynamic changes of the app

requirements, interested data recipients, data flows/types and the networking conditions.

In this paper we propose PrioDeX, an integration middleware that enables timely and reliable

delivery of the most critical data to relevant data recipients despite challenging network conditions.

PrioDeX unifies smartspace IoT data and edge infrastructures with programmable network infras-

tructures and domain specific applications (e.g., smart fire fighting). It leverages Edge computing

(i.e., publish/subscribe brokers at the network edge) and Software-Defined Networking (SDN) to

bridge critical application requirements with network state. The main contribution of PrioDeX is

the capability of configuring the SDN-enabled physical network to prioritize events according to

the situational awareness app-requirements and network resource constraints. We model the Edge

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

https://doi.org/0000001.0000001

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 0:3

infrastructure using priority queues to estimate performance metrics (response times, delivery suc-

cess rates) based on the system workload. These are given as input to PrioDeX algorithms to assign

priorities and carefully tune packet drop rates (for bandwidth allocation) to active subscriptions.

The PrioDeX middleware combines several novel capabilities and design features. This paper

expands upon our previous work [10] to include experiments and experiences with our prototype

implementation as well as the formal proof of our new analytical model and derivations of our

priority assignment and drop rate policies. The key contributions of this paper are:

– Introducing a cross-layer approach (application, middleware, network) to prioritize mission-

critical data exchange in IoT-enhanced smart spaces with SDN-enabled infrastructures (§2).

– Providing an analytical model using queueing theory that estimates performance metrics

for cross-layer IoT interactions. This model includes our new multi-class priority queueing

model. We use it here to represent an SDN switch, but it is generally suitable for use in other

queueing networks (§3).

– Developing novel algorithms that leverage the above queueing model to explore the configu-

ration parameter space for IoT event prioritization and delivery/delay tuning (§4).

– Implementing the PrioDeX prototype that integrates the above algorithms and an OpenFlow-

enabled controller to configure the SDN-based underlying infrastructure (§5).

– Evaluating the PrioDeX middleware by: describing our experimental framework that relies

on both simulation and prototype (enriched with an emulated network) implementations for

configuring, and running experiments; evaluating our middleware’s approach; comparing

the proposed algorithms’ performance; and validating our proposed analytical model (§6).

We conclude this paper in §8 with lessons learned and a look towards future work in this area.

2 OVERVIEW
In this section, we describe an IoT-enhanced structural fire scenario where efficient data exchange

is necessary for satisfying situational awareness requirements of first responders. Then, we propose

a cross-layer middleware approach to address these requirements via the efficient delivery of

mission-critical data from IoT sources to relevant consumers.

2.1 Motivating Use Case Scenario
To motivate the need for timely IoT data exchange and highlight the challenges involved, we begin

with an IoT-enhanced fire scenario. During a structural fire, an occupant or automated system

activates an emergency dispatch process, which then notifies a local fire department. After some

time, a team of Fire Fighters (FFs) along with an Incident Commander (IC) arrive; the IC is responsible

for coordinating the effort from an Incident Command Post (ICP) set up onsite. To effectively manage

the dynamic response and minimize casualties, injuries, and property damage, the IC requires

up-to-date situational awareness information from the building. Today, the IC still derives much of

this information from non-digital sources (e.g., human-initiated reports via voice or radio, paper

records, etc). However, sensorized smartspaces (equipped with IoT devices) enable access to live

data feeds that can generate actionable information in real-time via proper filtering, prioritizing,

and analysis. Maintaining up-to-date situational awareness for Smart Fire Fighting (SFF) requires the
integration and enrichment of static and dynamic data from buildings and IoT infrastructure. Static

information such as building floor plans, inspection histories, and presence of hazardous material

can be gathered apriori. For example, an emergency operations center may monitor third-party

data streams (e.g., weather, social media) and forward relevant information to the ICP. Dynamic

information published by IoT devices (in the building and brought by FFs) must be delivered to

relevant stakeholders and combined with contextual knowledge to generate situational awareness.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:4 G. Bouloukakis et al

Fig. 1. The PrioDeX cross-layer middleware.

Such information includes: motion sensing, location, occupancy, activity tracking, smoke levels, air

flow rate, audiovisual feeds, etc. Different data types vary in importance depending on the situation

(e.g., “smoke” > “water pressure”) and the stakeholders’ (e.g., IC, FFs, residents) data requests. Then,

stakeholders visualize or act based on the received information. For instance, an IC may use a tablet

running a situational awareness dashboard to monitor the situation and coordinate the response

effort. FFs may use some less-intrusive interface (e.g., a heads-up display on their glasses) to receive

similar non-voice commands from the IC. A key challenge for SFF is the delivery of mission-critical

data for “timely, targeted decision making” in an unreliable, partially available, and congested

network environment [30].

2.2 Enabling Efficient Prioritization at the Edge
We now overview how the PrioDeX middleware is designed to address the requirements and

challenges of the above the structural fire scenario. We frame our discussions in terms of the three

layers depicted in Fig. 1: (i) mission-critical applications; (ii) abstractions representing the physical

network infrastructure; and (iii) the data exchange middleware bridging these two layers. Our

proposed solution aids in managing the overall system configuration and flow of information.

PrioDeX integrates other state-of-the-art technologies: data APIs for interfacing with IoT data (e.g.,

from Edge devices in the building), a local pub/sub broker (or network of brokers), a thin client

middleware running on each subscribing IoT device, and SDN APIs for managing the network

infrastructure. It implements novel algorithms and provides middleware APIs for our data prioriti-

zation and network management approach. To ensure delivery of the most important events despite

network resource constraints (e.g., failures, poor signal strength, limited bandwidth), it prioritizes
events and allocates available network bandwidth according to application requirements.

Application layer. PrioDeX subscriber devices run a client middleware to establish broker con-

nections, retrieve a list of event topics and subscribe to relevant ones. Since different data vary

by importance, we propose prioritizing events according to their relative importance to the emer-

gency response effort. To configure this, subscribers register utility functions with their PrioDeX

subscriptions (see Fig. 1). These functions capture a quantified measure of value for varying rates

of event delivery performance. Our proposed algorithms consider these utility functions when

configuring the data exchange and network to maximize the users’ situational awareness.

Data exchange layer. PrioDeX prioritizes subscriptions according to their subscriber-specified

utility functions. It leverages the theoretic analysis we present in §3 to estimate system performance

under given configurations. This analysis drives the algorithms presented in §4 that assign discrete

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 0:5

priority classes and allocate available network bandwidth. PrioDeX connects publishers (e.g.,

Edge devices) and subscribers (e.g., IC, FFs) with the data exchange broker, which performs the

actual routing of events. While some existing data exchange implementations and protocols support

priorities, configuring them requires specific APIs [47]. Furthermore, many popular options (e.g.,

the MQTT [43] protocol and associated broker implementations) do not support priorities and so

require equal treatment of all events transmitted to the same subscriber. To decouple PrioDeX from

the underlying pub/sub broker, which may be specific to the site’s Edge devices, we do not employ

app-layer (i.e., in-broker) prioritization. Rather, we propose enforcing priorities at the network layer

through unified APIs provided by SDN. This approach accounts for both app-level requirements

(e.g., utility functions) and network-level state information (e.g., available bandwidth) without

mandating (or extensively modifying) specific broker technologies. Hence, PrioDeX essentially

extends the data exchange broker/protocol with network and application-aware prioritization.

Network layer. PrioDeX manages the network infrastructure through APIs provided by an SDN

controller that likely runs alongside the Edge. It gathers network state information to derive

resource constraints. This is combined with the subscribers’ information requirements to drive its

management algorithms. Zhang K and JacobsenHA previously advocated for a similar approach [62]

of a centrally gathered global view of pub/sub system’s state to simplify its management. They refer

to this central control approach as SDN-like because it separates the pub/sub control and data plane.
They further propose integrating SDNwith the data exchange middleware, which this centralization

cleanly enables. We advocate for this approach in IoT settings when offloading device management

and data processing from constrained devices leads to centralized (e.g., cloud-centric) designs. For

simplicity of discussion, we consider the big switch model shown in Fig. 1 that abstracts the entire

local physical network into a single virtual SDN switch. This provides a simplified single-network

view of the whole distributed system that may span multiple physical heterogeneous networks

(e.g., Wi-Fi or local cellular) and different locations.

To enforce event priorities at the network layer, PrioDeX leverages SDN APIs. It configures

priority queueing disciplines for packets matching the different subscriptions. However, for the

network to distinguish the data exchange-layer concept of subscriptions, we must first translate it

to a network-level concept. As shown in Fig.2, we accomplish this through the SDN concept of

network flows. SDN switches match incoming packets of a particular network flow according

header information. For example, OpenFlow considers OSI Layer 2-4 fields such as IP/MAC address,

UDP/TCP port, VLAN, etc. To differentiate subscriptions belonging to different network flows,

a PrioDeX subscriber maintains multiple network connections with the pub/sub broker (e.g.,

over different OSI Layer 4 port numbers). This may represent different applications running on

the same device and/or one application opening multiple connections. The latter case enables the

network to distinguish and manage individual groups of subscriptions based on their assigned

connection. The data exchange layer dictates this assignment of (possibly multiple) subscriptions to

one network connection and its corresponding unique network flow. Subscribers initiate multiple

connections and then register each subscription to avoid directly configuring the underlying data

exchange broker. PrioDeX also assigns each network flow a priority level by considering subscriber

requirements. It configures the SDN switches to forward packets matching these network flows

through the proper priority queue. To manage available network resources, PrioDeX also allocates

bandwidth to each network flow. It applies preemptive packet drop rates that consider the utility
of each network flow’s subscriptions. We propose dropping lower-priority packets before switch

buffers fill up to prevent high delays and dropping of higher-priority packets. §4.3 discusses this

concept further and proposes our optimization-based algorithm for setting these drop rates. Our

proposal leverages discrete priority classes to drive priority queueing disciplines and defines the

best priority assignments rather than assuming them as a given input.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:6 G. Bouloukakis et al

Fig. 2. PrioDeX prioritizes subscriptions at the SDN layer using multiple connections per subscriber.

Notation Description
Application Layer

vj ∈ V event topics

si ∈ S subscribers

r j ∈ R subscriptions

pi ∈ P publishers

λpubpi ,vj topic vj ’s pub rate

λsubrj r j ’s delivery rate

Ξrj r j ’s success rate
∆rj r j ’s end-to-end re-

sponse time

Notation Description
Data Exchange Layer

bk ∈ B brokers

λnotif ybk ,rj
r j ’s notification rate

Ψ : R 7→ F network flow for a subscription

Φ : F 7→ Y priority for a network flow

Ω : F 7→ [0, 1] packet drop rate for a network flow

Network Layer
xk ∈ X SDN switches

hj ∈ H , H = P ∪ S ∪ B network hosts

wxk ,hj ∈W , wxk ,hj ∈ N bandwidth between xk and hj
Gvj ∈ Z>0 serialized packet size for topic vj
zhj ,hi ∈ Z , zhj ,hi ∈ [0, 1] packet error rate

Γ : N × H × H 7→ N transforms event departure to arrival rates (e.g., packet errors)

fj ∈ F network flows

yj ∈ Y unique priority classes

Table 1. Notations of the parameters in our cross-layer data exchange model.

3 PRIODEX FORMAL MODEL
To enable timely and reliable data exchange in IoT systems, existing solutions propose creating

performance models that can be leveraged for system tuning. Such models must consider all

three layers’ characteristics and their effects on each other. Existing efforts typically focus on

each layer in isolation to model the performance of middleware systems [14, 36, 49], network

infrastructures [7, 29] and more recently SDN infrastructures [23, 55]. In this paper, we model cross-

layer interactions by composing and extending previous work [14, 15] at each layer through the

unified framework of queueing theory [31, 52]. PrioDeX combines queueing theoretic approaches

from both the middleware and network layers to construct the representative and extensible 3-layer

queueing network shown in Fig. 3. At the middleware layer, M/M/1 queues are used to model the

subscription matching process and the delivery of events to subscribers. At the networking layer,

M/M/1, multi-class and priority-class queues are used to model packet processing, transmission,

and prioritization. When increasing the number of brokers, subscribers and switches, the number

of queues leveraged are increased as well. The data exchange middleware bridges the network

infrastructure and application layers to enable a novel cross-layer end-to-end performance model.

