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1. INTRODUCTION

In the coming years, distributed multimedia servers will be deployed to de-
liver a variety of interactive, digital multimedia (MM) services over emerging
broadband (wide-area) networks [Buddhikot and Parulkar 1995] to form a wide-
area infrastructure. Applications such as telemedicine, distance learning, and
electronic commerce have varying requirements such as timeliness, security,
reliability and availability.

Systems that provide distributed multimedia services are continuously
changing and evolving. For instance, the set of servers, clients, user require-
ments, and network and system conditions in a wide-area infrastructure are
changing continuously. Many MM applications can tolerate minor, infrequent,
violations of their performance requirements, specified as a quality-of-service
(QoS) parameter, for for example, tolerable jitter in a video frame. Future appli-
cations will require dynamic invocation and revocation of services distributed
in the network without violating QoS constraints of ongoing applications. In
order to manage the distributed components and adapt to the above dynamic
changes in multimedia applications, customizable middleware services are re-
quired. Today, the task of distributed systems management is performed in
middleware layers using frameworks such as CORBA and DCOM. Such frame-
works are designed for heterogeneous interoperability, but are limited in the
degree of flexibility and customizability of services. They provide only limited
capabilities for the specification and adaptation of end-to-end QoS properties.
Customizable middleware allows us to deal with changes in systems and appli-
cations in a nonintrusive way.

To assure safe adaptation to dynamically changing requirements, it is im-
portant to have a rigorous semantic model of the system: the resources, the
middleware that provides system management, the application activities, and
the sharing and interactions among these elements. Using such a model, de-
signs can be analyzed to clarify assumptions that must be met for correct op-
eration, and to establish criteria for noninterference. In Venkatasubramanian
and Talcott [1995] and Venkatasubramanian [1998], we presented the TLAM
(Two-Level Actor Machine) semantic framework for specifying, composing, and
reasoning about resource management services in open distributed systems.

In this article, we use our framework to develop a model for customiz-
able, cost-effective middleware to enforce QoS requirements in multimedia
applications. Specifically, we deal with the modeling of high-level behaviors
that describe the distributed middleware components and reason about the
noninterference requirements of modules implementing these behaviors. The
sample application used to drive the specification and reasoning process is a
video-on-demand application [Venkatasubramanian and Ramanathan 1997],
using a commercial VOD architecture as a basis. Key middleware services for
QoS-based resource provisioning include request scheduling, data placement
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(replication), and dereplication. For scheduling MM requests, we use an adap-
tive scheduling policy that compares the relative utilization of resources in a
multimedia server to determine an assignment of requests to replicas. We dis-
cuss a placement policy that determines the degree of replication necessary for
popular MM objects using a cost-based optimization procedure based on a priori
predictions of expected subscriber requests. To optimize storage utilization, we
introduce methods for dereplication of MM objects based on changes in their
popularity and in server usage patterns. While the sample application used to
drive the specification and reasoning process is a video-on-demand application
[Venkatasubramanian and Ramanathan 1997], the architectural specification
can be used to describe any multimedia delivery application where the under-
lying system supports resource reservation.1

1.1 The Two-Level Actor Framework

The TLAM is based on the actor computation model [Hewitt et al. 1973; Baker
and Hewitt 1977; Agha 1986], a model of concurrent active objects that has
a built-in notion of encapsulation of state and control. Traditional passive ob-
jects encapsulate state and a set of procedures that manipulate the state; an
actor (active object) encapsulates a thread of control as well. Each actor poten-
tially executes in parallel with other actors and interacts only by asynchronous
message-passing. Each actor has a unique name (mail address) and a mailbox
to buffer incoming messages. Actors compute by serially executing the mes-
sages queued in their mailboxes. As a general model of concurrency, the actor
model can be used to represent and build various procedural and functional
architectural components at both the application and system-level. A variety of
coordination and interaction mechanisms can be modeled using actors, includ-
ing RPC, messaging, transactions, and other forms of object synchronization
[Hewitt 1977; Frølund 1996]. In the TLAM, the actor model is used to represent
the application behavior: interactions between applications and middleware
services as well as interactions between the middleware services themselves.
Elsewhere, the actor model has been used to model architectural abstractions
such as components and connectors [Astley 1999; Astley and Agha 1998], co-
ordination constructs [Frølund 1996], and real-time constraints [Ren 1997].

In the TLAM, a system is composed of two kinds of actors, base-actors and
meta-actors, distributed over a network of processing nodes. Base-actors carry
out application level computation, while meta-actors are part of the run-time
system which manages system resources and controls the run-time behavior of
the base level. Specifically, metalevel actors are used to model and represent
the resource management (middleware) functionality. The TLAM framework
provides an abstract characterization of actor identity, state, messages, and
computation, and of the connection between base-level and metalevel compu-
tation. Meta-actors communicate with each other via message-passing as do

1Resource reservation ensures that once resources are allocated to an admitted request, they will
remain allocated until the broker decides otherwise, or the request completes. We specifically do
not deal with applications that involve updates of multimedia data on the fly (i.e., read/write data)
and the concurrency control issues therein.
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base-actors, and meta-actors may also examine and modify the state of the
base-actors located on the same node. Base-actors and messages have associ-
ated run-time annotations that can be set and read by meta-actors, but are
invisible to base-level computation. Actions which result in a change of base-
level state are called events. Meta-actors may react to events occurring on their
node. The behavior of base-actors and meta-actors are specified by local reaction
rules describing the result of receiving a message or event notification.

In the development of the TLAM we have restricted attention to a two-level
system rather than modeling a reflective tower (n-level system) in order to sim-
plify the model and focus on the key relation between base-actors and meta-
actors. In addition the two-level system is a good match for the middleware
services that we wanted to study. A fundamental problem in reasoning about
metalevel services and their composition is managing the complexity of base-
meta-level interactions (in the context of already complex interactions in dis-
tributed systems), and to develop principles to ensure noninterference between
metalevel services. Part of the TLAM development has been to identify key sys-
tem services where nontrivial interactions between the application and system
occur, that is, base-meta interactions. We refer to these key services as core
services and represent them as TLAM metalevel entities. As a starting point,
we have identified three core services:

—Creation of services/data at a remote site—remote creation,
—Capturing information at multiple nodes/sites—distributed snapshot,
—Interactions with a global repository—directory services.

Higher-level services can be built using these services to isolate potentially
conflicting interactions with the base level. Principles for noninterfering com-
position of these services have been developed to aviod such conflicts.

Our general approach to modeling middleware components is to develop a
family of specifications from different points of view and at different levels of
abstraction. From a high-level point of view, we specify the end-to-end service
provided by a system in response to a request. This can be refined by express-
ing system-wide properties in terms of abstract properties of the underlying
network. From a low-level point of view, we specify constraints on the behavior
and distribution of a group of actors. This local behavior point of view can be
further refined by specifying protocols and algorithms for the actions of indi-
vidual actors. The local behavior and system-wide points of view are related by
the notion of a group of meta-actors providing a service in a system satisfying
suitable initialization and noninterference conditions. The staging and refine-
ment of specifications provides a form of modularity, scalability, and reusability.
It reduces the task of implementation to that of implementing individual ab-
stract behaviors. Behavior-level specifications can be used to guide or check
implementations or even serve as executable prototypes.

As multimedia applications begin to execute in environments that are in-
creasingly distributed and mobile, middleware services to support these ap-
plications become increasingly important. As dependence on middleware ser-
vices increases, noninterfering execution of the services are of paramount
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importance. To enable a system designer to reason about the overall correct-
ness of the system, it becomes more important to have clear semantic models
and be able to carry out a variety of analyses based on these models in order to
increase assurance of correct and expected behavior.

System specifications such as the one presented here can serve as a valu-
able form of documentation of requirements, design, and implementation de-
cisions. The relations between viewpoint provide a systematic and rigorous
mechanism to relate system requirements and the design/implementation de-
scriptions. Having this form of multiple-view specification and documentation
can be used in configuration management to help isolate effects of change, to
propagate effects of change, and to reason about the effects of adaptation on
application behavior. Furthermore, such a methodology for the integration of
middleware services encourages modular specification of middleware services,
resulting in effective reuse of both the middleware services and the compos-
ability reasoning .

Prior work has addressed the development of the TLAM model, spec-
ification and reasoning about other resource management services in the
TLAM style, and the implementation of a reflective middleware frame-
work [Venkatasubramanian et al. 2001] using this architectural model.
Previous major case studies carried out using the TLAM framework in-
clude: (1) distributed garbage collection [Venkatasubramanian et al. 1992;
Venkatasubramanian 1992]; (2) composition of migration and reachability ser-
vices [Venkatasubramanian and Talcott 1995, 2001a]; (3) a rudimentary log-
ging service [Venkatasubramanian and Talcott 2001b]; (4) a service replication
framework [Venkatasubramanian and Talcott 1993]. This article presents, in
some detail, the application of the TLAM methodology to formally specify and
reason about QoS-based resource management for multimedia servers.

Based on the two-level architecture, we are developing a customizable and
safe distributed systems middleware infrastructure, called CompOSE|Q (Com-
posable Open Software Environment with QoS) [Venkatasubramanian 1999], at
the University of California, Irvine, that has the ability to provide cost-effective
and safe QoS-based distributed resource management. The semantic model is
used to verify safe interaction of the implemented mechanisms. Details of the
mechanisms implemented and the performance evaluation of the composite en-
vironment are described in Venkatasubramanian and Ramanathan [1997] and
Venkatasubramanian [1998].

1.2 Contributions of the Article

Our TLAM semantic framework [Venkatasubramanian and Talcott 1995;
Venkatasubramanian 1998] provides a basis for modular reasoning about prop-
erties of resource management algorithms and their composition. We begin by
informally describing the notion of a system providing QoS-based MM Service.
We then map QoS requirements to resource requirements and focus on mod-
eling and reasoning about the resource management underlying a QoS-based
service. For this purpose, we define, in a rigorous manner, the notions of a system
providing Resource-based MM Service, of a system having Resource-based MM
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Behavior, and, finally, refining the system with an Adaptive Request Scheduling
Policy. The Resource-based MM Service specification reflects the chosen physi-
cal system resource architecture and allows us to reason about the availability
and use of resources. The Resource-based MM Behavior specification models
the QoS broker software architecture presented in Venkatasubramanian [1998]
and places constraints on the actions of the QoS meta-actors. Such a behavior
specification can serve as a first stage in refining a service specification into
an implementation. The Adaptive Request Scheduling Policy illustrates such
refinement. It specifies one of the resource management policies developed
in Venkatasubramanian and Ramanathan [1997] and Venkatasubramanian
[1998] and implemented in Venkatasubramanian [1999] by giving high-level
algorithms for determining meta-actor behavior. The main results are:

(1) if a system provides Resource-based MM Service, then (under the assump-
tions on the mapping from QoS requirements to Resource requirements) it
provides QoS-based MM Service;

(2) if a system has Resource-based MM Behavior, and meets certain initial-
ization and noninterference conditions, it provides Resource-based MM
Service;

(3) if a system is refined with specific policies for QoS-based resource man-
agement, for example, the Adaptive Request Scheduling Policy, then the
system implements Resource-based MM Behavior.

A consequence of (2) is that new broker policies can be safely installed as long
as they satisfy the behavior constraints. (3) is an example of such a policy.

The rest of this article is organized as follows. Section 2 describes a multime-
dia server: its physical configuration and software architecture, based on the
TLAM two-level model, and a mapping of the software architecture onto the
physical architecture. Section 3 describes several resource management poli-
cies that we have used in realizing the software architecture. Section 4 gives
a brief summary of the TLAM semantic framework, covering concepts and no-
tations needed to understand the formal model of the QoS Broker. Section 5
shows how we use the TLAM framework to formally model and reason about
systems such as QoS Broker. Section 6 discusses related work. We conclude in
Section 7 with future research directions.