We derive this analytical model to estimate a particular configuration’s expected performance.

3.1 Queueing Network Performance Modeling
Refer to Table 1 for the notations used throughout this section.

Application Modeling. Each publisher pi publishes to a set of topics Vpi ⊆ V (e.g., “smoke”). Let

λ
pub
pi ,vj be the publication rate of events with topic vj published by pi per unit time.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 0:7

Fig. 3. PrioDeX queueing network model.

Assumption 1. λ
pub
pi ,vj is based on a Poisson process.

We define each subscription as a tuple r j = (si ,vj ,Ur j) where the utility function Ur j quantifies

the information value for subscriber si receiving events with topic vj . Let Rsi = {r j ∈ R : si ∈ r j }

be the set of prioritized information requests (i.e., subscriptions) for each subscriber si . Let λ
sub
r j be

the incoming rate of events matching subscription r j received per unit time by subscriber si .

Let Ξr j be the success rate of delivering λ
sub
r j , which can be estimated as follows:

E

[
Ξr j

]
=

λsubr j∑
pi ∈P λ

pub
pi ,vj

(1)

where the denominator aggregates events produced from publishers for topic vj (Assumption 1).

Let ∆r j be the average end-to-end response time of events matching subscription r j = (si ,vj ,Ur j)

from the moment they are published until si receives them; this is a function of event processing,

queueing, transmission and propagation delays (defined later in this section).

Data Exchange Modeling. The data exchange layer represents a network of broker nodes B . We

assume that each publisher pi connects to its home broker bpi , which we define as the broker

to which pi publishes events. A home broker bsi is defined analogously for each subscriber si .
Furthermore, we define the set of publishers connected with bk as Pbk = {pi ∈ P : bk = bpi }, the set
of subscribers connected with bk as Sbk = {si ∈ S : bk = bsi }, and the set of subscriptions handled

by bk as Rbk = ∪si ∈Sbk
Rsi . A broker bk forwards events with rate λ

f wd
bk ,bi

to another broker bi ∈ B

for event delivery to bi ’s subscribers. As depicted in Fig. 3, we model each broker bk using a single

inbound M/M/1 queue Q in
bk

and multiple outbound M/M/1 queues Qout
bk ,si

. By Assumption 1 and the

exponentially distributed service rate ofQ in
bi
,∀bi ∈ B − {bk }, we know that λ

f wd
bk ,bi

follows a Poisson

distribution. Hence, we can define the arrival rate of events at Q in
bk

as the sum of all (post-network

transformation) event publication/forwarding rates over all publishers/brokers:

λinbk =
∑

pi ∈Pbk

∑
vj ∈Vpi

Γ
(
λ
pub
pi ,vj ,pi ,bk

)
+

∑
bi ∈B,bi,bk

Γ
(
λ
f wd
bi ,bk
,bi ,bk

)
(2)

where Γ, which we define later in this section, represents network-layer traffic shaping due to error

rates, administrative policies, etc.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:8 G. Bouloukakis et al

Forwarding, replication, or dropping of events based on current subscriptions occurs at the exit

of Q in
bk
. Let µinbk

be Q in
bk
’s service rate for analyzing an incoming event and determining where to

forward it (e.g., based on a topic routing tree). We assume µinbk
is constant (or averaged) across

all topics and independent of current subscriptions. Events not matching subscriptions Rbk are

dropped with rate λnosubbk
. For each subscriber si ∈ Sbk , bk forwards events matching a subscription

r j ∈ Rsi to Q
out
bk ,si

with rate λthrubk ,si
for transmission to si . Recall that each broker maintains multiple

connections (i.e., network flows) with each subscriber. Let µoutbk ,r j
be the service rate at Qout

bk ,si
that

captures the time it takes to map an event matching subscription r j to the corresponding connection

of si . It forwards these publications into the network layer with rate λ
notif y
bk ,r j

. Hence, we define the

per-subscriber forwarding rate as:

λ
notif y
bk ,si

=
∑

r j ∈Rsi

λ
notif y
bk ,r j

(3)

PrioDeX Configuration Parameters. The data exchange layer also represents the PrioDeX configura-

tion service. PrioDeX associates each subscription with one of the network flows fj ∈ F in order

to manage subscription traffic in a network-aware manner. Recall from §2 that network flows

represent multiple connections between a subscriber and its home broker. We define the set of

network flows for a particular subscriber si as Fsi ⊆ F . Additionally PrioDeX defines a set of unique

priority classes yj ∈ Y to which each network flow is assigned; this enables network traffic to be

managed in an application-aware manner. Note that yj has higher priority than yk for j < k – i.e.,

y0 is the highest priority. To configure the end-to-end data exchange interactions across all 3 layers,
PrioDeX employs the following functions:

Ψ : R 7→ F is the function that maps subscriptions (i.e., events matching them) to the corresponding

subscribers’ network flows. Note that we denote Ψ(si ,vj) = Ψ(r j) as the network flow for subscrip-

tion r j = (si ,vj ,Ur j) and so Ψ : S ×V 7→ F . As described in §2, this mapping allows the SDN data

plane to distinguish packets containing events from each other, based on their subscriptions.

Φ : F 7→ Y is the function mapping network flows to priority classes. This defines which priority

class (i.e., priority queue) the SDN infrastructure uses for a packet transmitted on network flow

fj . This packet contains event(s) matching subscriber si ’s subscription r j where fj = Ψ(r j). Hence
Φ ◦ Ψ(r j) is subscription r j ’s priority.
Ω : F 7→ [0, 1] is the function mapping network flows to preemptive packet drop probabilities. By

dropping some packets on a network flow, PrioDeX tunes the data exchange configuration more

accurately than through priority assignment alone. Somewhat akin to network traffic policing, this

technique lowers the bandwidth usage of a network flow so that the aggregate bandwidth needs of

all flows does not exceed that which is available. By dropping packets in the lower-priority flows,

this prevents switch buffers from filling up and dropping higher-priority packets.

Network Modeling. Publications forwarded to the network layer are encapsulated in packets for

transmission by the SDN infrastructure. To simplify our analysis, we leverage the following:

Assumption 2. The data exchange and applications encapsulate each event in a single packet for
transmission through the network.
Let X be the set of SDN switches that connect with the various hosts H . A host hj may have

multiple physical network interfaces/connections to one or more switches and packets between two

hosts may traverse multiple routes. However, SDN abstractions support the following assumption

that simplifies our analysis:

Assumption 3. We consider multiple switches/routes between two hosts as aggregated into a single
virtual SDN switch/link that captures the underlying physical network topology and characteristics.
By Assumption 3, we need only to model a single big switch serving a publisher or subscriber.

Hence, we refer to xsi as the PrioDeX-managed SDN switch that controls traffic between bsi and si .

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 0:9

We refer to xpi as the unmanaged SDN switch that exposes the network characteristics (defined

below) of the network channel between bpi and pi . Note that PrioDeX does not manage the latter

switch because this might conflict with deployment-specific IoT device configurations. To model

multiple hosts sharing the same network medium (e.g., a wireless channel), we apply Assumption

3 and model such a channel as one switch serving multiple hosts. Therefore, we define the set

of subscribers served by switch xk as Sxk = {si ∈ S : xsi = xk }, all of their subscriptions as
Rxk = {∪si ∈Sxk

Rsi }, and all of their network flows as Fxk . Similarly, let Pxk = {pi ∈ P : xpi = xk }
be the set of publishers served by xk .

Let Qum
xi be the queue modeling the unmanaged switch xi that encompasses a publisher-broker or

broker-broker link. By Assumption 2, we have the packet arrival rate for publications and forwarded

events at switch xi as λ
pub
pi ,vj and λ

f wd
bk ,bi ,vj

respectively. We modelQum
xi as a multi-class queue, which

enables us to define the average transmission delay of a packet (∆tx
r j) based on its size. Each class

corresponds to the topic of an event encapsulated within a packet. Hence, we define the expected

serialized size (e.g., in bytes) of a packet that, by Assumption 2, contains a single event published to

topic vj as Gvj ∈ Z>0. Using Assumption 3, we havewxk ,hj as the bottleneck bandwidth available

between two hosts (i.e., from the switch xk serving them to the destination host hj). Therefore, we
can define a per-topic packet transmission rate as:

µumxi ,vj =
wxi ,bk

Gvj
(4)

Equation 4 is used to estimate the average transmission delay ∆umxi (see 15). We apply Γ to packets

departing the switch queueQum
xi in order to transform event departure rates from a host hj to event

arrival rates at the destination host hi . To simplify our analysis, we leave retransmission of packets

for future work and instead consider only packet error rates. Let zhj ,hi ∈ [0, 1] be this packet error
rate that allows us to model packet drops at the single switch between these hosts. We have the

arrival rate of publications (on topic vj from publisher pi at broker bk) as:

Γ
(
λ
pub
pi ,vj ,pi ,bk

)
=
(
1 − zpi ,bk

)
λ
pub
pi ,vj (5)

We define the transformed arrival rate of events forwarded from broker bi to bk similarly.

We model each managed SDN switch encompassing a broker-subscriber link as two different

queues: 1) an M/M/1 queue Q in
xk that feeds into 2) our newly-proposed queueing model: a non-

preemptive priority and multi-class queue Qout
xk . By Assumption 2, we therefore have the arrival

rate at switch xk of event-encapsulating packets within a network flow fj as λ
in
xk ,fj

. Q in
xk processes

each incoming packet by matching its header contents to a corresponding network flow fj and
determining the assigned priority (i.e., Φ(fj)). Let µ

in
xk be the service rate at Q in

xk that captures the

time required to perform this matching (e.g., an SDN switch TCAM lookup), assign the given

priority, and route the packet to the appropriate output port. Note that this might actually capture

delays from forwarding packets along a multi-switch route. Before enqueueing the packet at the

correct output port, we have the per-subscription arrival rate at Qout
xk as:

λthruxk ,r j =
(
1 − Ω ◦ Ψ

(
r j
))

λ
notif y
bk ,r j

(6)

where the switch first applies the dropping policy to each flow (i.e., Ψ(r j)) according to the PrioDeX-
computed function Ω .

Multi-class priority queue Qout
xk separates the departure rates of each packet according to its

serialized size and the switch’s available bandwidth. Note that the assigned priority class affects the

response time but not the departure rates of these packets. By Assumption 2, we have the service

(i.e., transmission) rate of packets encapsulating events that match subscription r j = (si ,vj ,Ur j)

from SDN switch xk to subscriber si as:

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:10 G. Bouloukakis et al

µoutxk ,r j =
wxk ,si

Gvj
(7)

We have the departure rate from Qout
xk as:

λoutxk ,r j = λthruxk ,r j .

We then apply Assumption 2 and Γ to packets departing switch queue Qout
xk . Considering packet

error rates, we have the arrival rate of events at subscriber si matching subscription r j = (si ,vj ,Ur j)

as:

Γ
(
λoutxk ,r j ,bsi , si

)
= λsubr j =

(
1 − zbsi ,si

)
λoutxk ,r j (8)

3.2 End-to-end Analytical Model
We now leverage our queueing network to derive theoretical performance results. This analysis,

the accuracy of which we validate in §6.4, enables PrioDeX to tune the data exchange performance

characteristics of end-to-end event response time and delivery success rate. To define ∆r j , the

end-to-end response time of events for subscription r j , we define the propagation and queueing

delays at each layer. Note that the queueing delay in our model captures the real-world processing

and network transmission delays.

To simplify our analysis, we exploit the local nature of our target scenario and consider only

a single broker (bk) for the remainder of this section. Future work will explore relaxing this

assumption and extending this analysis to include the more general scenario of a distributed broker

network enabled by our queueing network model above. By the above assumption, we must define

the per-subscription end-to-end response time metric denoted by ∆r j , which is the expected delay

from any such publisher to broker bk considering both the queueing delay at the intermediate

switch xpi and heterogenous propagation delays. Therefore, we have:

E

[
∆
prop
pi ,bk

+ ∆umxpi

]
=

∑
{pi ∈Pbk :vj ∈Vpi }

∆
prop
pi ,bk

+ ∆umxpi
|P(pi ,vj)|

(9)

where ∆
prop
pi ,bk

is the propagation delay (i.e., physical network latency) between a publisher pi ∈ Pbk
and the broker bk , |P(pi ,vj)| is the number of maximum publishers producing events on topic vj –
i.e., |{pi ∈ Pbk : vj ∈ Vpi }| and ∆

um
xpi

is the transmission delay of packets passing through the switch.

Then, by using (9), we complete the calculation of ∆r j as follows:

∆r j = E

[
∆
prop
pi ,bk

+ ∆umxpi

]
+ ∆bk + ∆

prop
bk ,si
+ ∆xsi (10)

where ∆bk is the processing delay of events passing through bk ; ∆
prop
bk ,si

is the propagation delay
between the broker and the subscriber si ; and and ∆xsi is the transmission delay of packets passing

through xsi . The average response time of (10) includes queueing delays at each layer of PrioDeX.

Based on the queueing network representing PrioDeX (see Fig. 3), we identify the type of each

queueing model and their arrival/processing/transmission rates.

At the data exchange layer we use M/M/1 queues. Based on standard solutions for M/M/1 queues

(see page 62, equation 2.26 in [27]), the time that an event remains in the system (i.e., queueing

time + service time; also called average delay) is given by:

∆Qmm1
(µ, λ) =

1

(µ − λ)
(11)

At the network layer, we use three different types of queueing models: (i) the M/M/1 queue (Q in
xk);

(ii) the multi-class queue (Qum
xi , unmanaged switch queue) and (iii) the non-preemptive priority

and multi-class queue (Qout
xk , SDN switch queue). Note that each class corresponds to the topic of

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 0:11

an event encapsulated within a packet. Based on standard queueing theoretic solutions [37], the

average delay for events matching a particular subscription rk is given by:

∆Qmcl (µ, λ, rk) =
1

µrk − µrk
∑

r j ∈R λr j /µr j
(12)

where λ = {λr j : r j ∈ R} and µ = {µr j : r j ∈ R}.
Finally, the SDN switch is modeled using the non-preemptive priority and multi-class queue

(Qxk). Hence, the average delay of packets for rk assigned with yj is given by:

∆Qmclpr
(µ, λ, rk) =

Lrk (λ, µ)

λrk
(13)

where λ = {λr j : r j ∈ R}, µ = {µr j : r j ∈ R} and Lrk is the number of events matching subscription

rk with assigned priority yc (where Φ ◦ Ψ(rk) = yc) in the system (queue + server) of Qmclpr . See

Appendix A for our proof of (13).

By relying on the above analytical models, we define the average delay of events for any sub-

scription r j at each node and layer of the PrioDeX queueing network according to (10).

Data Exchange. At this layer, the average delay at bk (∆bk) is given by calculating the queueing

delay of events matching r j at both inbound (Q in
bk
) and outbound (Qout

bk ,si
) queues – i.e., ∆bk = ∆Q in

bk
+

∆Qout
bk ,si

. Both queues are of M/M/1 type. For Q in
bk
, the incoming rate of events is λinbk

and its service

rate is µinbk
; for Qout

bk ,si
the incoming rate of events is λthrubk ,si

and the service rate is µoutbk ,r j
. Hence, we

apply (11) to determine:

∆bk = ∆Qmm1

(
µinbk , λ

in
bk

)
+ ∆Qmm1

(
µoutbk ,r j

, λthrubk ,si

)
(14)

Network. At this layer, the average delay (∆umxi) at the unmanaged switch xi (publishers-broker
link) is given by calculating the queueing delay of packets matching rk at the multi-class Qum

xi
queue. Hence, using the analytical model of (12) such a delay is given by:

∆umxi = ∆Qmcl

(
{µumxi ,vj : vj ∈ V}, {λ

pub
pi ,vj : pi ∈ Pxi ,vj ∈ Vpi }, rk

)
(15)

At the SDN switch xk (broker-subscribers link), the average delay (∆xk) is given by estimating

the queueing delay for packets matching r j at both the inbound (Q in
xk) and outbound (Qout

xk) queues

– i.e., ∆xk = ∆Q in
xk
+ ∆Qout

xk
. In the M/M/1 queue Q in

xk , packets arrive at a per-flow rate λinxk ,fj
and are

served with rate µinxk . Hence, by applying (11), ∆Q in
xk

= ∆Qmm1

(
µinxk , λ

in
xk ,fj

)
.

The outbound queue (Qout
xk), amulti-class and non-preemptive priority queue, has a per-subscription

packet arrival rate λthruxk ,r j . Its service rates µ
out
xk ,r j capture the specific event/packet size of the corre-

sponding rk = (si ,vj ,Ur j). Hence, we apply (13) to find:

∆Qout
xk
= ∆Qmclpr

(
{µoutxk ,r j : r j ∈ Rxk }, {λ

thru
xk ,r j : r j ∈ Rxk }, rk

)
(16)

According to Fig. 3 and (10), to estimate the average response time for events matching subscrip-

tion r j of a single subscriber, we must consider the propagation and queueing delays for events

passing through one broker and two switches. In particular, we have: (i) one multi-class queue

in the publishers - broker switch (15); (ii) two M/M/1 queues in the broker (14); (iii) one M/M/1

queue and one multi-priority queue in the broker - subscriber switch (11,16). The time required to

determine the average response time using (10) is typically in the order of a few milliseconds. The

time complexity of (10) increases linearly as the number of switches increases (which is proportional

to the queues in the network). This is because we must consider the queueing and propagation

delays for the events passing via the additional publisher - broker and broker - subscriber switches.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:12 G. Bouloukakis et al

4 DATA EXCHANGE CONFIGURATION ALGORITHMS
The core algorithms of PrioDeX leverage the above analytical model to configure the SDN-enabled

data exchange. Considering current system state and information requirements, they assign priori-

ties and preemptive drop rates to subscriptions (i.e., via Φ ◦ Ψ, Ω) in order to maximize subscriber-

defined utility functions.

4.1 Utility Functions
To capture the relative value of information for different subscriptions, we propose using utility
functions. Subscribers include a utility function with their subscriptions. Utility functions directly

affect rate of successful event delivery Ξr j and response time ∆r j . The overall utility for a subscriber

depends on each of its subscriptions’ utilities and is defined as:

Usi =
∑

r j ∈Rsi

Ur j (Ξr j) (17)

Let Ûr j be a subscription’s maximum achievable utility: delivering the maximum number of

events under ideal network conditions (i.e., no loss, minimal latency, no other traffic).

To further capture the relative value of information between each subscriber, we consider

an overall utility of all subscribing first responders. Each subscriber may define different utility

functions to capture the fact that each of their needs vary (e.g., the IC may require more situational

awareness than individual firefighters). We define the overall utility of the configuration for all

subscribers as a sum over each individual subscriber’s utility:

U =
∑
si ∈S

Usi (18)

To model heterogeneous information requirements in our experiments, we generate different

utility functions for each subscription. We define the base utility function as:

Ur j (Ξr j) = αr j log(1 + Ξr j) (19)

where the utility weight αr j is varied for each subscription.

4.2 Priority Assignment Algorithm
PrioDeX leverages the above quantified utility metrics to assign priorities for each data flow in a

manner that aims to maximize the overall system utility. We decouple the assignment of priorities

from that of drop rates for two reasons. Prioritization ensures the most important events get through

first, but it does not necessarily provide guarantees about how much data is delivered. Hence, we

first assign the priorities and then optimally set the preemptive drop rates to tune bandwidth usage

for the network flows in each priority class. Second, this decoupling allows us to explore different

policies in these two spaces independently.

Greedy Split. Because the assignment of discrete priorities for maximizing the utility is non-

trivial, we propose a heuristic to approximate a solution. It first ranks subscriptions according

to their maximum utility Ûr j scaled by the corresponding required bandwidth. This measures

information value per unit bandwidth and lets PrioDeX consider that some high-value subscriptions

may consume a lot of network resources. We define this utility weight as follows:

αr j =
Ûr j

Gvjλ
notif y
bk ,r j

(20)

We provide a solution to the priority-assignment problem through the following greedy approach:

(1) Sort the subscriptions r j ∈ Rsi by (20)

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 0:13

(2) Split this list into |Fsi | sub-lists of approximately equal size

(3) Assign Ψ(r j) = Fsi (k) for each r j ∈ sub-list number k
(4) Split the list of flows Fsi∀si ∈ S into approximately |Y | sub-lists of approximately equal size

(5) Assign Φ(fj) = yk for each fj ∈ sub-list number k

Note that this splitting up of lists handles unequally-sized splits by preferring higher priorities first.

Cluster Split. We also propose the following cluster approach. It consists of the same first three

steps as the greedy approach, then:

(4) Split the list of flows Fsi∀si ∈ S into |Y | sub-groups leveraging the k-means clustering method

and the following utility weight (per network flow) to evaluate each data point:

αfj =
∑
r j ∈fj

αr j (21)

(5) Assign Φ(fj) = yk for each fj that belongs to the group with priority yk .

The main difference between the two approaches is that the greedy split has fixed group size,

while the cluster split groups different network flows depending only on their information value (i.e.,

Eq. 21). Both priority assignments ensure delivery of the highest-priority events if possible. However,

an overloaded system will fill switch buffers and lead to high delay and loss of lower-priority events.

Hence, we apply preemptive drop rates to avoid such a case.

4.3 EnsuringQueue Stability via Preemptive Drop Rates
Given a priority assignment, subscription utility functions, and the current network state (e.g.,

bandwidth constraints), PrioDeX further fine-tunes the subscriptions’ successful notification rateΞr j
by applying a packet dropping policy. This improves the overall utility of the system’s configuration

by allocating available bandwidth to the network flows. In addition, this bandwidth allocation also

ensures queue stability throughout the network. That is, if packets arrive at the switches’ inbound

queues too quickly, the forwarding queues will grow in size until the buffers fill up and packets are

dropped. To prevent the dropping of high-value events, PrioDeX preemptively drops lower-priority

packets. The algorithms presented in this section determine the probability with which packets of

each network flow should be dropped (Ω(fj)). Here, the goal is to satisfy the situational awareness

requirements and the conditions necessary for our analytical model’s results to be accurate, while

also ensuring queue stability and improving the overall system performance.

Let ρQ =
λ
µ be the server utilization (i.e., the probability that the server is busy) of the correspond-

ing queue (e.g.,Qout
xk). By [27], the system remains unsaturated (i.e., queue stability is ensured) when

ρQ < 1. For PrioDeX’s M/M/1 queues (i.e., Q in
bk
, Qout

bk ,si
, Q in

xk) we define: ρQ in
bk
=

λinbk
µ inbk

, ρQout
bk ,si
=

λthrubk ,si
µoutbk ,rj

and ρQ in
xk
=

λinxk , fj
µ inxk

. PrioDeX’s multi-class queuesQum
xi andQout

xk have per-topic and per-subscription

arrival and service rates, respectively. Thus, we can estimate the per-class server utilization as well

as the overall server utilization for each queue as:

ρQum
xi
=

∑
Pxi

∑
vj ∈Vpi

λ
pub
pi ,vj

µumxi ,vj
(22)

ρQout
xk
=

∑
r j ∈Rxk

λthruxk ,r j

µoutxk ,r j
(23)

To improve successful delivery rate while ensuring queue stability, we propose several algorithms

of increasing sophistication below. Note that these algorithmic formulations currently only consider

the outbound queue of the SDN switches for this constraint, as tuning the drop rates only affects

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:14 G. Bouloukakis et al

ρQout
xk

. Also recall that this queue captures the bottleneck bandwidth of the network route from

broker to subscriber. Future work will explore simultaneously balancing the load across data

exchange brokers to also ensure stability of their queues within our model.