2. A META-ARCHITECTURE FOR QOS-BASED SERVICES

Using the TLAM framework, we develop a meta-architectural model of a mul-
timedia server that provides QoS-based services to applications. The physical
architecture of the MM server corresponds to the underlying network layer of
the TLAM (see Figure 1). We chose a commercial scalable distributed video
server as our design platform [Thapar and Koerner 1994; Venkatasubrama-
nian and Ramanathan 1997]. It consists of:

—a set of data sources (DS) that provide high bandwidth streaming MM ac-
cess to multiple client nodes outside the server complex (distributed across
a wide-area network). Each independent data source includes high capacity
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Fig. 1. Physical architecture of the QoS brokerage service mapped.

storage devices (e.g., hard-disks), a processor, buffer memory, and high-speed
network interfaces for real-time multimedia retrieval and transmission.

—a specific node designated as the distribution controller (DC) that coordinates
the execution of requests on the data sources.

—a tertiary storage server that contains the passive MM objects (e.g., read-only
video data). Replicas of these MM objects are placed on secondary storage
(disk subsystems) on the data source nodes.

All the above components are interconnected via an external distribution net-
work that also transports multimedia information to computers and set-top
devices at the client end. A lower speed back-channel conveys subscriber com-
mands back to the data sources via the DC. Note that in this architecture,
scheduling a request on a data source implies that the request is serviced using
storage on that data source. The scalability of this architecture is attributable
to the ability to add additional data sources to the server in order to provide in-
creased storage capacity and transfer bandwidth. The rationale for nonshared
storage subsystems across servers is that management mechanisms will scale to
server complexes distributed over a wide-area network easily. In contrast, other
architectures [Dan et al. 1995; Dan and Sitaram 1995] assume the availability
of shared storage among the servers. Alternative nonlocal storage architec-
tures, such as the SAN (Storage Area Networks) and NAS (Network Attached
Storage) models, are also possible. While the specifics of the proposed policies
and their performance may vary depending on the architectural configuration,
our specification and reasoning techniques apply equally well to these alter-
nate architectures. For a detailed description of design choices, see Thapar and
Koerner [1994] and Venkatasubramanian and Ramanathan [1997].

The software architecture of a multimedia server consists of two
subsystems—the base level and metalevel subsystems corresponding to the
application and system-level resource management components, respectively.
The base-level component implements the functionality of the MM application
and models both MM data objects and their replicas (e.g., video and audio files),
and MM requests to access this data via sessions. The corresponding base-level
entities are replica actors and request actors. The metalevel component deals
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Fig. 2. Detailed architecture of the QoS meta-architecture system. The dotted arrows indicate the
possible flow of an incoming request through the different middleware modules.

with the coordination of multiple requests and sharing of existing resources
among multiple requests. To provide coordination at the highest level and per-
form admission control for new incoming sessions, we introduce a metalevel
entity, the QoS Broker meta-actor, QB.

The two main functions of the QoS Broker are data management and request
management. The multimedia data and request management functions of the
QoS broker, in turn, use a number of simpler services. The organization of
metalevel services provided by a QoS broker is shown in Figure 2. We now
describe some of the main metalevel services and the supporting services in the
above QoS broker system and discuss some of the issues that must be considered
in establishing their correctness, when operating possibly concurrently with
other services.

The data management component decides the placement of data in the dis-
tributed system, that is, it decides when and where to create additional replicas
of data based on various factors, for example, popularity of a specific video ob-
ject. Such replication ensures that heavily accessed information is available at
multiple data sources.2 It also determines when additional replicas of data ac-
tors are no longer needed and can be garbage-collected/dereplicated. The request
management component performs the task of admission control for incoming
requests and ensures the satisfaction of QoS constraints for requests that are
ongoing in the system. We have developed adaptive admission control mecha-
nisms [Venkatasubramanian and Ramanathan 1997] in the request scheduling
module that assigns requests to servers and ensures cost-effective utilization of
resources. The data and request management functions, in turn, require basic
services such as replication, dereplication, and migration. In this article, we
restrict attention to replication and dereplication service.

2One may also use the replicas to provide fault tolerance in the event of a DS failure, although
failures are not considered in this article.
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—Replication. To replicate data and request actors using adaptive and predic-
tive techniques for selecting where, when, and how fast replication should
proceed. The rate at which replication proceeds also has a direct impact on
system performance and application interactivity (QoS).

—Dereplication. To dereplicate/garbage-collect data or request actors and opti-
mize utilization of storage space in the distributed system, based on current
load in the system as well as expected future demands for the object. Derepli-
cation cannot occur instantly—the service must ensure that a copy that has
been chosen for dereplication is removed only after all requests that are cur-
rently being serviced by that copy have completed.

In order to map the QoS software meta-architecture to the physical system
architecture, we distinguish between local and global components, and define
interactions between local resource managers on nodes and the global resource
management component. The global component, including the QoS broker and
associated meta-actors, reside on the distribution controller node. The node
local components include, for each DS node:

—a DS meta-actor for resource and request servicing management on that
node. The DS meta-actor contains state information regarding the current
state of the node in terms of available resources, replicas, ongoing requests,
replication processes and so forth.

—request base actors corresponding to the requests assigned to that node.
—replica base actors that correspond to the replicas of data objects currently

available on that node.

3. RESOURCE MANAGEMENT POLICIES FOR MM SERVERS

Apart from the QoS broker, QB, the MM system contains a number of meta-
actors whose behaviors are coordinated by QB and combine to provide the re-
source management services discussed above. In this section, we describe some
of the load management policies that have been treated in the formal model.
The policies are implemented as metalevel actors and provide a modular and
integrated approach to managing the individual resources of a MM server so
as to effectively utilize all of the resources such as disks, CPU, memory, and
network resources. A MM request specifies a client, one or more multi-media
objects, and a required QoS. The QoS requirement, in turn, is translated into
resource allocation requirements. The ability of a data source to support ad-
ditional requests is dependent not only on the resources that it has available,
but also on the MM object requested and the characteristics of the request
(e.g., playback rate, resolution). We characterize the degree of loading of a data
source DS with respect to request R in terms of its load factor, LF(R, DS), as:

LF(R, DS) = max

(
DiskBWR

DiskBWDS
,

BufMemR

BufMemDS
,

CPUR

CPUDS
,

NetBWR

NetBWDS

)
,

where DiskBWR , BufMemR , CPUR , and NetBWR denote the disk band-
width, memory buffer space, CPU cycles, and network transfer bandwidth,
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respectively, that are necessary for supporting request R and similarly ResDS

denotes the amount of resource Res available on data source DS. The load factor
helps identify the critical resource in a data source, that is, the resource that
limits the capability of the data source to service additional requests.3 By com-
paring the load factor values for different servers, load management decisions
can be taken by the QoS brokerage service. We briefly describe mechanisms for
the scheduling of MM requests and placement of MM data. Optimizations to the
basic mechanisms are outside the scope of this article and are presented else-
where [Venkatasubramanian and Ramanathan 1997; Venkatasubramanian
1998].

3.1 Scheduling of Multimedia Requests

The Request Scheduling meta-actor (RS) implements an adaptive schedul-
ing policy that compares the relative utilization of resources at different data
sources to generate an assignment of requests to replicas, so as to maximize the
number of requests serviced. The data source that contains a copy of the MM
object requested and which is impacted the least (i.e., the data source with the
least computed load factor) is chosen as the candidate source for an incoming
request. If no candidate data source can be found for servicing request R, then
the meta-actor RS can either reject the incoming request or initiate replication
on demand—implemented via a replication on demand meta-actor (ROD). The
replication on demand meta-actor ROD attempts to create a new replica of a
requested MM object on the fly. The source DS on which the new replica is to
be made is one that has minimum load-factor with respect to the request, R,
that is, with the minimum value of LF(R, DS). By doing so, ROD attempts to
maximize the possibility of the QoS broker servicing additional requests from
the same replica. In order for this approach to be feasible and attractive, the
replication must proceed at a very high rate, thereby consuming vital server
resources for replication.

3.2 Placement of MM Objects

The QoS broker analyzes the rejections over time and triggers appropriate
placement policies, implemented via predictive placement and dereplication
meta-actors (PP and DR) to reduce the rate of rejection. The predictive place-
ment and dereplication meta-actors (PP and DR) implement a placement policy
that determines in advance when, where and how many replicas of each MM
object should be placed in a MM server, and when to dereplicate an existing
replica. In particular, the goal of the predictive placement procedure is to facil-
itate the task of the adaptive scheduler meta-actor, by allocating MM objects
in such a way as to maximize system-wide revenue, by permitting a maximum
number of requests to be admitted and scheduled for service. In principle, the
term revenue can be used to mean overall system throughput in terms of the

3Note that diskspace usage on a data source for a MM object does not change with increasing
number of requests to that MM object—a single copy on disk is sufficient; hence, diskspace is not
accounted for in the load-factor formulation.
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number of requests serviced. In the studies presented, we associate a revenue
generated (to the service provider) by each incoming request. The placement al-
gorithm being used is designed to maximize revenue to the service provider. In
the case that all requests are identical in terms of revenue, the placement prob-
lem reduces to one of maximizing throughput. Placement mechanisms must be
designed to work effectively with request scheduling so that maximum system
throughput can be achieved. In order for predictive placement to execute concur-
rently with the adaptive scheduling process, a current snapshot of the system
is given to the placement processes to provide a consistent view of the system
state. The predictive placement and dereplication meta-actors do not consider
the exact times at which requests may arrive; the adaptive scheduling meta-
actor makes assignment decisions based on the exact arrival times of requests.

We also propose optimizations to the basic adaptive and predictive phases—
eager replication and lazy dereplication. With eager replication, replication of
video objects occurs in anticipation when there are idle resources, even though
the demand for these objects may not be apparent immediately (e.g., replication
of video objects during non peak-hours). Video objects slated for eager replica-
tion may be chosen as part of the predictive placement procedure, but may
actually be replicated only if sufficient video server resources become avail-
able. In the lazy dereplication strategy, when a MM object MMi is dereplicated,
MMi ’s storage resources are released and marked as being available. However,
the disk blocks that were being used for MMi are rewritten only if there is an
immediate need to reuse these blocks for storage of some other object. In the
interim period, between the time dereplication is initiated and the time when
the disk blocks of MMi are overwritten, MMi exists on the data source and can
be reclaimed if so desired. The implementation of eager replication and lazy
dereplication is supported by appropriate classification of video objects in the
system (Figure 7 of Section 5).

3.2.1 Interaction of QoS Auxiliary Services. In order to ensure noninter-
ference among the auxiliary services that are used to provide QoS, the specific
mechanisms implemented for placement and scheduling must be designed not
to conflict with each other. Currently ROD (replication-on-demand meta-actor),
PP (predictive placement meta-actor), and DR (dereplication meta-actor) oper-
ate on the basis of a (conservative) snapshot of the current resource allocation
and use. However, without appropriate constraints on the usage of these ser-
vices, inconsistencies can arise due to their interaction. Currently a snapshot
of the system state is obtained at every prediction period. This includes the
requests currently being serviced, the replicas currently available (including
completed replications and dereplications from prior periods) and current re-
source availabilities.

Some examples of constraining the behavior of the auxiliary placement and
scheduling services are:

—DR should not dereplicate a replica that RS (request scheduling meta-actor)
is making an assignment to. (Also a replica assigned to an active request
should not be physically dereplicated.)
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Fig. 3. Comparison of the performance of load management policies for request scheduling and
video placement in a distributed video server.

—With the concurrent execution of the ROD and PP policies, each process ini-
tiates replica creation based on a current snapshot of available systems re-
sources. Without proper constraints, this snapshot will not account for repli-
cas being created dynamically by the other process and thus the resource
capacity of a node may be exceeded by the combined effects. A naive solution
is to disable ROD when PP is initiated.

—DR and PP should not cancel one another out. The interaction between DR
and PP is not a functional correctness issue, it has to do with cost-effective
performance of the overall system. By using compatible prediction models for
the two services, the broker coordinates the service interaction. For instance,
a lazy DR is initiated prior to the execution of a PP process to make replica
space available for the creation of new replicas if needed.

The main objective here is to exploit concurrency without sacrificing con-
sistency. Increased concurrency allows for improved performance and reduces
unnecessary delays caused by serizalized execution on middleware services,
which in turn may impact user QoS. What is therefore required, is a reason-
able set of constraints that ensure the desired system behavior.

3.2.2 Some Performance Results. Performance studies show that appli-
cation objects can be managed effectively by composing multiple resource
management activities managed at the meta level [Venkatasubramanian and
Ramanathan 1997]. Figure 3 illustrates the performance, measured by request
rejection rate, of various policies for load management: (a) purely adaptive (on-
the-fly) scheduling and placement (P1), (b) purely predictive (decided a priori)
scheduling and placement (P2), (c) composite policies that provide adaptive
scheduling and predictive placement (P3 and P4, an optimized version of policy
P3). The graph on the left-hand side illustrates the request rejection rate under
purely adaptive policies for placement and scheduling. Startup latency is a QoS
factor that indicates how long the user is willing to wait for a replica to be cre-
ated adaptively. The graph demonstrates that when the startup latency is below
a threshold value (2 min), the purely adaptive mechanisms, represented by P1
force a very large fraction of the requests received to be rejected. Assuming that
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startup latency is sufficiently large, the right hand side depicts the inadequacy
of P2, that relies on only predictive policies for scheduling and placement. In
comparison, the other three policies (P1, P3 and P4), show hardly any rejects
(indicated by the overlapping lines in the graph). As can be observed from the
performance results, the ability to run multiple policies simultaneously (as in
cases P3 and P4) reduced the total number of rejected requests in the overall
system. In this paper, we study complex interactions that can arise due to the
simultaneous execution of multiple system policies.

4. THE TWO-LEVEL METAARCHITECTURAL FRAMEWORK

As mentioned earlier, in the TLAM framework, a system is composed of two
kinds of actors, base actors and meta actors, distributed over a network of
processing nodes. Base-actors carry out application level computation, while
meta-actors are part of the run-time system which manages system resources
and controls the run-time behavior of the base level. Base-level actors (and
messages) may have associated annotations, that is, metadata in the form of
finite maps, that meta-actors can read and write.

4.1 TLAM Models

A TLAM model is a structure of the form

TLAM = 〈Net, TLAS, loc〉,
where Net is the underlying network, with processor nodes and communication
links, TLAS is a two-level actor system, and loc is a function that specifies how
the actors are distributed over the network. The TLAS component specifies the
following sets: actor names, actor states, messages, annotation tags and and
annotation values, with names, states, and messages partitioned into base-
and metalevels. These sets are typically presented as algebraic data types. The
TLAS also specifies a set of reaction rules that determine the actions of actors
when messages are delivered, or in the case of meta-actors, when notifications
of base-level events are delivered.

We illustrate these concepts with examples from the QoSB TLAM specifi-
cation of Section 5.3 where QoS specific notational details are more fully ex-
plained. The actor names of the QoSB TLAM include, among others, QB, the
name of the broker meta actor, and a set ReqActors of names of base-level ac-
tors created to represent incoming MM requests. The broker state is of the form
QBB(mms, status), where mms and status are data structures used to repre-
sent the broker’s model of the MM state and resource management activity
respectively. A client request message sent to QB has the form

Q BC mmReq(αcl, MM, qs),

where αcl is the name of the client, MM is the requested MM object, and qs is
the requested QoS. When such a request is received by the broker, a request
actor is created with annotations

anotreq = [ClientId = αcl, ObjId =MM, Qos = qt, State = Waiting],
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Fig. 4. Example TLAM configuration for the QoS brokerage service showing components on DS
and DC nodes.

where qt describes the resources needed to provide the requested QoS. The
annotations of an actor or message are treated as finite functions from tags to
annotation values. The tags of anotreq are ClientId, ObjId, Qos, and State. The
value is associated to ClientID by anotreq, that is, anotreq(ClientId), is αcl.

4.2 TLAM System Configurations

A TLAM configuration, C, represents a snapshot of the system state. It has a set
of base-level actors, a set of metalevel actors and a set of undelivered messages.
Each actor has a unique name, a state, and resides on the node given by the loc
function. The undelivered messages are distributed over the network—some
are travelling along communication links and others are held in node buffers.
We represent a system configuration concretely by a set of node configurations
together with the set of messages travelling along network links, suppressing
details of which links these messages are travelling along. A node configuration
has a node name, a message buffer, and its set of base and meta actors.

Figure 4 shows a possible configuration, Cx , of a QoS Broker system with a DC
node, two DS nodes and two client nodes. Two requests have been admitted, one
is being serviced, and one has completed (as indicated by the state annotation).
There are two undelivered messages: a notification in the DC message buffer
to QB that the request on one DS node has completed, and an MM request
message travelling in the network. There are two request actors on the DC
node, corresponding to the two admitted MM requests, one from each client.
Each DS node is serving one of the requests with a local request actor and
replica representing the assigned request. The mathematical notation for this
configuration is given in Figure 5.

The meaning of the QoSB specific notation, such as mms, status, and the
roles of the QoS annotation tags, used above is discussed in more detail in
Section 5.3.
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Fig. 5. Example specification of the TLAM configuration for the QoS brokerage service.

4.2.1 Functions to Access Configuration Information. We use the following
functions to extract information from a configuration C:

—Cast(C) is set of names of base- and metalevel actors that exist in C.
—getState(C, a) is the state of actor a in C for a ∈ Cast(C), thus getState(C, a) =

s just if 〈a : s〉 occurs in C
—getA(C, a, t) is the value in C of the annotation with tag t of actor a.
—setA(C, a, t, v) sets the value of the annotation with tag t of actor a, returning

the updated configuration. Thus getA(setA(C, a, t, v), a, t) = v.

For example,

—Cast(Cx) = {QB, RS, PP, DR, ROD, DSma(ds1), DSma(ds2),

α
req
1 , αreq

2 , αreq,ds
1 , αreq,ds

2 , αrepl
1 , αrepl

2 }
—getState(Cx , QB) = QBB(mms, status)

—getA(Cx , αreq
1 , State) = Servicing and getA(Cx , αreq,ds

1 , State) = reqCompleted

4.3 Rules, Transitions, and Computation Paths

The QoS meta-actor rules have the general form:

(†) 〈a : s〉[, aCM ]
trigger−−−→
effect

〈a : s′〉 , MC if cond,

where 〈a : s〉 is a QoS meta-actor with name a in state s and aCM is a message
to a with content M . ([ . . . ] indicates that the message part may be empty.) s′

is the new state of actor a and MC is a possibly empty set of messages sent In
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the QoS rules, the trigger trigger, if not empty, describes a base level event. In
the QoS Broker TLAM these events correspond to progress in replication and
request servicing. The effect effect may include an effect the form setA(mmsU)
meaning that annotations of base-level actors on the same node are modified by
applying the annotation update, mmsU, or an effect new(α) indicating creation
of a new base-level actor α.

Transitions yield new configurations by application of enabled rules, or by
moving messages to and from node message buffers. A rule for receiving a mes-
sage is enabled in a configuration, if the message is present on the node of the
receiver, the receiving actors state matches that in the left-hand side of the rule,
and the rule condition is satisfied. When such a rule is applied to a configura-
tion, only the node where the receiving actor is located is changed. The message
delivered is removed, and any messages sent are added to the node message
buffer, the receiving actors state is replaced by the state specified by the right-
hand side of the rule, and any base-level effects specified by the rule are applied.
For example the rule QBdsNotify (Section 5.3.4) is enabled in Cx . If this rule
is applied, the DC message buffer becomes empty, and the annotation update
contained in the message is applied, thus the State annotation of αreq

1 becomes
reqCompleted. Call this C1. In configuration C1, the MM request can be moved
to the DC message buffer, thus enabling the request delivery rule. If this rule is
now applied, the result is a configuration, C3, in which the MM request message
is removed from the DC message buffer, the state of QB is given by the right-
hand side of the rule, αreq is added to the set of base-level actors, and the message
to RS is put in the DC message buffer. Note that another possible sequence of
steps leading to C3 is to move the MM request message into the DC message
buffer, then deliver the notification, then deliver the MM request message.

In general, there are also transitions corresponding to application of base-
level rules. In addition to changing the base-level state, these transitions may
also generate base-level events to be handled by metalevel event rules. We
leave base-level rules unspecified here. As an example of metalevel event rules,
the notification delivered to QB above would have been generated by the DS
node manager rule node manager rule, DSreplComplete, for handling a service
completion trigger.

〈DSma(DS) : DSB(DS)〉
reqCompletes

(
α

req,ds
1

)
−−−−−−−−−−−−→

setA(reqU)

〈DSma(DS) : DSB(DS)〉 , Q BC notify(reqU′) @ DSma(DS),

where

reqU = [αreq,ds
1 = [State = reqCompleted]

]
reqU′ = [αreq

1 = [State = reqCompleted]
] ∧ αreq

1 = getA
(
α

req,ds
1 , ReqId

)
.

In this case, the DS node manager updates the annotation of the request actor,
α

req,ds
1 , that has signalled completion and sends a notification to the broker QB.
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Formally, a transition τ has the form C
l→C ′ where C is the source (C =

source(τ )) and C ′ is the target (C ′ = target(τ )) and l is the label of the rule
applied. A computation path π is a possibly infinite sequence of transitions in
which the source of each transition other than the first is the same as the target
of the previous transition.

π = [Ci
li→ Ci+1 i ∈ Nat

]
The ith transition of π , π (i) is τi = Ci

li→ Ci+1 and Ci, also called the ith stage
of π . When focusing on the sequence of configurations rather than transitions,
we represent a computation path as an alternating sequence of configurations
and rule labels.

π = C0
l0−→ C1 · · ·Ci

li→ Ci+1 · · · .
The example sequence above is part of a computation path with initial con-
figuration C0 in which there are two undelivered MM request messages and
there is no ongoing activity. Omitting repeat of the matching final and source
configurations of adjacent transitions, this would be written

C0 · · ·Cx
QBdsNotify−−−−−−−→ C1

toDC−−−→ C2
QBreq−−−−→ C3 · · · .

The event diagrams shown in Section 5.3.1 illustrate segments of additional
possible computations in a QoSB system.

A computation path is fair if for any transition that becomes enabled at
some point (communication or execution step), then either that step eventually
happens, or it becomes permanently disabled. (Only execution steps can become
disabled, for example if a actor state changes in such a way that a rule no longer
applies.) The semantics of a configuration is the set of fair computation paths
starting with that configuration.

A TLAM system is a set of configurations closed under the transition rela-
tion. Properties of a system modeled in the TLAM are specified as properties
of computation paths. A property can be a simple invariant that must hold
for all configurations of a path, a requirement that a configuration satisfying
some condition eventually arise, or a requirement involving the transitions
themselves. For example, replica-request constraints (φrr—Definition 5.9) and
the total resource property (φres—Definition 5.10) are simple invariants that
must hold for all configurations of the system, while the request constraints
(φreq—Definition 5.6) and the replica constraints (φrepl—Definition 5.8 combine
configuration invariants and properties of transitions constraining the ways in
which configurations may change.

End-to-end service specifications constrain the patterns of interactions be-
tween clients and servers: request messages and replies sent in a computation
path. System-wide service specifications express constraints on the computa-
tion paths of a system in terms of abstract functions on configurations measur-
ing possibly global properties. Behavior specifications express constraints on
the cast of a configuration, including types and locations of actors, actor states,
and transitions.
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Fig. 6. Pyramid showing summary of formal specification. The three levels indicate (a) the end-to-
end viewpoint from the perspective of the end-to-end service provided by the system in response to
a request, (b) a system-wide view with abstract properties that must be obeyed by the underlying
components and (c) a detailed behavioral view that specifies component behaviors and constraints
on their behaviors.

5. REASONING ABOUT QOS-BASED MM SERVICES

As mentioned in Section 1, assuring safe composability of resource manage-
ment services is essential for efficient management of distributed systems with
widely varying and dynamically changing requirements. To analyze designs,
clarify assumptions that must be met for correct operation, and establish crite-
ria for noninterference, it is important to have a rigorous semantic model of the
system: the resources, the management processes, the application activities,
and the sharing and interactions among these. In this section, we describe how
to model the multimedia meta-architecture and resource management policies
presented above using the TLAM framework. Following our basic approach to
modeling systems in the TLAM framework, we specify QoS services from differ-
ent viewpoints, define functions relating elements of the different viewpoints
and establish theorems relating the different specifications.