Each algorithm makes use of a parameter ρ̃ in tuning the system’s tolerance to approaching (but

never exceeding) the queue saturation point of ρQout
xk
= 1. Clearly, to satisfy the strict inequality

ρQout
xk
< 1wemust have ρ̃ > 0. Increasing ρ̃ provides ample buffer within the SDN switch queues for

resilience against temporary notification rate spikes that might otherwise lead to queue saturation.

However, even if this condition is just barely satisfied (e.g., ρ̃ = 10
−10

), queues will still grow quite

large and thereby cause high delay. Therefore, the following drop rate policies set Ω such that:

ρQout
xk
= 1 − ρ̃ (24)

Flat drop rates: this simple naive policy sets all drop rates equal to satisfy Eq. (24) by solving Eq.

(23) for a parameter β such that:

Ω(fj) = β (25)

Linear drop rates: this value-aware policy sets the drop rates for each network flow according

to its assigned priority level. It solves Eq. (23) for a parameter β that satisfies Eq. (24) with drop

rates set to:

Ω(fj) = βΦ(fj) (26)

Exponential drop rates: similar to Linear, this policy sets drop rates according to priority level.

It solves Eq. (23) for a parameter β that satisfies (24) with drop rates set to:

Ω(fj) = 1 − β−Φ(fj) (27)

To compute the parameter β in (25,26,27), we use the analytical solutions presented in Appendix B,

i.e., (47) for Flat, (48) for Linear and (54) for Exponential drop rates.

Optimized drop rates: the following convex optimization formulation assigns drop rates to

maximize overall utility (see 18). Given the assigned priorities to network flows as input, PrioDeX

assigns drop rates by solving the following:

maximize U

subject to Ω(fj) ∈ [0, 1],∀fj ∈ F

ρQout
xk

≤ 1 − ρ̃ , ∀xk ∈ X

(28)

Note that the first constraint defines the feasible domain of assigned drop rates for each network

flow fj , and the second constraint ensures that available bandwidth constraints are met (i.e.,

queue stability) according to the ρ̃ parameter for each SDN switch xk . As long as the chosen

utility functions are concave (e.g., logarithm such as 19), then (28) can be expressed as a convex

optimization problem and efficiently solved. We used CVXPY [2, 22] that solves convex optimization

problems to assign drop rates to PrioDeX network flows.

5 PROTOTYPE IMPLEMENTATION
We now present the PrioDeX prototype which implements the cross-layer architecture (Fig. 1 in §2),

the underpinning theoretical model (§3) and the algorithms (§4). The main software components

developed and technologies used are shown in Fig. 4. Among these components, the PrioDeX
Coordinator Service (PCS) is a part of the data exchange layer and provides configuration parameters

to the network infrastructure through SDN. It runs the algorithms to compute priorities and drop

rate policies, which are enforced via an SDN controller that configures SDN switches. The PrioDeX

source code and the detailed documentation is provided on: https://github.com/boulouk/priodex.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

https://github.com/boulouk/priodex

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 0:15

Fig. 4. The PrioDeX cross-layer prototype implementation.

5.1 Cross-layer Prototype Implementation
Application layer . The MQTT Paho library [20] is used from any PrioDeX publisher to create an

MQTT connection with the data exchange broker. Publishers produce events according to one of

two methods: (i) by using probability distributions (e.g., Exponential or Deterministic); or (ii) by

using traces created with data coming from real IoT deployments. Subscribers connect to the broker

by specifying a topic name and its corresponding utility function to receive relevant events. Each

subscriber establishes multiple MQTT-SN connections to the broker with a client library [19] –

these allow the network layer to distinguish between different event types (e.g., more/less relevant).

Hence, different queueing priority disciplines and event dropping policies can be applied as indicated

by the PCS. To establish the subscribers’ connections, MQTT-SN is used instead of MQTT because

it is implemented over UDP rather than TCP. TCP’s re-transmission mechanism interferes with

our preemptive packet dropping approach that tolerates losses of less important data due to the

constrained bandwidth. However, since UDP does not support fragmentation and reassembly of

application-layer events, we assume that events are never fragmented. We additionally limit the

event size to 256 bytes (before packet headers) due to the limitations of the MQTT-SN library. The

PCS workflow with respect to subscribers is consists of three steps. First, the subscribers coordinate

with the PCS as depicted in Fig. 5. Then, the PCS determines the port number of the connection to

be used for each subscription. Finally, subscribers open the connections specified by the PCS to the

broker and subscribe to each topic through its corresponding connection.

Data exchange layer . In this layer, we follow the publish/subscribe paradigm for event dissemi-

nation using the following components:

Data exchange broker. Publishers and subscribers interact with each other via an MQTT-based [43]

message broker. While PrioDeX supports any MQTT broker implementation (e.g., EMQ, RabbitMQ),

we deployedMoquette [16] because it is lightweight, embeddable, open-source and easy to configure.

We also deploy an MQTT-SN gateway [26, 34] co-located with the MQTT broker to translate events

from MQTT over TCP (publishers’ protocol) to MQTT-SN over UDP (subscribers’ protocol).

PrioDeX Coordinator Service. The PCS is the “brain” of PrioDeX. It manages user subscriptions

by assigning priorities and drop rates as described in §4. We implemented the PCS as a REST

service using the Python library Flask [25]. Subscribers indicate their topics of interest and the

corresponding utility functions to the PCS through an HTTP request (i.e., subscription intent). Then,
the PCS computes priorities and drop rates for the subscriber’s network flows, provides to the

subscribers the mapping of subscriptions to connections (i.e., network flows), and configures the

network layer to enforce the assignment of priorities and dropping policies to network flows.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:16 G. Bouloukakis et al

Fig. 5. Subscribers and PCS interaction workflow.

Network layer . The network layer enforces the event prioritization and drop rate policies

indicated by the PCS using the OpenFlow [40] protocol. This is performed from the Ryu SDN

controller that configures the SDN switches via the following SDN network applications:

(1) The Topology Application monitors network traffic to create an internal graph representation

(using the NetworkX library [28]) of the network topology. The topology is used to route

packets from source to destination.

(2) The PrioDeX Flow Application populates the switches’ flow and group tables. This application

implements different prioritization policies and thus, can be used to tune the networking

infrastructure in the case of an emergency (e.g., earthquake, water contamination, etc).

Based on the scenario described in §2, we implement the FireDeX flow application to enforce

priority and drop rate policies in the switches’ flows and group tables. To identify a subscriber’s data

flows, the FireDeX flow application matches the packet’s header with the network flow information

received by the PCS, i.e., the subscriber’s IP address and the connection’s/network flow’s transport

layer port number. To set the drop rates, we use the SELECT option of the OpenFlow group tables.
In particular, we set the forwarding and drop probabilities by defining two weighted “buckets”

(i.e., options of a group rule); the first bucket represents the actions taken to forward a packet

normally and the second bucket represents the actions taken to drop the packet. For example, the

rules shown in Listing 1 match packets for the subscriber with IP address 10.0.0.1 and an MQTT-SN

connection on UDP port 8888. The forwarding bucket applies priority class 2 (i.e., queue number),

while the drop bucket applies a 10% drop rate.

FLOW TABLE RULE: ip_address = 10.0.0.1 , udp_port = 8888,

action = (group_identifier , 1)

GROUP TABLE RULE: group_identifier = 1,

buckets [

(weight = 90, action = (queue = 2, output_port = 3)),

(weight = 10, action = drop)

]

Listing 1. Example rules in flow and group tables.

We configure the priority queues in the switches via Linux TC [5] because OpenFlow does not

provide an API to support this. Furthermore, PrioDeX must enforce a random per-packet selection

of the buckets option to apply the drop rate rather than the typical approach of hashing packet

header fields. This is implemented by leveraging a modified Open vSwitch (OVS) version [45].

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 0:17

5.2 Implementation challenges
We faced the following challenges, and overcame them while implementing the PrioDeX prototype:

• Differentiating events at the network layer for policy enforcement. We used SDN network

flows to distinguish subscriptions served by different connections. This was necessary because

the OVS switches can only inspect a packet’s header (i.e., OSI Layers 2-4), and not the payload.

Hence, we needed to bring the concept of subscription topics from OSI Layer 7 (app-layer)

down to OSI Layers 2-4 for our in-network policy enforcement.

• Enforcing packet drop rates via SDN required us to use the modified OVS version de-

scribed above. As a result, we implemented the drop rate policies through a weighted per-

packet selection of bucket options (i.e., drop vs. forward with priority).

• SDN controller choice: we moved from ONOS to Ryu because the former does not support

group rules for specifying the enqueue action as required by our flow rules shown in Listing 1.

• The UDP protocol was used over the TCP protocol when subscribers receive events. Ap-

plying drop policies to events over a TCP connection triggers its re-transmission mechanism

because the sender does not receive an acknowledgement when the corresponding event is

dropped. Hence, subscribers employ the MQTT-SN (over UDP) protocol.

• Clock-synchronization issues between publishers and subscribers for gathering accurate

performance metrics. To ovecome this challenge we run our experiments on a single machine

using Mininet – all applications shared the same system clock.

• Our experimental network topology requires additional “dummy” switches for construct-

ing priority queues that are shared across all subscribers. This is due to the fact that each host

has its own Ethernet interface connecting it with a switch. Therefore, enqueueing prioritized

events may result in one set of priority queues for each subscriber rather than a shared queue

across all subscribers as our version accomplishes.

Despite the fact that we have tackled the above challenges, the MQTT-SN control events (e.g.,

subscription, unsubscription, ACK) are sent to the same UDP port (or network flow) in which

we apply the drop rate policies. Therefore, some of the control events may be dropped. To better

understand the situation, let us consider the events exchanged between a broker and a subscriber

through the SDN infrastructure. The first event sent from the broker to the subscriber (i.e., the

subscription’s acknowledgement) triggers the creation of the flow/group rules (see Listing 1) asso-

ciated with the network flow to which the subscription belongs. Subsequently, when the subscriber

subscribes to another topic on the same network flow, the second subscription’s acknowledgement

may be dropped because of the drop rate policy applied. This can delay the subscription process

considerably if the assigned drop rate to that network flow is high. One possible solution to over-

come the aforementioned problem requires changing the interaction protocol between subscribers

and the PCS. In particular, each subscriber notifies the PCS of its intention to subscribe/unsubscribe

to/from a topic. Then, the PCS temporarily disables the priority and drop rate policies to allow the

subscriber use its network flows and modify its subscriptions. Once the subscriber finishes the

subscribing/unsubscribing process, the PCS instructs the SDN controller to re-apply the policies.

Note that applying this solution enables us to support policy reconfiguration and manage dynamic

conditions (e.g., subscriber churn).

6 EXPERIMENTAL RESULTS
PrioDeX uses the analytical model given in §3.2 to estimate end-to-end response times and success

rates for event notifications to interested subscribers. We use this model to evaluate the PrioDeX

approach for a given configuration. In particular, we compare our approach’s efficacy with that

of an unprioritized system and evaluate the trade-off between response times and success rates.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:18 G. Bouloukakis et al

Network Layer
Parameter Sim Prototype

#subscribers (|S |) 10 10

#publishers (|P |) 160 10

#flows (|Fsi |) 9 7

#priorities (|Y |) 9 7

bandwidth (wsi) 80Mbps 320 Kbps

ρ tolerance (ρ̃) 0.1 0.1

Data Exchange Layer
Sim Sim Prototype

Parameter Tel. data Async. events Async. events

#topics (|V |) 140 60 7

pub rate (λpubpi ,vj) 6 ∈ [4,7] 4 ∈ [3,5] 1

event size (Gvj) 110 ∈ [90,500] 800 ∈ [500,1100] 100

#subscriptions (|Rsi |) 70 42 70

utility weight (αrj) 2 ∈ [0.01,2] 1 ∈ [0.1,4] 5 ∈ [0.01,100]

Table 2. Default parameters for our experimental configurations.