Figure 6 summarizes concepts formalized in the different viewpoints and
their interrelationships. It can be used as a reference to guide the reader
through the different levels of specification. In Section 5.1, we informally
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describe the notion of a system providing QoS-based MM Service. This is the
high-level end-to-end request-based service that the client sees. In Section 5.2,
we define the notion of a system providing Resource-based MM Service. This
reflects the relevant system resources and expresses high-level resource man-
agement requirements that must be met in order to provide the QoS-based
MM Service. In particular, functions characterizing resources, replicas, and re-
quests are introduced and predicates constraining the system are defined in
terms of these functions. We postulate a function, QoSTranslate, that maps
QoS requirements to resource requirements and show that:

—if a system provides Resource-based MM Service, then under the given as-
sumptions on the mapping from QoS requirements to Resource requirements,
the system provides QoS-based MM Service.

In Section 5.3, we define the notion of a system having Resource-based MM
Behavior. This viewpoint reflects the QoS broker software architecture. It spec-
ifies the different types of QoS meta-actors and their deployment, and places
constraints on the actions of the QoS meta actors. We define initial and non-
interference conditions for a system, and show that

—if a system has Resource-based MM Behavior, then if the initial and non-
interference conditions hold, the system provides Resource-based MM
Service.

In Section 5.5, we refine the behavior by requiring the system to act according to
given Resource-based MM Broker Policies. Here we focus on one specific policy,
the Adaptive Request Scheduling Policy. We show that

—if a system acts according to the Adaptive request Scheduling Policy, then it
has Resource-based MM Behavior.

5.1 QoS-Based MM Service

We assume that there is a fixed set MMObjects of MM objects available in
the system and let MM range over MMObjects. We also assume given a set
MMreqset of MM requests—messages used to request MM service—and let
MMreq range over MMreqset. A MM request message MMreq determines a
triple (αcl, MM, qs), interpreted as a request to initiate a MM streaming service
from the server receiving the request, to the client αcl, using the MM object
MM, and obeying the QoS requirement qs. (More generally a MM request could
involve more than one MM object. For simplicity we restrict attention to the
single object case.)

Definition 5.1 (QoS-Based MM Service). A system S provides a QoS-based
MM Service over the set of MM objects, MMObjects, and request messages
MMreqset iff for every configuration C of S, if there is an undelivered request
message MMreq in C, then along any path π from C exactly one of the following
properties hold:

(1) there is a unique transition in π where MMreq is accepted for service, and
service is provided with the required QoS until complete, or
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(2) there is a unique transition in π where MMreq is rejected, and for this to
happen it must be the case that the requested QoS cannot be provided at
the time that MMreq arrives.

5.2 Specifying a Resource-Based MM Service

5.2.1 Roadmap to the Resource-MM Service Specification. As shown in Fig-
ure 6, the Resource-Based MM Service viewpoint concerns a set of managed
resources, DS Nodes, request and replica objects. Nodes of the physical archi-
tecture of the MM server (Figure 1) are represented by TLAM nodes and the
MM state of the system by TLAM system configurations. In the remainder of
this section, the set of managed resources is defined and constraints are given
on the function QoSTranslate that relates the QoS requirement part of an MM
request in the QoS MM Service viewpoint to correspoonding resource require-
ments in the Resource Based MM Service viewpoint.

In Section 5.2.2, functions are introduced to abstractly characterize rele-
vant features of a system configuration. DS node capacity is introduced in
Definition 5.4. Each MM request is represented by a freshly created request
base-actor and functions characterizing the state of a request are introduced in
Definition 5.5. Since there is at most one replica of an MM object on a given DS
node, replicas are represented by pairs giving the DS node where the replica
is located and the replicated MM object. In Definition 5.7, functions character-
izing replicas are introduced. The resource-based MM service is then specified
in terms of constraints on the values of these given functions and the way the
values may change (Definitions 5.6, 5.8, 5.9, and 5.10). If the MM system obeys
these constraints, then the QoS-based service requirements will be met and
the underlying streaming mechanisms will be able to provide the desired QoS-
based service (Section 5.2.3). In particular, as will be shown in the Section 5.3,
any admission and placement policies that obey the constraints can be used to
implement the MM service. Note that the replica constraints (5.8) constitute
noninterference constraints associated with the management of replicas by the
middleware services.

5.2.1.1 Managed Resources. To specify the system-wide MM service re-
quirements in more detail we assume given a function QoSTranslate, which
maps MM requests to resource requirements which, if met, will ensure the
requested QoS. Thus, real-time requirements typical of MM applications, for
example, required bit-rate of video, are translated into corresponding resource
requirements, for example, a bandwidth requirement. (See Nahrstedt [1995]
for examples of such QoS translation functions). For the purposes of this spec-
ification, we assume that if resources are allocated for a request, then they are
used (as needed) to provide the requested QoS.

Definition 5.2 (Managed Resources). We consider four managed resources:
network bandwidth (NetBW), CPU cycles (CPU), disk bandwidth (DiskBW),
and memory buffer (BufMem). We let Resources denote this set of resources and
let Res range over Resources and we use the notation UnitRes for the units in
which we measure the resource Res. We let QoSTuple = UnitDiskBW ×UnitCPU ×
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UnitNetBW ×UnitBufMem, For an element qt of QoSTuple, we write qtRes to select
the component associated to Res.

Disk space on an individual node is considered only during the placement of
data objects. However, the consumption of disk space does not change dynami-
cally as requests are being serviced and scheduled. To simplify the model, we do
not include disk space as a managed resource. It could be included with no signif-
icant change in the overall organization of the specification, theorems, or proofs.

Definition 5.3 (QoSTranslate Requirements). The function QoSTranslate
maps MM requests to 4-tuples representing resource allocation requirements
for the four managed resources. Thus, for any MM request, MMreq,

QoSTranslate(MMreq) ∈ QoSTuple.

We require that QoSTranslate(MMreq) be such that the QoS requirement of
MMreq is met if

(a) the resources allocated to MMreq are at least those specified by
QoSTranslate(MMreq) and

(b) the allocated resources and a copy of the MM object of MMreq are continu-
ously available on the assigned node during the service phase for MMreq.

Availability means that the MM object replica is not deleted (or overwritten)
and that the total allocation never exceeds capacity, since over allocation implies
that the extra resources must be taken from some already admitted request
thereby possibly violating the QoS constraints for that request.

5.2.2 Constraints on Resources, Requests and Replicas. Nodes in the MM
server physical architecture (Figure 1) are modeled as TLAM nodes. Recall
that there are several kinds of nodes: A set of data source nodes that holds
replicas and provides the actual MM streaming, a distribution controller node
responsible for coordinating the data source nodes, and a set of client nodes from
which MM requests arise. There is also a tertiary storage node that contains
the MM objects; however, we do not model this explicitly.

Definition 5.4 (DSnodes). We let DSnodes be the set of data source nodes
and let DS range over DSnodes. We assume, given, a function capacity such
that capacity(DS, Res) ∈ UnitRes is the total Res-capacity of node DS for any
data source node DS and resource Res.

Now we introduce functions on system configurations characterizing what
can be observed about requests and replicas. Predicates are defined constrain-
ing system behavior. A predicate on the system is defined in terms of a predicate
(with the same name) on the computation paths of the system, which in turn is
defined in terms of predicates on transitions and configurations. The definitions
are first stated in English, followed by a mathematical formula.

Definition 5.5 (Functions Characterizing Requests). Each MM request
that has been delivered in a system has a uniquely associated base actor
that represents the request during admission control and servicing. We let
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ReqActors ⊂ Actb be a subset of the base actor identifiers set aside for associa-
tion with MM requests and let αreq range over ReqActors. (Note that the ability
to form these unique associations relies on uniqueness of messages and newly
created actors in the TLAM model.) There are five functions characterizing the
state of a request actor αreq in a system configuration C:

—reqClientId(C, αreq)—identifies the client making the request.
—reqObjId(C, αreq)—the MM object requested.
—reqQoS(C, αreq)—the 4-tuple returned by QoSTranslate.
—reqState(C, αreq)∈ {Waiting, Granted, Denied, Servicing, reqCompleted}—the

request status.
—reqReplica(C, αreq) ∈ DSnodes+{nil}—the DS node to which the request has

been assigned if not nil.

Definition 5.6 (Request Constraints (φreq)). The predicate φreq constrains
the way in which the request functions are allowed to change as a system
evolves.

(1) A system S satisfies the request function constraints, φreq(S) just if φreq(π )
holds for each computation π of S.

(2) φreq(π ) holds for a computation path π of S just if φreq(τ ) holds for every
transition of π , and (a) the state of every request actor waiting for admission
eventually changes (to being admission granted or denied), and (b) granted
requests eventually are serviced and completed.

(a) (∀i ∈ Nat)(C = source(π (i)) ∧ reqState(C, αreq) = Waiting
⇒ (∃ j ∈ Nat,C ′ = source(π (i + j + 1)))

reqState(C ′, αreq) ∈ {Granted, Denied}.)
(b) (∀i ∈ Nat)(C = source(π (i)) ∧ reqState(C, αreq) = Granted

⇒ (∃ js, jc ∈ Nat, Cs= source(π (i+ js+ 1)), Cc= source(π (i+ jc+ 1)))
(reqState(Cs, αreq)=Servicing∧
reqState(Cc, αreq)= reqCompleted).

(3) φreq(τ ) holds for a transition τ : C −→ C ′ in S just if
(a) The values of reqClientId, reqObjId, and reqQoS are unchanged.

(∀αreq ∈ ReqActors ∩ Cast(C))
(reqClientId(C, αreq) = reqClientId(C ′, αreq)∧
reqObjId(C, αreq) = reqObjId(C ′, αreq)∧
reqQoS(C, αreq) = reqQoS(C ′, αreq)).

(b) The state of request actor can only move from Waiting to Granted or
Denied, from Granted to Servicing to reqCompleted.

(∀αreq ∈ ReqActors ∩ Cast(C))
reqState(C, αreq)=Waiting ⇒ reqState(C ′, αreq)∈ {Waiting, Granted,
Denied}
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reqState(C, αreq) = Denied ⇒ reqState(C ′, αreq) = Denied
reqState(C, αreq) = Granted ⇒ reqState(C ′, αreq) ∈ {Granted,
Servicing}
reqState(C, αreq) = Servicing ⇒
reqState(C ′, αreq) ∈ {Servicing, reqCompleted}
reqState(C, αreq)= reqCompleted ⇒ reqState(C ′, αreq)= reqCompleted.

Furthermore, if a request state moves from Waiting to Denied, it must
be the case that there are not sufficient resources available at the time
the request is processed.

(c) Once defined, the replica associated to a request actor remains constant.

reqReplica(C, αreq) 6= nil ⇒ reqReplica(C, αreq)= reqReplica(C ′, αreq).

Note that (3a) for all transitions of all computations of a system implies that
the values of reqClientId, reqObjId, and reqQoS are constant throughout the
life of a request actor.

Definition 5.7 (Functions Characterizing Replicas). There is at most one
replica of a given MM object on any DS node, and thus it can be uniquely
identified by the node and MM object. Unlike request object, there is no need
for explicit instantiation of replica objects at this stage; this allows us to state
abstractly the notion of a replica and leave its implementation to the behavior
specification. In addition to either being on the node or not, a MM object may be
in the intermediate state of being replicated. There are three functions charac-
terizing the state of the replica of a MM object MM on a DS node DS in system
configuration C:

—replState(C, DS, MM) ∈ ReplStates = {InQueue, InProgress, replCompleted}
is the replication status of the multimedia object MM on node DS. InQueue
indicates that replication has been requested but not initiated, InProgress
indicates that replication is in progress, and replCompleted indicates that
replication is complete.

—replnBW(C, DS, MM) ∈ UnitNetBW is the minimum bandwidth available to
complete a replication, meaningful only if replication is in progress or in
queue.

—replClass(C, DS, MM) ∈ {0, 1, 2, 3} is the replication class of the multimedia
object MM on node DS. This is used to coordinate replication and dereplica-
tion activities. Class 0 indicates that the replica is not present on the node. A
replica of class 1 is guaranteed to be available. A replica of class 2 is consid-
ered marked as dereplicable but remains available until all requests assigned
to it have completed. A replica of class 3 exists on the node in the sense that
it has not been overwritten, but there is no guarantee it will remain that way
and can not be considered available until its class is changed.