We use our proposed greedy-split priority-assignment algorithm and the exponential drop rate

policy. Subsequently, we utilize the analytical model to compare the ability of different algorithms

to maximize the overall value of information captured. Then, we validate the PrioDeX theoretical

model, which includes a multi-class priority queue that represents the prioritization, dropping

and transmission of packets in the SDN network infrastructure. We developed an experimental

framework that uses both an extended open source queueing simulator as well as the implemented

prototype to represent our real-world scenario. We compare the subscribers’ end-to-end response

times given by the analytical model with those given by the simulation and the prototype. Note

that we omit trivial results for validating success rates. In order to improve the figures’ legibility,

we did not include error bars in our plots as the simulation results’ confidence intervals are very

small (less than two orders of magnitude from the corresponding mean values presented in the

plots). We further validate the model’s accuracy under larger numbers of subscribers.

6.1 Experimental Setup
We developed a Python-based experimental framework that models the real-world scenario de-

scribed in §2 to provide input data for our experiments. The inputs to this framework are the

parameters given in Table 2, which will generate configurations for every publisher, subscriber,

broker, and the network. We consider two classes of topics that represent events produced from

publishers: (i) sensor telemetry readings published periodically from FFs or IoT devices deployed in

the building; and (ii) asynchronously-published notifications that indicate real-world phenomena

detected from analysis of raw sensor readings. Subscribers correspond to stakeholders such as the

IC, FFs and building occupants that subscribe to situational awareness information with varying

importance (e.g., “smoke” > “water pressure” for FFs). The parameters in Table 2 represent the

average expected value of an exponential distribution. For example, a publication rate or packet size

is selected from the given range of values. The actual topics published and subscribed, are chosen

uniformly at random from those available. Note that we bound these values to maintain realistic

parameters by reproducing a new one if it lies outside the given range. We parameterize a saturated

system with high publication rates, overloaded buffers and constrained bandwidth capacity.

PrioDeX ensures low response times and high delivery success rates by using the model presented

in §3 which generically captures a wide range of scenarios and system configurations. To reduce the

number of variables we explore in our experiments, we only simulate a single (i.e., last-hop) SDN

switch between the broker and subscribers. Recall that this represents the bottleneck bandwidth

that may cause high transmission delays. Also note that propagation delay and error rates are

typically modeled as constant values. Hence, we ignore them for these experiments to focus on

analyzing the variable delays that our model aims to capture.

Queueing Network Simulator. After generating these configuration parameters for a single

instance of a scenario, our Python-based framework feeds them into a simulator. That is, these

parameters correspond to the expected values of the probability distributions from which the

simulator draws the actual individual publications’ arrival times and packet sizes. Note that we

use exponential distributions in order to maintain our assumption of Poisson arrival/service rates.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 0:19

This simulator extends JINQS [24], a Java simulation library for multiclass queueing networks.

JINQS provides a suite of primitives that allow developers to rapidly build simulations for a wide

range of queueing networks. We leverage this power and extend JINQS in order to: (i) represent

the queueing network introduced in Fig. 3; (ii) implement our new multi-class and non-preemptive

priority queueing model; (iii) simulate pub/sub interactions using a set of configuration parameters

provided by our Python-based framework. To evaluate PrioDeX, we generate parameters and

record the average of 10 runs for each configuration. Each run generates approximately 6,500,000

publications in order to accurately calculate per-subscription response times and success rates.

Furthermore, we consider 9 priority classes due to practical limitations of many existing network

traffic and data exchange management systems. For example, Linux TC [5] and AMQP 0.9.1 [1]

only support 8 and 10 priority queues (one queue per priority class) respectively.

Prototype Emulator. Instead of feeding the generated configuration parameters into a simulator,

we use the our prototype that implements a pub/sub system with an emulated network using

Mininet [41]. This uses OVS [57] to create a virtual network topology of SDN-enabled switches

(in a real Linux networking stack) with realistic delays, bandwidth limits and link loss rates. It

connects these switches together as well as to virtual hosts, which are implemented as network

namespace-isolated processes. Then, we run our prototype implementation described in §5. OVS

switches connect via the SDN southbound protocol OpenFlow [40] to the distributed SDN controller

platform Ryu [21] running on the same machine. The publisher/subscriber hosts produce output

files from which we calculate the experimental results. The experimental framework configures the

managed SDN switches to create a number of priority queues. Because OpenFlow does not support

a unified API for creating these queues, we currently perform this using Linux TC [5] that supports

up to 8 queues. However, the highest priority queue is used to send the default traffic. Since this

would affect the results for that priority queue, we route default traffic through the highest priority

queue, and prioritized traffic through the remaining queues. This limits the number of priority

queues that we can actually use to prioritize the network traffic to 7.

6.2 Evaluating the PrioDeX Approach
We now compare our approach’s efficacy with that of an unprioritized system and a system without

preemptive packet drops – this evaluates the trade-off between response times and success rates.

We will first discuss the concept of network switch buffers and their limited capacity within the

context of PrioDeX in more detail. Recall from §4.3 that we apply drop rates in order to prevent

these buffers from filling up, which leads to high queuing delays as well as dropped high priority

packets. Recall also from that discussion that we tune the parameter ρ̃ in order to keep these

buffers from growing indefinitely. We set ρ̃ = 0.1 to prevent our system from being saturated while

also ensuring low response times and high delivery success rates. This is used throughout our

experiments and adopted as the default in our prototype.

While ρ̃ keeps buffers at a finite size, we must also consider real-world constraints of physical

switches: limited buffer capacity. Hence, we now consider applying a buffer capacity of k packets

for the simulator’s SDN switch outbound queue. This models a real-world switch dropping packets

when the buffer fills up. It drops the incoming packet if its priority class is less than or equal to

the lowest priority class of those in the buffer. Otherwise, it evicts lower-priority packets to make

space in the buffer. We set k = 2000 based on reported buffer sizes of various real-world SDN

switches[48]. Additionally, we configure this queue in 3 different ways:

(i) No priority assignment or drop policy features (i.e., a simple switch that treats all packets

identically and only drops incoming ones when its buffer has filled up)

(ii) Priority assignment only (i.e., no drop rates)

(iii) Both priorities and drop rates (i.e., the complete PrioDeX approach)

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:20 G. Bouloukakis et al

0 1 2 3 4 5 6 7 8

Priority

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 R

a
te

k=2000 packets without priorities

k=2000 packets with priorities

k=2000 packets with priorities and drop policy

(a) Comparing success rates.

0 1 2 3 4 5 6 7 8

Priority

10
-4

10
-3

10
-2

10
-1

10
0

10
1

E
n
d
-t

o
-e

n
d
 r

e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
)

k=2000 packets without priorities

k=2000 packets with priorities

k=2000 packets with priorities and drop policy

(b) Comparing response times.
Fig. 6. Success rates vs. response times for no priorities, priorities only, and an added drop policy.

These experiments use the parameters given in Table 2. Figs. 6a and 6b show the success rates

and end-to-end response times for each priority class, respectively. Note that priority classes are

represented numerically (x-axis) where a lower number has higher priority. Configuration (i) results

in a 58% success rate and 0.9 sec response time regardless of assigned priority. Configuration (ii)

uses the greedy-split algorithm for assigning priorities to each network flow (i.e., to their contained

subscriptions and associated packets). The results demonstrate that priority assignment significantly

improves both response times and success rates for higher priority subscriptions. In particular,

subscriptions with priorities 0-4 have a response time less than 4 ms and 100% success rate. However,

the success rate of lower priority subscriptions suddenly decreases while the response time increases

to the order of seconds. For instance, those with priority 6 have a 45% success rate and 11 sec.

response time. Additionally, subscriptions with priorities 7,8 have very low success rates (almost

all packets dropped), while those events successfully delivered have a high response time of 20 sec.

The results for configuration (iii) demonstrate how applying drop rates further improves response

time to the order of milliseconds. Specifically, priority 0-6 subscriptions have a response time under 6

ms, whereas those with priority 8 have a response time of 647 ms. The most important subscriptions

(i.e., priority 0) have 100% success rate. The PrioDeX exponential drop rate policy smoothly decreases

the success rate proportional to the priority level. This demonstrates our approach to controlling

the success rate based on a subscriber’s available bandwidth in order to achieve lower response

times. Next, we compare the level of overall utility achieved using the various priority assignment

and drop rate algorithms that base their configurations on the subscriptions’ utility functions.

6.3 Comparing Prioritization & Drop Rate Algorithms for Situational Awareness
We now compare our proposed priority assignment algorithms’ ability to group similar network

flows into priority classes. Each group contains one or more network flows with the same priority

class. We define the within-class (wtc) and between-class (btc) variances denoted by σ 2

wtc and σ
2

btc ,

respectively, in order to measure the similarity/dissimilarity of the grouped network flows. We

then compare our proposed algorithms’ ability to maximize the value of information captured for a

given configuration. We measure this as the achieved utility rate: the ratio of a subscription’s max

utility (Ûr j) to achieved utility, averaged over all subscriptions.

6.3.1 Priority algorithms comparison. Wefirst introduce themetrics used to compare our algorithms.

The within-class variance per priority represents the spread of each network flow utility (see Eq.21)

with respect to the mean utility value of the grouped network flows with the same priority class.

This is defined as follows:

σ 2

yk =
∑

fj :Φ(fj)=yk

(αfj − E[αfj : Φ(fj) = yk])
2nyk (29)

where E[αfj : Φ(fj) = yk] is the average value of network flow utilities with the same yk and

nyk =
|fj ∈F :Φ(fj)=yk |

|F | is the number of network flows with the same yk divided to the overall number

of network flows. We then estimate the total within-class variance for all priority classes as follows:

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 0:21

0 1 2 3 4 5 6

Priority

0

2000

4000

6000

8000

V
a
ri
a
n
c
e

wtc

btc

(a) Random priority-assignment.

0 1 2 3 4 5 6

Priority

0

2000

4000

6000

8000

V
a
ri
a
n
c
e

wtc

btc

(b) Greedy split priority-assignment.

0 1 2 3 4 5 6

Priority

0

2000

4000

6000

8000

V
a
ri
a
n
c
e

wtc

btc

(c) Cluster split priority-assignment.

0 1 2 3 4 5 6

Priority

0

20

40

60

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Cluster split

Random

Greedy split

(d) Execution times for priority-assignment.

Fig. 7. Comparing priority-assignment algorithms policies using wtc/btc variances and their execution time.

σ 2

wtc =
∑
yk ∈Y

σ 2

yk (30)

The second metric, between-class variance, represents the spread of the mean utility value of the

grouped network flows with the same priority class with respect to the mean utility value of all

network flows. This is defined as follows:

σ 2

btc =
∑
yk ∈Y

(E[αfj : fj ∈ F] − E[αfj : Φ(fj) = yk])
2nyk (31)

where E[αfj : fj ∈ F] is the average utility value of all network flows.

To summarize, within-class variance measures the similarity/dissimilarity of each network flow

in a group (with the same priority class), while between-class variance measures the similarity/dis-

similarity of each group of network flows (grouped per priority class) for all priority classes. The

main purpose of our approach is to assign similar network flows in a group – hence we aim to

minimize the within-class variance. On the other hand, we want dissimilar groups of network flows

and thus, we aim to maximize the between-class variance.

Figs. 7a, 7b, 7c show the measured variances according to assigned number of priority classes

where priorities were assigned using the random, the greedy split and the cluster split algorithms,

respectively. In our experimental setup, we consider 70 network flows assigned with random values.

We run each experiment 100000 times and average across the results. As expected, the random

algorithm demonstrates the worst behavior (i.e., within-class variance values are very high) than

the other algorithms for all priorities. This is because it does not consider the utility values (αfj)
of network flows. By leveraging the networking characteristics in the network utility definition

(see Eq.21) when assigning priorities using the greedy and cluster approaches, the within-class

variance decreases very rapidly.

Although these two approaches perform very similar with regard to their ability to grouping

similar utility values of network flows, their execution time is different. As shown in Fig. 7d cluster

one becomes significantly less efficient as the number of priority classes increases.

6.3.2 Drop rate algorithms comparison. We compare the four drop rate-assignment algorithms

outlined in §4.3 (Flat, Linear, Exponential, Optimized). Note these algorithms assume that priority

classes have been already assigned to network flows – we leverage the greedy-split algorithm

which is the most efficient. To demonstrate PrioDeX’s ability to improve situational awareness for

heterogeneous data and information requirements, our experiments varied the load of the network

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:22 G. Bouloukakis et al

1.1 1.2 1.3 1.4 1.5 1.6 1.7
0.5

0.6

0.7

0.8

0.9

1

A
c
h
ie

v
e
d
 u

ti
lit

y
 r

a
te

Optimal

Linear

Exponential

Flat

(a) Drop rate policies.