Definition 5.8 (Replica Constraints (φrepl)). The predicate φrepl constrains
the way in which the replica functions are allowed to change as a system evolves.
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Fig. 7. State Transition Diagram depicting the life of a media replica actor. In this diagram, states
are labelled by the value of the function replClass and the arrows indicate allowed changes in the
value as the system evolves.

(1) A system S satisfies the replica function constraints, φrepl(S), just if for all
computations π of S, φrepl(π ) holds.

(2) φrepl(π ) holds for a computation π of S if φrepl(τ ) holds for all transitions τ
of π , and replication progresses, that is for C a configuration of π
(a) if replState(C, DS, MM) = InQueue, then there is a later configuration

C ′ such that

replState(C ′, DS, MM) = InProgress

(b) if replState(C, DS, MM) = InProgress, then there is a later configura-
tion C ′ such that

replState(C ′, DS, MM) = replCompleted.

(3) φrepl(τ ) holds for a transition τ : C −→ C ′ just if
(a) The replication state only moves from InQueue to InProgress to

replCompleted to InQueue (the last allowed only if the replica class
is 0).

replState(C, DS, MM) = InQueue ⇒
replState(C ′, DS, MM) ∈ {InQueue, InProgress}

replState(C, DS, MM) = InProgress ⇒
replState(C ′, DS, MM) ∈ {InProgress, replCompleted}

replState(C, DS, MM) = replCompleted ⇒
replState(C ′, DS, MM) ∈ {replCompleted, InQueue}

replState(C ′, DS, MM) = InQueue ⇒ replClass(C, DS, MM) = 0

meaning the replica is not present in C.

(b) the replClass function must satisfy the constraints specified by the tran-
sition diagram given in Figure 7. For example the diagram specifies that
if

replClass(C, DS, MM) = 0 and C→ C ′,

then

replClass(C ′, DS, MM) ∈ {0, 1, 3}.
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Also, if

replClass(C, DS, MM) = 2 and replClass(C ′, DS, MM) = 3,

then there are no active requests assigned to this replica.

The function replnBW is only constrained by the network bandwidth
availability. This constraint appears as part of the Total Resource Prop-
erty (Definition 5.10 below).

The predicate φrr constrains the relation between the replica and request
functions.

Definition 5.9 (Replica-Request Constraints (φrr)). A system S satisfies the
replica-request function constraints, φrr(S) just if φrr(C) holds for each configu-
ration C in S where φrr(C) holds iff:

(1) reqReplica(C, αreq) 6= nil ⇔ reqState(C, αreq) ∈
{Granted, Servicing, reqCompleted}

(2) reqState(C, αreq) = Servicing ⇒
replState(C, reqReplica(C, αreq), reqObjId(C, αreq)) = replCompleted

(3) reqState(C, αreq) ∈ {Granted, Servicing} ⇒
replClass(C, reqReplica(C, αreq), reqObjId(C, αreq)) ∈ {1, 2}

Note that if replication for a granted request is still ongoing, the request
state remains Granted until replication is complete, after which point it must
eventually become Servicing.

The final definition needed before we state the full specification deals with
the use of resources as determined for a given configuration by the replica and
request functions.

Definition 5.10 (TotalResource Property (φres)). φres(S) states that for every
data source node and every managed resource, the sum of the resources allo-
cated to the requests on the DS node in any configuration of the system will not
exceed the node’s capacity for that resource. The resources currently allocated
on a DS node include resources allocated to streaming accepted MM requests, as
given by the reqQoS function for requests assigned to that node, as well as repli-
cations that are currently ongoing. More precisely, define ReplAlloc(C, DS, Res),
the resource allocated to ongoing replications on node DS in configuration C by

ReplAlloc(C, DS, Res) = 0 if Res 6= NetBW

ReplAlloc(C, DS, NetBW) =
∑

MM∈replicating(C,DS)

replnBW(C, DS, MM)

and define ResAlloc(C, DS, Res) the amount of resource Res on node DS cur-
rently allocated in configuration C by

ResAlloc(C, DS, Res) =∑
αreq∈Streaming(C,DS)

reqQoS(C, αreq)Res + ReplAlloc(C, DS, Res),
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where

Replicating(C, DS) = {MM ∈ MMObjects

replState(C, DS, MM) = InProgress}
Streaming(C, DS)={αreq ∈ ReqActors ∩ Cast(C) |

reqState(C, αreq)=Servicing ∧ reqReplica(C, αreq)=DS}

Then φres is defined for configurations C and systems S by

φres(C, DS, Res) ⇔ ResAlloc(C, DS, Res) ≤ capacity(DS, Res)

φres(C) ⇔ (∀DS ∈ DSnodes, Res ∈ Resources)φres(C, DS, Res)

φres(S) ⇔ (∀C ∈ S)φres(C)

5.2.3 Specification, Theorem, Proof. Using the characterizing functions
and constraints defined above, we now define the requirements for a Resource-
based MM service, and showing that such a service provides a QoS-based MM
Service.

Definition 5.11 (Resource-Based MM Service Specification). A system S
provides Resource-based MM service with respect to requests in MMreqset,
functions QoSTranslate, capacity, and the functions characterizing replica and
request state as specified above iff

(1) S satisfies the constraints in replica and request functions
(a) φrepl(S)—S satisfies the replica constraints of Definition 5.8
(b) φreq(S)—S satisfies the request constraints of Definition 5.6
(c) φrr(S)—S satisfies the replica-request constraints of Definition 5.9
(d) φres(S)—S satisfies the total resource requirement (Definition 5.10)

(2) for C ∈ S, if there is an undelivered message, MMreq, with parameters
(αcl, MM, qs), then along any path π from C there is a (unique) stage i such
that the transition π (i) = C −→ C ′ delivers MMreq and there is a newly
created request actor, αreq, (αreq ∈ Cast(C ′)—Cast(C)) such that
(a) reqClientId(C ′, αreq) = αcl
(b) reqObjId(C ′, αreq) =MM
(c) reqQoS(C ′, αreq) = QoSTranslate(qs)
(d) reqState(C ′, αreq) = Waiting
(e) reqReplica(C ′, αreq) = nil.

THEOREM 5.12 (QOS2RESOURCE). If a system S provides Resource-based MM
service as defined in 5.11 and the function QoSTranslate satisfies the re-
quirements of Definition 5.3, then S provides QoS Based Service according to
Definition 5.1.

PROOF (OF THEOREM 5.12). We first observe that if a system S provides
Resource-based MM service, then the following holds for any C ∈ S. If there
is an undelivered message, MMreq, in C with parameters (αcl, MM, qs), then,
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along any path π from C, there is one of the following segments:

(Case-Denied) Cstart
+−→ Cdeny

(Case-Granted) Cstart
+−→ Cgrant

+−→ Cserve
+−→ Ccomplete,

such that the following hold:

(1) Cstart is the result of delivery of MMreq and there is a newly created request
actor αreq ∈ ReqActors∩Cast(Cstart) such that Eqs. (2) of Definition 5.11 hold.

(2) reqState(Cdeny, αreq) = Denied, and there is a message to αcl notifying of rejec-
tion of MMreq. In this case the system had insufficient resources to schedule
MMreq in Cstart.

(3) reqState(Cgrant, αreq) = Granted, and reqReplica(Cgrant, αreq) = DS for some
DS node such that replClass(Cgrant, DS, MM) = 1.

(4) reqState(Cserve, αreq)=Servicing and reqState(Ccomplete, αreq)= reqCompleted.
(5) From Cserve to Ccomplete the requested MM is available—replState(C, DS,

MM ) = replCompleted and replClass(Cgrant, DS, MM) ∈ {1, 2}.
(Case-Denied) and (Case-Granted) guarantee that each request is accepted

or rejected. Furthermore there is at most one occurrence of (Case-Denied) or
(Case-Granted) for a given request message, since each message is consumed
upon delivery. What remains is to show that the required QoS is provided dur-
ing the service period. For this we show that the assumptions for QoSTranslate
(Definition 5.3) correctness hold. Definition 5.3(a) follows from Eq. (2)(c) of Def-
inition 5.11 and the request function constraints φreq (3)(a), that reqQoS is
constant. Definition 5.3(b) follows from φres, φreq, φrr, and the class transition
constraint of φrepl.

5.3 A Resource-Based MM Behavior

In the behavior viewpoint the QoS meta-actors that cooperate to provide the
Resource-based MM service are made explicit. The QoS base-level annotations,
meta-actor states, and messages are defined and transition rules given that
specify the meta-actor behaviors.

5.3.1 Roadmap of the Resource-Based MM Behavior View. In Section 5.3.2,
the annotations used by the QoS meta-actors are introduced. The functions
characterizing request and replica state abstractly in the system-wide view are
defined in terms of information held in base-level annotations.

In Section 5.3.3, the structure of metalevel actor states and messages is spec-
ified. As discussed in Section 2, there are five QoS meta-actors on the controller
node, and a DSNode manager meta-actor on each DS node.

—QB. The QoS broker that accepts MM requests, maintains a model of the MM
state, and coordinates the remaining broker services. The state of QB has two
components denoted by mms and status. mms represents the MM state as
a finite map from requests and replicas to their QoS annotations. status is
used by QB to keep track of ongoing scheduling, replication and dereplication
activities. Note that the Status Invariant (Definition 5.15) ensures noninter-
ference (safe concurrent execution) of these ongoing middleware services.
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Fig. 8. A simple request admission scenario. Vertical lines represent event timelines of meta-
actors named at the head. A message M from A to A’ is represented by M@A labelling an arrow
from A to A’. In this scenario, a request arrives at QB, QB sends a schedule message to RS, RS picks
a DS node, ds, sends an assign message to the DS node manager DSma(ds), waits for an assignAck,
the sends a scheduleReply to QB.

—RS. The request scheduler, that either idle or waiting for an acknowledge to
a DS node assignment request (remembering the associated update to report
to QB) or waiting for a reply to replication on demand request (remembering
the scheduling request data).

—ROD. The replication on demand server, that is either idle or waiting for an
acknowledge to a DS node replication request (remembering the associated
update to report its customer).

—DR. The dereplication server, that is either idle or waiting for acknowledg-
ments for dereplication updates sent to DS nodes (remembering the combined
updates to report to QB).

—PP. The predictive placement server, that is either idle or waiting for ac-
knowledgments for replication updates sent to DS nodes (remembering the
combined updates to report to QB).

—DSma(DS). The DSNode manager on DS. Its state is embodied in the state
of the requests and replicas on DS.

Figures 8, 9, and 10 are event diagrams illustrating sample scenarios show-
ing interaction of the QoS meta-actors.

The transition rules formalizing the behavor shown in the event diagrams
are given in Section 5.3.4. Full details are given here for a subset of the rules,
the rest are summarized with details available in the Appendix.

Using the state, message and rules definitions, the definition of Resource-
Based MM Behavior is given in Section 5.3.5. The system-wide view places
constraints on the entire system including meta-actors not among the QoS
broker meta-actors. The behavior view only makes local constraints on de-
ployment and behaviors of individual QoS meta-actors. Typically, there is an
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Fig. 9. Alternative RS subscenario using replication on demand.

Fig. 10. Scenario showing QB management of background dereplication and replication.

implicit assumption that the system has started in some clean initial state,
and that the environment will not interfere. The meaning of “not-interfere”
is made explicit and precise by stating noninterference requirements and the
meaning of clean initial state is made explicit and precise by stating initial
state requirements and only considering system configurations reachable from
such states. Using the behavior definition and initial and noninterference con-
ditions the key theorem connecting the behavior view and the system-wide
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view is stated and a sketch of the proof is given. Proof details can be found in
Section 5.4.

It is possible to avoid the initial conditions by introducing a startup message
an adding rules that allow the meta-actors concerned to reach a suitable state
before accepting any service requests. To avoid added detail and complexity, we
have chosen to assume that a suitable system configuration can be reached.

5.3.2 QoS Annotations and Base-Level Request and Replica Functions. In
the behavioral specification, the MM resource state of a configuration, modeled
previously by the abstract request and replica functions, is recorded in annota-
tions of base-level actors implementing the MM streaming service. We partition
the MM base actors of a configuration into three groups.