Exponential Flat Linear Optimized
0

20

40

60

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

(b) Execution times for drop rate policies.

Fig. 8. Comparing drop rate policies and their execution time.

0

0.5

1

1.5

2

2.5
analytical:

Q
 =~ 0.6

sim:
Q

 =~ 0.6

0

10

20

30

40

50

60

70 analytical:
Q

 =~ 0.95

sim:
Q

 =~ 0.95

0 1 2 3 4 5 6 7 8

Priority

0
5

10
15
20
25
30
35

E
n
d
-t

o
-e

n
d
 r

e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

analytical with drop policy:
Q

 =~ 1.7

sim with with drop policy:
Q

 =~ 1.7

b

a

c

(a) For varying traffic loads (ρQout
xk

).

1 5 10 20 50 100

Number of Subscribers

0

5

10

15

20

25

30

35

40

E
n

d
-t

o
-e

n
d

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

analytical with drop policy: =~ 1.7

sim with drop policy: =~ 1.7

(b) For varying numbers of subscribers.

Fig. 9. Analytical vs. simulation end-to-end response times.

(ρ) by increasing the number of subscriptions. The x-axis in Fig. 8a shows the different ρ values

used throughout the experiments while the y-axis represents the achieved utility rate. Fig. 8b shows

the execution time of each algorithm with ρ = 1.7 (i.e., overloaded network conditions). As shown

in Figs. 8a and 8b, while the optimization-based algorithm captures the highest overall utility rate

(i.e., it maximizes situational awareness) it is the least efficient in terms of execution time. The

linear and exponential algorithms demonstrate similar utility rates and execution times.

6.4 Validating the PrioDeX Models
To prove the accuracy of the theoretical analysis (presented in §3.2), we now compare the estimated

performance metrics with those from the simulator and the prototype implementation.

6.4.1 Simulation-based Validation. Recall that the SDN switch’s outbound queue (see Fig. 3) cap-

tures the bottleneck bandwidth of the network route from broker to subscriber. PrioDeX uses the

corresponding server utilization (ρQout
xk

) to decide the bandwidth tuning by assigning drop rates.

Therefore, we parameterize the simulated queueing network to vary the traffic load: a)medium-load

conditions (ρQout
xk

= 0.6); b) high-load conditions (i.e., close to saturation – ρQout
xk

= 0.95); c) over-
loaded conditions (i.e., saturated – ρQout

xk
= 1.7). Note that the saturated case (3rd) corresponds to

the default parameters in Table 2. To achieve the medium-load (1st) and high-load (2nd) cases, we

set the number of subscriptions for each topic class respectively: (i) 21,15; and (ii) 42,24.

Fig. 9a shows the results of these experiments according to assigned number of priority classes

and averaged across all topics, subscribers, etc. Comparing the curves of both the simulated

measurements and the analytical results obtained by Eq. (10) reveal our model’s high accuracy. We

notice small differences for events with lower priority levels. In particular, note priority level 8’s

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 0:23

0

0.02

0.04

0.06 Analytical: =~ 0.5

Sim: =~ 0.5

Prototype: =~ 0.5

0

0.2

0.4

0.5 Analytical: =~ 0.9

Sim: =~ 0.9

Prototype: =~ 0.9

0 1 2 3 4 5 6

Priority

0

0.5

1

1.5

E
n

d
-t

o
-e

n
d

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

Analytical with drop policy: =~ 1.7

Sim with drop policy: =~ 1.7

Prototype with drop policy: =~ 1.7

a

b

c

(a) for varying traffic loads (ρQout
xk

).

10 20 50 80 100

Number of Subscribers

0

0.2

0.4

0.6

0.8

1

E
n
d
-t

o
-e

n
d
 r

e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
) Simulation with drop policy: =~ 1.7

Prototype with drop policy: =~ 1.7

(b) for varying numbers of subscribers.

Fig. 10. Analytical vs. simulation vs. prototype end-to-end response times.

differences: 0.35 ms in Fig. 9aa, 13.98 ms in Fig. 9ab and 8.24 ms in Fig. 9ac. Because the system

approaches saturation in Figs. 9ab and 9ac, we deem these results acceptable. In Fig. 9ac, PrioDeX

uses our drop policy mechanism to drop packets at the SDN switch and return the system to below

saturation (i.e., ρQout
xk

= 0.9 by using ρ̃ = 0.1).

We now validate our analytical model’s accuracy under varying numbers of subscribers: |S | =
1, 10, 20, 50, 100. Among the simulation parameters defined in Table 2, we select to scale up the

number of subscribers because this significantly increases the system traffic load – the broker must

duplicate events to match the increased number of subscriptions. Additionally, the prioritization

and dropping mechanisms are enforced at the broker-subscriber link and thus is highly important

to extensively evaluate this part of our system. To maintain the same degree of system saturation

(i.e., ρQout
xk

= 1.7), we increase the simulation bandwidth proportional to the number of subscribers:

wxk ,si = 8Mbps . We keep all other simulation parameters according to Table 2. According to these

parameters, we measure the simulated mean response times and plot them vs. those calculated

using Eq. (10) in Fig. 9b. Note the curve for each number of subscribers that shows response time

increasing with the priority class. From this comparison, we see that the absolute deviation between

the two curves does not exceed 10 ms across all priority levels. Therefore, our model remains

accurate even with higher numbers of subscribers.

6.4.2 Prototype-based Validation. We further validate our analytical model by comparing its

estimated response times with the ones derived from a prototype implementation configured under

realistic settings. Similar to the simulation-based validation, we first show the results obtained for

different traffic loads and then scale up the number of subscribers. We modify the experiments’

configuration parameters used in the simulation (see Table 2, Prototype column) to overcome

practical issues imposed by Mininet and challenges described in §5.2. In particular, we use one

subscription per network flow and we reduce the number of priority classes to 7 because of

Linux TC limitations. Note that we use a fixed publication rate and event size – if we vary the

publication rate and event size, it takes longer to converge to the expected values of the probability

distributions and thus the execution time of each real experiment. Because the analytical model

assumes exponential distributions, we also calculate response times using the queueing simulator

with realistic parameters introduced from the prototype implementation and its emulated network

through Mininet. In particular, we only use asynchronously-published events and we set the SDN

output queue’s service rate as deterministic rather than exponential. This represents the concept of

a switch’s bandwidth, that essentially has a constant service rate measured in bytes/second.

Again, we parameterize and deploy PrioDeX under different network load conditions: a)medium-

load (ρQout
xk

= 0.5); b) high-load (ρQout
xk

= 0.9); and c) overloaded (ρQout
xk

= 1.7). Fig. 10a shows the

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:24 G. Bouloukakis et al

App-layer

requirements

Methodology used
Technologies &

Tools Prototype

QoS metric

improvement

Zhang et

al. [65]

Prioritized data

classes

Bandwidth allocation to

prioritized data flows

Apache HTTP &

Squid cache servers

✓ Response time

Saghian et

al. [50]

Data flows

importance

Priority queues

OMNet++

simulator

✗ Response time

Yu et al. [60]

Delay and bandwidth

sensitive apps

DPI and Laplacian SVM SDN, OpenFlow ✗
Network resource

utilization

Li et al. [38] App data types

C4.5 decision tree, priority

queues

SDN, OpenFlow ✓
Response time,

throughput

An et al. [6]

Delay-sensitive and

delay-tolerant traffic

Priority-adjustment

algorithms

NS-2 simulator ✗
Real-time requirement

satisfaction

Shi et

al. [54]

Delay requirements,

data semantics

Priority queues based on

semantics

SDN, OpenFlow,

LDAP

✓ Response time

Bröring et

al. [17]

Video QoS

constraints

Bandwidth allocation

DNode-RED, SDN,

OpenFlow, MQTT

✓
Response time, delivery

success rate

Nguyen et

al. [42]

Utility functions

Bandwidth allocation to

prioritized data flows

Java simulator ✗
Response time, network

resource utilization

PrioDeX Utility functions

Priority queues, analytical

models, heuristic &

optimization-based algorithms

SDN, OpenFlow,

MQTT, MQTT-SN

✓
Response time, network

resource utilization,

maximizing user’s utility

Table 3. Comparison of PrioDeX with related work.

end-to-end response times obtained using 10 subscribers and the aforementioned load conditions

– these closely match the response times calculated from both the simulation and the analytical

model. The differences observed are due to the following reasons: (i) the analytical model assumes

exponential service rates while the simulation applies deterministic service rates to match the

constant service rate (bytes/second) in the switch of the prototype; (ii) Mininet lacks the ability to

emulate proper queueing delay when transmitting packets and thus there is a significant difference

between the response times of the simulation and the prototype. This is because Linux TC (used by

Mininet to apply queueing disciplines to any network interface) can emulate bandwidth limitations,

packet loss, and network delay. The bandwidth limitation constrains the volume of traffic (i.e.,

number of bytes) that can be sent per unit of time. However, it does not simulate the actual packet

transmission delay (

Gvj
wsi

) due to the available bandwidth. Hence, Linux TC sends packets at the

same speed regardless of packet size (i.e., the transmission delay is constant), which in turn affects

the perceived queueing delay. That is, if the available bandwidth is enough to empty the queues, the

queued packets do not experience the queueing delay due to the transmission of previous packets.

As described in the simulation-based validation (§6.4.1) the lowest priority events experience the

highest response time difference under saturated conditions. Here, we notice constant response

time differences across all priority classes in the unsaturated setting (Fig. 10aa). For the saturated

and overloaded conditions (Fig. 10ab & 10ac), we observe larger differences for lower priorities due

to the Linux TC packet transmission limitations. Because these packets wait in the queues for a

longer period, this difference is compounded further by the lack of transmission delay for each

queued packet in front of it. Hence, we expect to see a gap between the analytical model and the

simulated/emulated results. We then scale up the number of subscribers as shown in Fig. 10b. We

parameterize and deploy the system with the following number of subscribers |S | = 10, 20, 50, 80,

100. To maintain the same degree of system saturation (i.e., ρQout
xk

= 1.7), we increase the bandwidth

proportional to the number of subscribers. As shown in Fig. 10b, the implementation produces

again accurate results that closely match the simulated and analytical ones.

7 RELATEDWORK
In this section, we compare PrioDeX against other related data exchange systems for enabling

reliable and timely data exchange. We summarize the principal solutions in Table 3 with regard to:

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 0:25

the considered app-layer requirements (if any), the methodology used to improve the system’s per-

formance, the technologies and tools leveraged to implement the prototype or perform experiments,

and the improvement in terms of QoS metrics. To enable reliable and timely data exchange, existing

solutions manipulate data at both the middleware and network layers. Early middleware-based

solutions [18, 39, 65] support prioritization or bandwidth allocation based on the available system

capacity, data relevance and data importance. More recent middleware solutions assign priorities

based on validity span of published data and subscriptions [50] or based on delay and reliability

requirements [58]. Currently, standardized message brokers such as RabbitMQ, ActiveMQ, etc,

support the assignment of priorities at the publisher side prior to the emission of a message.

With the advent of novel networking technologies (e.g., OpenFlow [40], P4 [13]), advanced

capabilities are provided to system designers to customize the underlying network infrastructure.

SDN-based approaches [33] have been used for improving network resiliency [3] and handover

latency in 5G network environments [4]. Other research into SDN-enabled 5G cellular architec-

tures [56] supports the potential for such interfaces that connect emergency responder devices to

the building’s internal network. SDN provides a variety of abstractions to represent the underlying

physical network. Yu et al [60] leverage SDN to apply deep packet inspection (DPI) and Laplacian
SVM techniques for identifying applications with delay or bandwidth requirements, which are

then used to improve the overall network resource utilization. Also, SDN has been leveraged for

priority assignment and bandwidth allocation to network flows to satisfy app-specific require-

ments. These include authorized access to directly manage physical switches, control over virtual

(software-based) switches [46] (e.g., running alongside the broker), network virtualization [12] to

reserve “slices” of the physical infrastructure, etc. Li et al [38] introduce a middleware solution

that assigns priority levels to network flows based on three different classes of data: expedited
forwarding, assured forwarding and best effort. Similarly, An et al [6] assign priorities based on

the type of data traffic (i.e., delay-sensitive or delay-tolerant traffic), and Shi et al [54] assign

priorities based on the semantics of data. Finally, Bröring et al [17] allocate bandwidth to SDN

network flows based on video-specific application-level QoS constraints (e.g. min/max frame rate).

While the above approaches manage network flows in SDN switches based on application data

flows/types, IoT devices in buildings/structures (e.g., sensors, cameras) produce data that varies

in size, frequency (periodic samples vs. asynchronous alerts), type, and importance to individual

subscribers [8, 51, 63, 64]. Research on Network Utility Maximization (NUM) [59] aims to tune

the underlying network according to application-level requirements. NUM configures a network

(e.g., assigns bandwidth) to serve nodes in a manner that maximizes utility functions to capture

a user’s degree of satisfaction with the network’s performance. However, few prior researchers

have investigated discrete priority classes, which we leverage in our approach, within the context

of NUM. The authors of [42] propose assigning more bandwidth to users (i.e., via weighting their

requests higher) based on their requested priority levels.

Our cross-layer approach and consideration of utility functions sets apart our work from most

related SDN research referenced above. Utility functions enable a more flexible configuration of

application-level requirements (e.g., information needs) including mission-critical ones. In addition,

PrioDeX leverages SDN to manage networking at the Edge for IoT deployments by offloading

network configuration tasks from constrained devices and network hardware.

8 CONCLUSION
In this paper we presented PrioDeX: an extensible middleware for timely and reliable IoT data ex-

change. Our proposed SDN-enabled three-layer approach bridges application-specified information

requirements, generic data exchange capabilities, and physical network characteristics for efficient

delivery of mission-critical data from IoT sources to relevant consumers. We design a cross-layer

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:26 G. Bouloukakis et al

queueing analytical model for estimating system performance metrics. These metrics are used as

input to the PrioDeX algorithms for assigning priorities to subscriptions and tune their bandwidth

allocation (via packet drop rates) to maximize overall situational awareness. Our experimental

results show that our approach greatly improves the performance in terms of information value

captured as well as end-to-end delays. PrioDeX can inspire system designers to build the next

generation of Smart Fire Fighting systems with support for proper filtering, prioritizing and analysis.

In addition, application developers can leverage PrioDeX to define the situational awareness infor-

mation of any emergency response (e.g., active shooter) and QoS-dependent scenarios (e.g., traffic

estimation). Research scientists can leverage and further extend PrioDeX’s theoretic-grounded mod-

els for the QoS evaluation of IoT-enabled smart spaces at runtime so as to support their adaptation

in relation with the evolving operating environment.

The modular design of our theoretical model supports the composition of alternative queueing

models. Hence it lays the groundwork for many potential extensions and alterations, some of which

we will address in future work. In particular, we aim to: consider non-Poisson arrival and service

rates by using e.g., G/G/1 queues; convert larger events into many packets (or many events into one

packet) by applying the queueing theoretic concept of batch arrivals [53]; configure an entire broker

network rather than just the local broker at the Edge. In addition, we plan to extend our prototype

to include: managing dynamic conditions such as failing publisher devices, and varying network

bandwidth/error rates; accurately and efficiently estimating publication rates; considering SDN

overhead (e.g., flow table space required, delay for configuration changes and statistics collection);

supporting alternative formulations of tunable bandwidth allocation (e.g., traffic policing). Finally,

we will build on the PrioDeX prototype to explore further IoT middleware challenges in emergency

response settings.

ACKNOWLEDGMENTS
This work was supported by: NSF award CNS 1450768, DARPA agreement # FA8750-16-2-0021, the

Inria@SiliconValley International Lab and the research associate team MINES.

REFERENCES
[1] AMQP Working Group 0-9-1. 2008. http://www.amqp.org/specification/0-9-1/amqp-org-download.

[2] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd. 2018. A Rewriting System for Convex Optimization Problems.

Journal of Control and Decision 5, 1 (2018), 42–60.

[3] J. Ai, H. Chen, Z. Guo, G. Cheng, and T. Baker. 2019. Improving Resiliency of Software-Defined Networks with Network

Coding-based Multipath Routing. In IEEE Symposium on Computers and Communications (ISCC). 1–6.
[4] A. S. D. Alfoudi, S. Newaz, R. Ramlie, G. M. Lee, and T. Baker. 2019. Seamless Mobility Management in Heterogeneous

5G Networks: A Coordination Approach among Distributed SDN Controllers. In IEEE 89th Vehicular Technology Conf.
(VTC2019-Spring). 1–6.

[5] W. Almesberger. 1999. Linux network traffic control-implementation overview.

[6] N. An, T. Ha, K.J. Park, and H. Lim. 2016. Dynamic priority-adjustment for real-time flows in software-defined networks.

In 17th Intl. Telecommunications Network Strategy and Planning Symposium (Networks). IEEE, 144–149.
[7] C. C. Beard and V. S. Frost. 2004. Prioritization of emergency network traffic using ticket servers: A performance

analysis. Simulation 80, 6 (2004), 289–299.

[8] S. Behnel, L. Fiege, and G. Muhl. 2006. On quality-of-service and publish-subscribe. In ICDCS Workshops. IEEE.
[9] K. Benson, C. Fracchia, G. Wang, Q. Zhu, S. Almomen, J. Cohn, L. D’arcy, D. Hoffman, M. Makai, J. Stamatakis, and

N. Venkatasubramanian. 2015. SCALE: Safe community awareness and alerting leveraging the internet of things.

Communications Magazine, IEEE 53, 12 (2015), 27–34.

[10] K. E. Benson, G. Bouloukakis, C. Grant, V. Issarny, S. Mehrotra, I. Moscholios, and N. Venkatasubramanian. 2018.

FireDeX: a Prioritized IoT Data Exchange Middleware for Emergency Response. ACM/IFIP/USENIX Intl. Middleware
Conf. (2018), 279–292.

[11] K. E. Benson, G. Wang, N. Venkatasubramanian, and Y. Kim. 2018. Ride: A Resilient IoT Data Exchange Middleware

Leveraging SDN and Edge Cloud Resources. In 2018 IEEE/ACM Third Intl. Conf. on Internet-of-Things Design and

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

http://www.amqp.org/specification/0-9-1/amqp-org-download

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 0:27

Implementation (IoTDI). 72–83.
[12] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer. 2015. Survey on Network Virtualization Hypervisors for Software

Defined Networking. CoRR abs/1506.07275 (2015). arXiv:1506.07275 http://arxiv.org/abs/1506.07275

[13] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese,

and D. Walker. 2014. P4: Programming Protocol-independent Packet Processors. SIGCOMM Comput. Commun. Rev. 44,
3 (July 2014), 87–95.

[14] G. Bouloukakis, N. Georgantas, A. Kattepur, and V. Issarny. 2017. Timeliness Evaluation of Intermittent Mobile

Connectivity over Pub/Sub Systems. In Proceedings of the 8th ACM/SPEC on Intl. Conf. on Performance Engineering.
275–286.

[15] G. Bouloukakis, I. Moscholios, N. Georgantas, and V. Issarny. 2017. Performance Modeling of the Middleware Overlay

Infrastructure of Mobile Things. In IEEE Intl. Conf. on Communications.
[16] Moquette broker. 2014. https://github.com/andsel/moquette/.

[17] A. Bröring, J. Seeger, M. Papoutsakis, K. Fysarakis, and A. Caracalli. 2020. Networking-Aware IoT Application

Development. Sensors 20, 3 (2020), 897.
[18] S. Chakravarthy and N. Vontella. 2004. A publish/subscribe based architecture of an alert server to support prioritized

and persistent alerts. In Intl. Conf. on Distributed Computing and Internet Technology. Springer, 106–116.
[19] MQTT-SN UDP client. 2016. https://github.com/jsaak/mqtt-sn-gateway.

[20] Paho Java Client. 2008. https://www.eclipse.org/paho/clients/java/.

[21] Ryu SDN controller. 2011. https://osrg.github.io/ryu/.

[22] S. Diamond and S. Boyd. 2016. CVXPY: A Python-Embedded Modeling Language for Convex Optimization. Journal of
Machine Learning Research 17, 83 (2016), 1–5.

[23] G. Faraci, A. Lombardo, and G. Schembra. 2017. A building block to model an SDN/NFV network. In 2017 IEEE Intl.
Conf. on Communications (ICC). 1–7.

[24] T. Field. 2006. JINQS: An extensible library for simulating multiclass queueing networks, v1. 0 user guide.

[25] Flask Web Framework. 2010. http://flask.pocoo.org/.

[26] MQTT-SN Transparent Gateway. 2016. https://www.eclipse.org/paho/components/mqtt-sn-transparent-gateway/.

[27] D. Gross, J. Shortle, J. Thompson, and C. Harris. 2008. Fundamentals of queueing theory. John Wiley & Sons, 4th

edition.

[28] A. A. Hagberg, D. A. Schult, and P. J. Swart. 2008. Exploring Network Structure, Dynamics, and Function using

NetworkX. In SciPy, G. Varoquaux, T. Vaught, and J. Millman (Eds.). 11–15.

[29] H. Halabian, I. Lambadaris, and C.-H. Lung. 2010. Network capacity region of multi-queue multi-server queueing

system with time varying connectivities. In 2010 IEEE Intl. Symposium on Information Theory. IEEE, 1803–1807.
[30] A. Hamins, C. Grant, N. Bryner, A. Jones, and G. Koepke. 2015. NIST Special Publication 1191 Research Roadmap for

Smart Fire Fighting. National Institute Of Standards and Technology.

[31] F. He, L. Baresi, C. Ghezzi, and P. Spoletini. 2007. Formal analysis of publish-subscribe systems by probabilistic timed

automata. In Intl. Conf. on Formal Techniques for Networked and Distributed Systems. 247–262.
[32] R. A. Horn and C. R. Johnson. 2012. Matrix Analysis. Cambridge, UK: Cambridge University Press (2012).
[33] T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan. 2018. Multi-controller based software-defined networking: A survey. IEEE

Access 6 (2018), 15980–15996.
[34] IBM 2013. MQTT For Sensor Networks (MQTT-SN). IBM.

[35] M. Inoue, Y. Owada, K. Hamaguti, and R. Miura. 2014. Nerve Net: A Regional-Area Network for Resilient Local

Information Sharing and Communications. In Proceedings of the 2014 2nd Intl. Symposium on Computing and Networking
(CANDAR ’14). IEEE Computer Society, Washington, DC, USA, 3–6.

[36] S. Kounev, K. Sachs, J. Bacon, and A. Buchmann. 2008. A methodology for performance modeling of distributed

event-based systems. In 11th IEEE Intl. Symposium on Object Oriented Real-Time Distributed Computing (ISORC). 13–22.
[37] E. Lazowska, J. Zahorjan, S. Graham, and K. Sevcik. 1984. Quantitative system performance: computer system analysis

using queueing network models. Prentice-Hall, Inc.
[38] F. Li, J. Cao, X. Wang, and Y. Sun. 2017. A QoS guaranteed technique for cloud applications based on software defined

networking. IEEE access 5 (2017), 21229–21241.
[39] P. Maheshwari, H. Tang, and R. Liang. 2004. Enhancing web services with message-oriented middleware. In Proceedings.

Intl. Conf. on Web Services,. IEEE, 524–531.
[40] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner. 2008.

OpenFlow: Enabling Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev. 38, 2 (March 2008), 69–74.

[41] Mininet. 2016. Mininet: An Instant Virtual Network on your Laptop (or other PC). http://mininet.org/

[42] H. A. Nguyen, T. V. Nguyen, and D. Choi. 2009. How to Maximize User Satisfaction Degree in Multi-service IP Networks.