—ReqActors. Corresponding to delivered MM requests as for the resource based
service. These actors are located on the Controller node.

—DSReqActors. Corresponding to the granted requests. These actors are lo-
cated on their assigned DSnodes.

—DSReplActors. Corresponding to the replicas on the DS nodes. Given the as-
sumption that there is at most one replica of any MM object on a DS node we
define
NodeRepl(C, DS, MM) to be a function that gives the replica base actor asso-
ciated to MM on node DS in C. If there is no such replica, then we take the
value to be nil.

Definition 5.13 (QoS Annotations). For each system-wide replica function
replX, X one of State, BW, Class, a replica actor has an annotation tag X
to represent that function. Similarly, for each system-wide request function
reqX (for X one of ClientId, ObjId, QoS, State, Replica), a request actor (on
DC or a DS node), there is an annotation tag X to represent that function.
In addition each DS request actor has an annotation tag ReqId, with value
in ReqActors, used to link DS node request actors to the original request. If
the value, getA(C, αreq,ds, ReqId) of the ReqId annotation on DS request actor
αreq,ds in configuration C is αreq, then αreq,ds is the DSnode request actor for αreq.
Furthermore, there is a unique such αreq,ds for each granted request and none
for a waiting or denied request. Thus, we define

NodeReq(C, αreq) = αreq,ds if getA(C, αreq,ds, ReqId) = αreq

= nil if no such αreq,ds exists

Definition 5.14 (Replica and Request Functions). Using the QoS annota-
tions and functions accessing requests and replicas defined above, we define
the system-wide functions on requests and replicas as follows:

—For X one of State, BW, Class, replX(C, DS, MM) is the value of the X anno-
tation of NodeRepl(C, DS, MM) (when this is non-nil) in C. For example,

replState(C, DS, MM) = getA(C, NodeRepl(C, DS, MM), State).

—For X one of ClientId, ObjId, QoS, State, Replica, replX(C, αreq) is defined
to be the value of the X annotation of NodeReq(C, αreq) in C for a granted
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request, and to be the X annotation of αreq in C otherwise. For example,

reqReplica(C, αreq) = loc(NodeReq(C, αreq)) if NodeReq(C, αreq) 6= nil

= nil otherwise.
Recall that loc is the TLAM function the gives the node on which an actor is
located.

5.3.3 QoS Meta-Actor States and Messages. We represent the QoS meta ac-
tors’ knowledge of the MM state as a finite function from received requests (rep-
resented by actors in ReqActors) and replicas (represented by pairs (DS, MM))
to a function from annotation tags to corresponding values or nil if undefined.
We let MMState denote this set of functions:

MMState ⊂ ReqActors ∪ (DSnodes×MMObjects)
f→ Tag

f→ TagValue ∪ {nil},
where TagValue is the set containing the possible QoS annotation values (not
nil). We let mms, mms′ range over MMState. We define the updating operation
mms modby mms′ by

(mms modby mms′)(x, t) = ifmms′(x, t) 6= nil thenmms′(x, t) elsemms(x, t).

We also let reqU, replU, and mmsU range over MMState where reqU is used
to update request actor tags, replU is used to update replica actor tags, and
mmsU is used to indicate a general update. For any set of request actors A,
mms/A is the restriction of mms to x ∈ A and for any DS node DS, mms/DS is
the restriction of mms to replicas on DS. Thus,

(mms/A)(x, t) = if x ∈ A then mms(x, t) else nil

(mms/DS)((DS′, MM), t) = if DS = DS′ then mms((DS, MM), t) else nil.

We use a (nested) finite map representation for MM states and updates where
the outer level maps requests and replicas to their associated annotation tag
maps. For example,

[a = [t1 = v1, t2 = v2]]

denotes the function mms where

mms(a, t1) = v1

mms(a, t2) = v2

mms(x, t) = nil if x 6= a or t 6∈ {t1, t2}.
Following the QoS Broker software architecture discussed in Section 2, there

are five broker meta-actors residing on the DC node: (a) the main QoS broker
QB, (b) a request scheduler RS, (c) a replication on demand server ROD, (d) a
dereplication server DR and (e) a predictive placement server PP. In addition
there is a DSNode manager meta-actor DSma(DS) on each DS node DS. We
represent the state of a QoS broker meta actor using elements of an abstract
data type given by their constructors. The dynamic state used by a DS node
QoS manager DSma(DS) is stored in base actor annotations. The static state
depends only on characteristics of the DS node on which it resides. Thus we
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ActorName (Service) States

QB (QoS Broker) QBB(MMState, Status)
RS (Request Scheduler) IdleBrs, WaitBrs(MMState, ReqActors, MMState)
ROD (Replication on Demand) IdleBrod, WaitBrod(MMState)
DR (DeReplication) IdleBdr, WaitBdr(MMState, Pω(DSnodes))
PP (Predictive Placement) IdleBpp, WaitBpp(MMState, Pω(DSnodes))
DSma(DS) (DSnode QoS mgr) DSB(DS)

Fig. 11. QoS meta actors, services and states.

assume there is a function DSB on DS nodes such that DSB(DS) denotes the
state of the manager on DS. The QoS meta actors, their services and their
possible states are summarized in Figure 11.

The QoS broker QB coordinates the QoS resource management services:
scheduling, replication, predictive placement, and dereplication. Since these
activities use and modify the actual MM state, care must be taken to avoid
interference among these activities. For this purpose, we define the notion of
status function, status, that the QoS broker uses to keep track of which pro-
cesses are ongoing. A status function status has domain {RS, ROD, DR, PP} and
is such that:

—status(RS) ∈ ReqActors ∪ {nil}
—status(X ) ∈ {true, false} for X ∈ {PP, DR, ROD}
status(RS) = (αreq) indicates that RS has been requested to schedule αreq and
scheduling is in progress, with RS allowed to invoke ROD only if status(ROD) =
true. status(RS) = nil indicates that there is no outstanding request from QB to
RS and consequently no undelivered messages to or from RS. For X ∈ {PP, DR},
status(X ) = true indicates the process X is ongoing and status(X ) = false
indicates the process X is not active and there are no outstanding requests
from QB to X and in fact no undelivered messages to or from X . We let Status
denote the set of status functions and let status range over Status.

As we will show, the rules for QB behavior assure noninterference amongst
the QoS broker auxiliary services by maintaining the status invariant property
8status.

Definition 5.15 (Status Invariant, 8status(status)). To assure noninterfer-
ence amongst the QoS broker services, the QoS broker does not allow two ser-
vices that implement replication to run concurrently or a dereplication service
to run concurrently with either scheduling or replication. Note, however, that
multiple replications initiated by the same replication service can go on con-
currently. Thus the broker status function status will satisfy status invariant,
8status(status), which holds just if the following conditions hold:

—status(PP) = true ⇒ status(ROD) = false ∧ status(DR) = false

—status(DR) = true ⇒ status(ROD) = false ∧ status(PP) = false ∧
status(RS) = nil
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Fig. 12. Internal QoS Messages. These are classified either as requests with corresponding reply
messages, or as notifications, which need no reply. The general form of a message is X C mid(· · · ) @ Y
where X is the intended receiver of the message, Y is the sender, mid is the message type, and (· · · )
contains parameters.

Although simple and effective, this constraint reduces the potential concur-
rency of the QoS activities. Defining formal restrictions that allow this con-
straint to be safely and efficiently relaxed is a topic of future work.

Definition 5.16 (QoS Message). A QoS message is either an internal QoS
message or a client interaction message. Internal QoS messages are either re-
quests, replies or notifications sent to a QoS meta actor by a QoS meta actor. The
possible forms for internal QoS messages are given in Figure 12. A client inter-
action message is either a client MM request of the form QBC mmReq(αcl, MM, qs)
or a reply of one of the following forms:

αcl C granted(MM, qs) @ QB or αcl C denied(MM, qs) @ QB.

The replica update message, repUpd, is the only message received by the
DSma from ROD, DR and PP. It carries along with it a set of replicas and the
replstate to which they must be altered.

The notify messages are just to inform QB that some resources are released.
Notification is needed because the resources cannot be considered available for
reuse until an appropriate notification is received by QB. However, a reply not
required as there is no need to synchronize changes with DS node managers.

5.3.4 QoS Meta-Actor Transition Rules. The transition rules specify the re-
action of a meta-actor upon receiving a QoS message, or a base-level event notifi-
cation, thus defining the possible behaviors of the QoS Broker meta-actors. The
rules are expressed both in English and in formal symbolic notation. The reader
should feel free to read only one form according to taste. The QoS meta-actor
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rules have the general form:

(†) 〈a : s〉[, aCM ]
trigger−−−→
effect

〈a : s′〉 , MC if cond

where 〈a : s〉 is a QoS meta-actor with name a in state s and aCM is a message
to a with content M . ([ · · · ] indicates that the message part may be empty.) s′ is
the new state of actor a and MC is a possibly empty set of messages sent In the
QoS rules, the trigger trigger is empty except for DS meta actors, where triggers
signal progress in replication as request servicing. effect is only nonempty for QB
and DS meta-actors, where it may include an effect the form setA(mmsU) mean-
ing that annotations of base-level actors on the same node have been modified
by applying mmsU, and/or an effect new(α) indicating creation of a new base-
level actor α. Recall that the events in event diagram figures in Section 5.3.1 are
labelled with names of transition rules, to illustrate the emergent control flow.

Transition Rules for QB. The transition rules for the QoS broker, QB, pro-
vide the overall organization of the QoS service activities.

5.3.4.1 (QBmmReq). If neither dereplication nor request scheduling are in
progress then an MM request, Q BC mmReq(αcl, MM, qs), can be processed. The
rule (QBmmReq) for receipt of an MM request by QB says that upon receipt
of an MM request, a request actor αreq is created (the effect new(αreq)), its an-
notations are initialized using reqU (the effect setA(reqU)), and a scheduling
request message is sent to RS. In the new state of QB, mms′ is the result of
updating mms using reqU.

A message RSC schedule(mms′, αreq, rod) is sent, where mms′ is QB’s cur-
rent model of the MM state augmented with request information associated to
the new request actor αreq, and rod indicates whether replication-on-demand
is enabled for the scheduler. Replication-on-demand may be enabled for the
scheduler, if predictive-placement is not in progress.

〈QB : QBB(mms, status)〉 , Q BC mmReq(αcl, MM, qs)

−−−−−−−−−−−−−−→
new(αreq);setA(reqU)

〈QB : (mms′, status[RS = αreq][ROD = rod])〉 , RSC schedule(mms′, αreq, rod)

if status(DR) = false ∧ status(RS) = nil

where status(PP) = true ⇒ rod = false

mms′ = mms modby reqU
reqU = [αreq = [ClientId = αcl,

ObjId =MM,
Qos = QoSTranslate(qs),
State = Waiting]]

As discussed above, the effect label, new(αreq), on the transition arrow means
that αreq ∈ ReqActors is newly created, and the label, setA(reqU), says that the
QoS annotations of αreq have been initialized according to the values given in
reqU.
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5.3.4.2 (QBdsNotify). A notification from the DS arrives when an ongoing
request or an ongoing replication has completed. When a processable DS notifi-
cation arrives, the QoS broker updates its MM state. The effect of the transition
below is to apply the annotation update contained in the message.

〈QB : QBB(mms, status)〉 , Q BC notify(mmsU) @ DSma(DS)

−−−→
〈QB : QBB(mms modby mmsU, status)〉

if notification is processable

A notification is processable unless it is a notification of a change of state for a
request before the admission granted update has arrived, or it is a notification
of replication completion before the update that starts the replication arrives.

5.3.4.3 (QBpp). The QoS broker may initiate predictive placement if
dereplication is not in progress and replication-on-demand is not enabled. Note
that the enabledness of this rule (and of the QBdr rule), depends only on the
state of the QoS broker QB, since no message is delivered.

〈QB : QBB(mms, status)〉
−−−→

〈QB : (mms, status[PP = true][ROD = false])〉 , PPC place(mms)

if status(PP) = status(DR) = false

∧ (status(RS) = nil ∨ status(ROD) = false)

5.3.4.4 (QBdr). The QoS broker may invoke dereplication if neither pre-
dictive placement nor request scheduling is in progress (again, no message is
consumed).