In 2009 1st Asian Conf. on Intelligent Information and Database Systems. 471–476.
[43] OASIS 2014. MQTT Version 3.1.1. OASIS.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

https://arxiv.org/abs/1506.07275
http://arxiv.org/abs/1506.07275
https://github.com/andsel/moquette/
https://github.com/jsaak/mqtt-sn-gateway
https://www.eclipse.org/paho/clients/java/
https://osrg.github.io/ryu/
http://flask.pocoo.org/
https://www.eclipse.org/paho/components/mqtt-sn-transparent-gateway/
http://mininet.org/

0:28 G. Bouloukakis et al

[44] T. E. Oliphant. 2006. A guide to NumPy. Vol. 1. Trelgol Publishing USA.
[45] Stochastic OVS. 2014. https://github.com/saeenali/openvswitch/wiki/.

[46] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, et al. 2015. The Design and Implementation of Open vSwitch. In

12th Symposium on Networked Systems Design and Implementation (NSDI) (Oakland, CA).
[47] RabbitMQ. 2018. https://www.rabbitmq.com/.

[48] Buffer requirements. 2008. https://people.ucsc.edu/~warner/buffer.html.

[49] K. Sachs, S. Kounev, and A. Buchmann. 2013. Performance modeling and analysis of message-oriented event-driven

systems. Software & Systems Modeling 12, 4 (2013), 705–729.

[50] M. Saghian and R. Ravanmehr. 2015. Publish/subscribe middleware for resource discovery in MANET. In 2015 15th
IEEE/ACM Intl. Symposium on Cluster, Cloud and Grid Computing. IEEE, 1205–1208.

[51] P. Salehi, K. Zhang, and H. Jacobsen. 2017. PopSub: Improving resource utilization in distributed content-based

publish/subscribe systems. In Distributed Event-Based Systems (DEBS). ACM, 88–99.

[52] A. Schröter, G. Mühl, S. Kounev, H. Parzyjegla, and J. Richling. 2010. Stochastic performance analysis and capacity

planning of publish/subscribe systems. In Distributed Event-Based Systems (DEBS). ACM, 258–269.

[53] D. N. Shanbhag. 1966. On infinite server queues with batch arrivals. Journal of Applied Probability 3, 1 (1966), 274–279.

[54] Y. Shi, Y. Zhang, H.-A. Jacobsen, L. Tang, G. Elliott, G. Zhang, X. Chen, and J. Chen. 2019. Using Machine Learning to

Provide Reliable Differentiated Services for IoT in SDN-Like Publish/Subscribe Middleware. Sensors 19, 6 (2019), 1449.
[55] D. Singh, B. Ng, Y. Lai, Y. Lin, and W. K.G. Seah. 2017. Modelling Software-Defined Networking: Switch Design with

Finite Buffer and Priority Queueing. In 2017 IEEE 42nd Conf. on Local Computer Networks (LCN). IEEE, 567–570.
[56] S. Khan Tayyaba and M. A. Shah. 2019. Resource allocation in SDN based 5G cellular networks. Peer-to-Peer Networking

and Applications 12, 2 (2019), 514–538.
[57] Open vSwitch. 2016. http://openvswitch.org/.

[58] Y. Wang, Y. Zhang, and J. Chen. 2017. Pursuing Differentiated Services in a SDN-Based IoT-Oriented Pub/Sub System.

In 24th International Conference on Web Services. IEEE, 906–909.
[59] Y. Yi and M. Chiang. 2008. Stochastic network utility maximisation – a tribute to Kelly’s paper published in this journal

a decade ago. European Transactions on Telecommunications 19, 4 (2008), 421–442.
[60] C. Yu, J. Lan, Z. Guo, Y. Hu, and T. Baker. 2019. An adaptive and lightweight update mechanism for SDN. IEEE Access 7

(2019), 12914–12927.

[61] Mosterman P.J.-Padir-T. Wan Y. Zander, J. and S. Fu. 2015. Cyber-physical systems can make emergency response

smart. Procedia Engineering 107 (2015), 312–318.

[62] K. Zhang and H. Jacobsen. 2013. SDN-like: The Next Generation of Pub/Sub. CoRR abs/1308.0056 (2013). http:

//arxiv.org/abs/1308.0056

[63] K. Zhang, V. Muthusamy, M. Sadoghi, and H. Jacobsen. 2017. Subscription covering for relevance-based filtering in

content-based publish/subscribe systems. In IEEE 37th ICDCS. IEEE, 2039–2044.
[64] K. Zhang, M. Sadoghi, V. Muthusamy, and H. Jacobsen. 2017. Efficient covering for top-k filtering in content-based

publish/subscribe systems. In Proceedings of the 18th ACM/IFIP/USENIX Middleware Conf. 174–184.
[65] R. Zhang, C. Lu, T. F. Abdelzaher, and J. A. Stankovic. 2002. Controlware: A middleware architecture for feedback

control of software performance. In Proceedings 22nd Intl. Conf. on Distributed Computing Systems. IEEE, 301–310.

A MULTI-CLASS PRIORITY QUEUE ANALYTICAL MODEL
We now prove the analytical model that estimates the average response time of events matching

subscription rk in the system (queue+server) of Qmclpr . This is a non-preemptive multi-class pri-
ority queueing system where each subscription (r j ∈ R) corresponds to a class and one or more

subscriptions can be mapped to priority level yj ∈ Y .

Based on (13), to estimate ∆Qmclpr
for a given rk , we accept as input the set of arrival (λ

sub
) and

processing (µsub) rates:
λsub = {λr j : r j ∈ R} (32)

µsub = {µr j : r j ∈ R} (33)

As previously discussed, a given subscription (rk) is mapped to a priority (yc) as given by:

yc = Φ ◦ Ψ(rk) (34)

Let λpr io be the set of arrival rates and µpr io the set of processing rates per yj :

λpr io = {λyj : yj ∈ Y } (35)

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

https://github.com/saeenali/openvswitch/wiki/
https://www.rabbitmq.com/
https://people.ucsc.edu/~warner/buffer.html
http://openvswitch.org/
http://arxiv.org/abs/1308.0056
http://arxiv.org/abs/1308.0056

PrioDeX: Efficient Event Prioritization in SDN-based IoT systems 0:29

µpr io = {µyj : yj ∈ Y } (36)

Because one or more r j can be mapped to a yc , by (34) we can estimate the arrival rate λyc of
events with assigned priority yc as follows:

λyc =
∑

{r j ∈R :yc=Φ◦Ψ(r j)}

λr j (37)

Similarly the processing rate µyc is estimated as follows:

µyc =

[∑
{r j ∈R :yc=Φ◦Ψ(r j)}

λr j
λyc

1

µr j

]−1
(38)

Similarly, we can estimate arrival and processing rates for any priority yj . We now rely on

(37),(38), and the analysis in Section 3.4.2 of [27] to estimate the waiting time (delay only in the

queue) ∆
yc
q for a given yc as follows:

∆
yc
q =

∑
yj ∈Y

ρyj
µyj

(1 − σyc−1)(1 − σyc)
(39)

where ρyj = λyj / µyj and σyc =
∑c

i=0 ρyi (i.e., the sum of ρyi for all priority classes yi whose

priority is higher than or equal to yc). Let L
yc
q be the average number of priority-yc events in the

queue. From (39), Little’s law then gives:

L
yc
q = ∆

yc
q λyc (40)

Finally, let ∆yc be the average response time of priority-yc events in the system (queue+server).

This is estimated as follows:

∆yc = ∆
yc
q +

1

µyc
(41)

Let Lrkq be the average number of events in the queue matching subscription rk with priority yc .
Using (37) and (40) this can be estimated by:

Lrkq =
λrk
λyc

L
yc
q (42)

and the average number of priority-yc events in the system matching subscription rk is given by:

Lrk = Lrkq
λrk
µrk

(43)

Finally, by relying on Little’s law and (43), the average response time of events matching a given

subscription rk in the multi-class priority queueing system (Qmclpr) is given by:

∆Qmclpr
=

Lrk

λrk
(44)

B EFFICIENTLY COMPUTING DROP RATE POLICIES
We now detail efficiently computing drop rate policies for the PrioDeX middleware by solving (23)

for the flat, linear and exponential drop rate policies. Considering (23) and (24) we aim to find:

ρQout
xk
=

∑
r j ∈Rxk

λthruxk ,r j

µoutxk ,r j
= 1 − ρ̃ (45)

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:30 G. Bouloukakis et al

We can expand the denominator to rewrite the previous equation considering (6) and (7):

ρQout
xk
=

∑
r j ∈Rxk

λ
notif y
bk ,r j

Gvj

(
1 − Ω ◦ Ψ

(
r j
))

wxk ,si
= 1 − ρ̃ (46)

where Ω ◦ Ψ
(
r j
)
represents the drop rate for the subscription r j . (46) is the starting point for each

of the following derivations.

We omit the proof for the Flat and the Linear drop rate policies, since it is very similar to the

Exponential. We just present the final results.

Flat: β = 1 −

∑
si ∈Sxk

wxk ,si (1 − ρ̃)∑
r j ∈Rxk

λ
notif y
bk ,r j

Gvj

(47)

Linear: β =

∑
r j ∈Rxk

λ
notif y
bk ,r j

Gvj −
∑

si ∈Sxk
wxk ,si (1 − ρ̃)∑

r j ∈Rxk
λ
notif y
bk ,r j

GvjΦ(fj)
(48)

Exponential drop rate policy. This policy sets each network flow’s drop rate according to its

assigned priority level. The drop rate for subscription r j is equal to the drop rate assigned to its

network flow fj . Hence, considering (27) we have:

Ω ◦ Ψ
(
r j
)
= Ω(fj) = 1 − β−Φ(fj) (49)

Substituting (49) into (46) we obtain:∑
r j ∈Rxk

λ
notif y
bk ,r j

Gvj (1 − (1 − β−Φ(fj)))

wxk ,si
= 1 − ρ̃ (50)

We isolate the constant term β :∑
r j ∈Rxk

λ
notif y
bk ,r j

Gvj (1 − (1 − β−Φ(fj))) =
∑

si ∈Sxk

wxk ,si (1 − ρ̃) (51)∑
r j ∈Rxk

λ
notif y
bk ,r j

Gvj β
−Φ(fj) =

∑
si ∈Sxk

wxk ,si (1 − ρ̃) (52)

Since Φ(fj) ∈ Y ∀fj ∈ F where Y = {0, 1, ...,N − 1}, we have:∑
y∈Y

β−y (
∑

r j ∈Rxk ,Φ(fj)=y

λ
notif y
bk ,r j

Gvj) −
∑

si ∈Sxk

wxk ,si (1 − ρ̃) = 0 (53)

Note that we can express this as a polynomial. Substituting α = β−1 we get:∑
y∈Y

αy (
∑

r j ∈Rxk ,Φ(fj)=y

λ
notif y
bk ,r j

Gvj) −
∑

si ∈Sxk

wxk ,si (1 − ρ̃) = 0 (54)

We can therefore solve the (N-1)-order polynomial given in (54) to efficiently compute the expo-

nential drop rates. We can solve this polynomial using the algorithm described in [32]. It relies on

computing the eigenvalues of the companion matrix. The commonly-used NumPy Python library

[44] implements this algorithm.

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 2019.

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivating Use Case Scenario
	2.2 Enabling Efficient Prioritization at the Edge

	3 PrioDeX Formal Model
	3.1 Queueing Network Performance Modeling
	3.2 End-to-end Analytical Model

	4 Data Exchange Configuration Algorithms
	4.1 Utility Functions
	4.2 Priority Assignment Algorithm
	4.3 Ensuring Queue Stability via Preemptive Drop Rates

	5 Prototype Implementation
	5.1 Cross-layer Prototype Implementation
	5.2 Implementation challenges

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Evaluating the PrioDeX Approach
	6.3 Comparing Prioritization & Drop Rate Algorithms for Situational Awareness
	6.4 Validating the PrioDeX Models

	7 Related Work
	8 Conclusion
	References
	A Multi-class Priority Queue Analytical Model
	B Efficiently Computing Drop Rate Policies