〈Q B : QBB(mms, status)〉
−−−→

〈QB : (mms, status[DR = true])〉 , DRC derepl(mms)

if status(PP) = status(DR) = false ∧ status(RS) = nil

5.3.4.5 (QBrsReply). When a reply to an outstanding scheduling request
arrives, QB updates its state using the update MM state contained in the re-
ply message and sends a reply to the requesting client indicating whether the
request has been granted or denied.

〈QB : QBB(mms, status[RS = αreq])〉 , QBC scheduleReply(mmsU) @ RS

−−−−−−−−−−−−→
setA(mmsU/αreq)

〈QB : QBB(mms modby mmsU, status[RS = nil])〉 , αclC X (αreq)

where
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mms(αreq)(ClientId) = αcl

mmsU(αreq)(State) = Granted ⇒ X = granted

mmsU(αreq)(State) = Denied ⇒ X = denied

5.3.4.6 (QBdrReply) (QBppReply). When a reply to a predictive placement
or dereplication request arrives the QoS broker updates its MM state and
status.

〈QB : QBB(mms, status[DR = true])〉 , Q BC dereplReply(mmsU) @ DR

−−−→
〈QB : QBB(mms modby mmsU, status[DR = false])〉
〈QB : QBB(mms, status[PP = true])〉 , Q BC placeReply(mmsU) @ PP

−−−→
〈QB : QBB(mms modby mmsU, status[PP = false])〉

Transition Rules for Scheduling and Placement. We provide the rules for
RS in detail and summarize the behavior specified by the transition rules for
ROD, PP and DR. The complete rules for ROD, PP and DR are given in the
appendix.

To simplify the statement of the rules for scheduling and placement, we will
define some auxiliary notions that characterize the allowed actions. (Auxil-
iaries for ROD, PP and DR appear in the appendix along with the rules.) These
definitions rely on an extension of the total resource property to MM states.
φres(mms) is defined by replacing the request and replica functions by lookup of
the corresponding tags in mms. The servicing state for streaming is replaced by
the admission granted state, since the broker must assume that the allocated
resources are in use once admission is granted.

Definition 5.17 (Scheduling Auxiliaries).

ReplAlloc(mms, DS, Res) = 0 if Res 6= NetBW

ReplAlloc(mms, DS, NetBW) =
∑

MM∈Replicating(mms,DS)

mms((DS, MM), BW)

ResAlloc(mms, DS, Res) =∑
αreq∈Streaming(mms,DS)

mms(αreq, QoS)Res + ReplAlloc(mms, DS, Res)

φres(mms, DS, Res) ⇔ ResAlloc(mms, DS, Res) ≤ capacity(DS, Res)

φres(mms) ⇔ (∀DS ∈ DSnodes, Res ∈ Resources)φres(mms, DS, Res),

where

Replicating(mms, DS) = {MM ∈MMObjects |
mms((DS, MM), State) = InProgress}
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Streaming(mms, DS) = {αreq ∈ ReqActors ∩Dom(mms) |
mms(αreq, State) = Granted∧
mms(αreq, Replica) = DS}.

To state the rules for RS, we introduce two functions. assignTo(mms, αreq, DS)
is the request and replication update for assigning the request represented by
αreq in mms to DS.

assignTo(mms, αreq, DS)= (mms/αreq)[αreq= [State=Granted, Replica=DS],
(DS, mms(αreq, ObjId)) = [Class = 1]]

assignable(mms, αreq) is the set of DS nodes to which the request represented
by αreq in mms could be assigned without violating any resource constraints
using only existing replicas.

assignable(mms, αreq) =
{DS ∈ DSnodes |
φres(mms modby assignTo(mms, αreq, DS))
∧mms(DS, mms(αreq)(ObjId))(Class) 6= 0}.

5.3.4.7 Rules for RS. The transition rules for the request scheduler, RS,
deal with scheduling requests, and interactions of RS with the DS node man-
agers and with ROD.

5.3.4.8 (RSscheduleGrant). If there is some DS node to which the request
represented by αreq can be assigned without violating resource constraints then
RS picks one and notifies the DS manager of that node.

〈RS : IdleBrs〉 , RSC schedule(mms, αreq, rod)

−−−→
〈RS : WaitBrs(mms, αreq, mmsU)〉 , DSma(DS)C assign(mmsU) @ RS

if DS ∈ assignable(mms, αreq) ∧ mmsU = assignTo(mms, αreq, DS).

5.3.4.9 (RSscheduleDeny). If there is no DS node on which the request rep-
resented by αreq can be scheduled without violating resource constraints and
ROD is disabled, then RS sends the broker a denied update.

〈RS : IdleBrs〉 , RSC schedule(mms, αreq, false)

−−−→
〈RS : IdleBrs〉 , QBC scheduleReply([αreq = [State = Denied]]) @ RS

if assignable(mms, αreq) = ∅.
5.3.4.10 (RSscheduleRod ). If there is no DS node on which the request rep-

resented by αreq can be scheduled without violating resource constraints and
ROD is enabled, then RS requests replication meeting the QoS requirements
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of the request specified by qt.

〈RS : IdleBrs〉 , RSC schedule(mms, αreq, true)

−−−→
〈RS : WaitBrs(mms, αreq, nil)〉 , RODC repl(mms, MM, qt) @ RS

if MM=mms(αreq, ObjId) ∧ qt=mms(αreq, QoS)∧assignable(mms, αreq)=∅.
5.3.4.11 (RSdsAck). When RS receives an acknowledgment to an outstand-

ing assignment request to a DS node, then it sends a granted reply to the broker
with the updated MM state, mmsU. We assume mmsU contains the update in-
formation for αreq and any replication update that has been done.

〈RS : WaitBrs(mms, αreq, mmsU)〉 , RSC assignAck() @ DSma(DS)

−−−→
〈RS : IdleBrs〉 , Q BC scheduleReply(mmsU) @ RS.

5.3.4.12 (RSrodReplyOk). If RS receives a replication update from an out-
standing request to ROD that allows the request it is attempting to schedule to
be granted, then RS picks a suitable DS node and sends a corresponding assign
request to the nodes DS manager.

〈RS : WaitBrs(mms, αreq, nil)〉 , RSC reply(replU) @ ROD

−−−→
〈RS : WaitBrs(mms, αreq, replU modby mmsU)〉 , DSma(DS)C assign(mmsU)

@RS if DS ∈ assignable(mms modby replU, αreq)

and mmsU = assignTo(mms modby replU, αreq, DS).

5.3.4.13 (RSrodReplyFail ). When RS receives a replication update from
ROD that does not allow its request to be granted, then RS replies to QB with
an MM state indicating request denied.

〈RS : WaitBrs(mms, αreq, nil)〉 , RSC reply(replU) @ ROD

−−−→
〈RS : IdleBrs〉 , Q BC scheduleReply(replU modby [αreq = [State = Denied]])

@RS if assignable(mms modby replU, αreq) = ∅.
5.3.4.14 Rules for PP, ROD, DR. When ROD receives a request,

RODC repl(mms, MM, qt) @ RS for replication of MM object, MM, with QoS
resource requirements qt, it looks, using mms, for a DS node that doesn’t have
the needed MM object and that has the required resources available. If one is
found, a replication request is sent to that DS node and ROD waits for an ac-
knowledgment. When the acknowledgment message is received, a reply is sent
to RS with MM state containing the replica update information. If no such DS
node is found, then a failure reply is sent to RS.
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Based on the information in the MM state of a place request, PP may decide
to reclassify some replicas from 0, 2, or 3 to 1, and in the case of moving from 0 to
1 initiate replication. It then notifies each DS node of any changes on that node,
waits for acknowledgments from these DS nodes, and then sends a reply to QB
containing the updated replica state. Similarly, upon receiving a dereplication
request, DR may decide to reclassify some replicas from 1 to 2. It then notifies
each DS node of any changes on that node, waits for acknowledgments, and then
sends a reply QB containing the replica state update. (Note that in practice,
PP and DR also use other information for predicting requests that we do not
model at this level of abstraction.)

Transition Rules for DS Manager

5.3.4.15 (DSassign). When a DS node manager DSma(DS) receives an as-
signment request with MM state mmsU it creates a new request actor, sets the
annotations of this actor and of the replica actor for the requested MM object
using mmsU (which contains the MM request information, and name of the
associated request actor), and sends an assignAck reply to RS.

〈DSma(DS) : DSB(DS)〉, DSma(DS)C assign(mmsU) @ RS

−−−−−−−−−−−−−→
new(αreq,ds),setA(mmsU′)

〈DSma(DS) : DSB(DS)〉, RSC assignAck(reqU) @ DSma(DS)

if mmsU′ = [αreq,ds = reqU(αreq) modby [ReqId = αreq]] modby mmsU/DS

∧αreq ∈ Dom(mmsU).

5.3.4.16 (DSrepUpd). When a DS node manager DSma(DS) receives a
replication request it uses the MM state replica information to update the an-
notations of its replica actors and then sends a replAck reply to the requester
(which could be ROD, PP, or DR).

〈DSma(DS) : DSB(DS)〉 , DSma(DS)C repUpd(replU) @ X

−−−−−−→
setA(replU)

〈DSma(DS) : DSB(DS)〉 , X C replAck() @ DSma(DS)

for X ∈ {ROD, DR, PP}.
5.3.4.17 (DSstartRepl). Similarly, when replication of an MM object on a

DS nodes starts (or completes) the replica actor annotations are updated, and
a notification is sent to QB.

〈DSma(DS) : DSB(DS)〉
replStarts(α)−−−−−−−−→

setA(reqU)

〈DSma(DS) : DSB(DS)〉 , Q BC notify(reqU′) @ DSma(DS)

where
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reqU = [α = [State = InProgress]]

reqU′ = [(DS, MM) = [State = InProgress]] ∧ NodeRepl(DS, MM) = α.

5.3.4.18 (DSreplComplete). When replication of an MM object on a DS node
completes, the replica actor annotations are updated, and a notification is sent
to QB. Also, in the case of completion, if any requests are waiting for this
completion they are moved from Granted state to Servicing state.

〈DSma(DS) : DSB(DS)〉
replCompletes(α)−−−−−−−−−−−−−→

setA(replU modby reqU)

〈DSma(DS) : DSB(DS)〉, QBCnotify(replU) @ DSma(DS),

where

α = NodeRepl(DS, MM)

replU = [(DS, MM) = [State = replCompleted]]

reqU = [ αreq,ds = [State = Servicing] |αreq,ds ∈ DSReqActors
getA(αreq,ds, State) = Granted
∧ getA(αreq,ds, Replica) = DS
∧ getA(αreq,ds, ObjId) =MM].

5.3.4.19 (DSreqComplete). When servicing of a request with request actor
αreq,ds completes on a DS node, an event reqCompletes(αreq,ds) is signaled. The
DS node manager then updates the annotations of αreq,ds to record the comple-
tion, and sends a notification to QB with the state update for the request actor
associated to this request.

〈DSma(DS) : DSB(DS)〉
reqCompletes(αreq,ds)−−−−−−−−−−−−→

setA(reqU)

〈DSma(DS) : DSB(DS)〉 , Q BC notify(reqU′) @ DSma(DS),

where

reqU = [αreq,ds = [State = reqCompleted]]

reqU ′ = [αreq = [State = reqCompleted]] ∧ αreq = getA(αreq,ds, ReqId.)

5.3.5 Formal Specification of the Resource-Based MM Behavior. Given the
above definitions, we can now define the Resource-Based MM Behavior Specifi-
cation, the initial and noninterference conditions, and the theorems connecting
the behavior, system-wide, and end-to-end viewpoints.

Definition 5.18 (Resource-Based MM Behavior). A system S has Resource-
Based MM Behavior with respect to the underlying system architecture (DS
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Nodes and capacity function), the QoS meta actors QB, RS, ROD, DR, PP, and
the DS node managers
DSma(DSnodes), if

—for C ∈ S, the state of X in C is appropriate for X in accordance with Fig-
ure 11, for X one of QB, RS, ROD, DR, PP, or DSma(DS)) for DS ∈ DSnodes.
For example, getState(C, QB) = QBB(mms, status) for some MM state func-
tion mms and status function status.

—every computation π of S obeys the transition rules for QoS meta-actors
discussed above and guarantees termination of servicing and replication-in-
progress states;

—for any transition τ = C −→ C ′ of S and any replica actor α and request
actor αreq,ds

—replStarts(α) is an event of τ only if getA(C, α, State) = InQueue,
—replCompletes(α) is an event of τ only if getA(C, α, State) = InProgress,
—reqCompletes(αreq,ds) is an event of τ only if getA(C, αreq,ds, State) =

Servicing.

To state the “Resource-based MM Behavior provides QoS-based MM Service”
theorem, it is necessary to specify the conditions under which this resource-
based MM behavior is expected to provide QoS-based MM service. For this
purpose, we define the requirements for QoS Initial configurations and QoS
Non-Interference. QoS Initial configurations are those in which no QoS meta-
activity is going on. We will restrict attention to system configurations reachable
from an initial QoS state and analyze the properties of such configurations.

Definition 5.19 (QoS Initial Condition). QoSInitial(C) holds just if

—If mms is the status function of QB in C, then mms says that there are no
active processes:
status(RS) = nil and status(DR) = status(PP) = false,

—RS, ROD, DR, PP are Idle,
—there are no undelivered internal QoS messages (see Definition 5.16) in C.

QoS nonInterference expresses constraints on the environments in which
the QoS system can operate safely. In particular, it constrains the activity of
meta-actors other than the QoS meta-actors.

Definition 5.20 (QoS Noninterference Requirement). S satisfies the QoS-
Broker Noninterference Requirement iff meta transitions with focus actor not a
QoS meta-actor obey the following constraints:

—Neither QoS annotations nor the state of actors in
ReqActors, DSReqActors, or DSReplActors are modified.

—No resource dedicated to QoS is used.
—No internal QoS messages (Definition 5.16) are sent.
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THEOREM 5.21 (RESOURCE-BASED MM BEHAVIOR IMPLIES RESOURCE-BASED MM
SERVICE). If a system S satisfies the following requirements:

—S has Resource-based MM behavior (Definition 5.18),
—S satisfies the QoS Noninterference Requirement (Definition 5.20),
—Every C ∈ S is reachable from a configuration satisfying the QoS Initial

conditions (Definition 5.19),
—QoSTranslate satisfies the QoSTranslate requirements (Definition 5.3),

then S provides Resource-based MM Service (Definition 5.11) with respect to the
given functions QoSTranslate and capacity, with MMreqset being messages of
the form QBC mmReq(αcl, MM, qs), and replica and request functions defined in
terms of annotations according to Definition 5.14.

PROOF (SEE SECTION 5.4 FOR DETAILS). The proof is based on two key proper-
ties of a system satisfiying the hypotheses of the theorem. The first is that the
model QB has of the system state (embodied in the two parameters, mms and
status, of the QB state) is sufficiently accurate. The second is that QB is always
eventually enabled to receive an MM request. The first property is established
by Lemma 5.24, Corollary 5.26, and Lemma 5.27. These lemmas combine to
show that (for X one of RS, PP, DR, or ROD)

—If QB thinks that X not active, then X is idle and there are no undelivered
messages between QB and X ,

—If QB thinks X is active, then either
— X is idle and there is an undelivered request to X from QB, or there is an

undelivered reply from X to QB, or
— X is waiting and there is an undelivered message to or from the actor that

X is waiting for.
—Furthermore, the mms component of QB’s state, combined with any pending

updates gives an accurate representation of the request and replica states
on the DS nodes.

These lemmas further show that the mms component of QB’s state and the
changes due to receipt of updates satisfy the configuration and transition con-
straints on resource allocation, request and replicat state. Lemma 5.24 is typi-
cal of lemmas that must be established in reasoning about TLAM behaviors. It
spells out detailed invariants on meta-actor states, base-level annotations, and
information contained in undelivered messages.

The second property is established by showing that any ongoing scheduling,
replication, and dereplication activities eventually terminate (Lemma 5.28) and
thus QB will eventually be enabled (Lemma 5.29). The proof of these lemmas
depends crucially on the invariants lemma (Lemma 5.24).

THEOREM 5.22 (RESOURCE-BASED MM BEHAVIOR IMPLIES QOS-BASED MM SERVICE).
If a system S satisfies the premises of Theorem 5.21, then S provides QoS-based
MM Service (Definition 5.1) with respect to the given functions QoSTranslate and
capacity, with MMreqset being messages of the form QBC mmReq(αcl, MM, qs).
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PROOF By Theorems 5.21 and 5.12.

5.4 Proving Resource-Based MM Behavior Implies Resource-Based Service

In the following, we assume S is a system that satisfies the hypotheses of
Theorem 5.21 and we restrict C to range over S. Thus, S has Resource-based
MM behavior, all configurations are reachable from a QoS initial configura-
tion, and there is no interference from non-QoS meta actors. We begin with
some lemmas. Lemma 5.24 states some MM state invariants of configurations
of systems satisfying the above hypotheses. It is the key to establishing that the
state of QB represents a sufficiently accurate model of the system MM state.
Lemma 5.29 states that under these conditions QB will always eventually be
ready to receive a MM request. Lemma 5.28 says that if a scheduling request
has been sent to RS then eventually a reply will be sent by RS. This is used to
establish Lemma 5.29.

Definition 5.23 (Auxiliaries). To state the lemmas, we introduce some no-
tation for extracting information from a configuration. getMms and getStatus
extract the two parameters of the state of QB. QoSannot extracts the the QoS
annotations from a base actor, getRepl extracts the QoS annotations for replica.
rsGranted characterizes MM state updates that correspond to possible request
grants by RS. Recall that getState(C, α) is the state of actor α in configuration C.

—getMms(C) = mms if getState(C, QB) = QBB(mms, status).
—getStatus(C) = status if getState(C, QB) = QBB(mms, status).
—QoSannot(C, α) is the annotation function mapping QoS annotation tags to

their values as annotations of α in C.
—getRepl(C, DS) = [(DS, MM) = QoSannot(C, NodeRepl(C, DS, MM)) MM ∈

MMObjects].
—getRepl(C) = [getRepl(C, DS) DS ∈ DSnodes].
—rsGranted(mms, αreq, mmsU) holds just if mmsU = reqU modby replU such

that
—replU = nil and reqU = assignTo(mms, αreq, DS)

for some DS ∈ assignable(mms, αreq), or
—assignable(mms, αreq) = ∅ and

replU = rodRepl(DS′, MM, bw) for some (DS′, bw) ∈ rodOk(mms, MM, qt)
and
reqU = assignTo(mms modby replU, αreq, DS)
for some DS ∈ assignable(mms modby replU, αreq)
where MM = mms(αreq, ObjectId) and qt = mms(αreq, QoS).

Recall that assignable and assign To are defined in Definition 5.17. Definitions
of rodOk, and rodRepl can be found in the appendix. Note that with notation
as in rsGranted, reqU(αreq, State) = Granted, and given the rules for RS and
ROD behavior, it will be the case that DS = DS′ since no other assignment
will be possible.

Lemma 5.24 lists out MM state invariants of configurations needed to estab-
lish a sufficiently accurate model of the system MM state at the QoS broker.
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We enumerate three specific conditions—the status invariants, the idle con-
dition invariants and the active state invariants. (I) expresses constraints on
concurrent scheduling, replication, and dereplecation activity. (II) says that if
QB thinks that a QoS Broker meta-actor is not active, then it is idle and there
are no undelivered messages to or from that actor. (III) says that if QB thinks
that a QoS Broker meta-actor is active, then either there is an undelivered
message to or from that actor, or it is waiting for a response from some other
meta-actor before replying to QB and again there is exactly one undelivered
message to/from that meta-actor and the one it is waiting for.

LEMMA 5.24 (QOSB INVARIANTS). Assume C ∈ S with S satisfying the hy-
potheses of Theorem 5.21. Let status = getStatus(C), mms = getMms(C), and U
be the multiset of undelivered messages of C targeted to QoS meta actors, then
(I), (II), (III) below must hold, where:

(I) [status invariant] one of the following three cases holds
(1) [enabled] status(RS) = nil and status(DR) = false, or
(2) [DRon] status(RS) = nil, status(PP) = false and status(DR) = true
(3) [RSon] status(RS) = αreq, status(DR) = false, mms(αreq, State) =

Waiting,
and mms(αreq, Replica) = nil

Furthermore, (3) splits into two subcases:
(3.1) [RODenabled-PPoff] status(RO D) = true and status(PP) = false,

or
(3.2) [RODdisabled] status(RO D) = false
Note that if status(RS) = nil then status(RO D) is not relevant. Also in
(1) and (3.2) status(PP) is not constrained, it can be true or false.

(II) [idle conditions]
—if status(PP) = false, then getState(C, PP) = IdleBpp and U contains

no message to or from PP
—if status(DR) = false, then getState(C, DR) = IdleBdr and U contains

no message to or from DR
—if status(RS) = nil, then getState(C, RS) = IdleBrs, getState(C, ROD) =

IdleBrod and U contains no message to or from RS or ROD
(III) [active conditions]

(pp) if status(PP) = true, then one of the following cases holds
(pp.1) getState(C, PP) = IdleBpp, and U contains exactly one message

to/from PP. This message has one of the forms

PPC place(mms) @ QB or QBC placeReply(replU) @ PP

where replU = ppRepl(mms, P ) and mms modby replU
is getRepl(C) [up to pending notifications] for some P ⊆
(DSnodes×MMObjects×UnitNetBW) such that ppOk(mms, P ).

(pp.2) getState(C, PP) = WaitBpp(replU, dsout),
U contains no messages to/from PP that are from/to QB, and
replU = ppRepl(mms, P ) for some P ⊆ DSnodes×MMObjects×
UnitNetBW such that ppOk(mms, P ), and
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—for each DS ∈ dsout, U contains exactly one message to/from
PP from/to DSma(DS), either
DSma(DS)C repl(replU/DS) @ PP and mms/DS is getRepl
(C, DS), or
PPC replAck() @ DSma(DS) and mms/DS is getRepl(C, DS),
and

—for DS 6∈ dsout, (mms modby replU)/DS is getRepl(C, DS)
[with all replica state comparisons modulo outstanding
replica notifications]

(dr) the case status(DR) = true is similar to status(PP) = true
(rs) if status(RS) = αreq, then one of rs.1, rs.2, rs.3 holds, where

(rs.1) getState(C, RS) = IdleBrs, and U contains exactly one mes-
sage to or from RS:
—RSC schedule(αreq, mms, status(ROD)) @ QB, or
—QBC scheduleReply(mmsU) @ RS
and if U contains QBC scheduleReply(mmsU) @ RS,
then there is some (reqU, replU)
such that mmsU = reqU modby replU and rs.1.d or rs.1.g
holds, where
(rs.1.d ) reqU(αreq, State) = Denied, replU = nil and

assignable(mms, αreq) = ∅
(rs.1.g ) rsGranted(mms, αreq, mmsU)

(rs.2) getState(C, RS) = WaitBrs(mms, αreq, reqU modby replU)
with reqU 6= nil (granted, waiting for DSack) such that
—rsGranted(mms, αreq, mmsU), and
—U contains exactly one message to/from RS which, letting

DS = mmsU(αreq, Replica), is either
DSma(DS)C assign(mmsU) @ RS or
RSC assignAck() @ DSma(DS)

(rs.3) getState(C, RS) = WaitBrs(mms, αreq, nil),
status(ROD) = true assignable(mms, αreq) = ∅, and one of
two cases holds:
—getState(C, ROD) = IdleBrod and U contains exactly one

message to/from RS which is either
RODC repl(mms, MM, qt) @ RS, or
RSC replyAck(replU) @ ROD
where replU = rodRepl(DS, MM, bw)
for some (DS, bw) ∈ rodOk(mms, MM, qt), MM =
mms(αreq, ObjectId) and qt = mms(αreq, QoS)

—getState(C, ROD) = WaitBrod(replU) with replU as above,
and U contains exactly one message to/from ROD which
is either
DSma(DS)C repl(replU) @ ROD or
RODC replAck() @ DSma(DS).

Furthermore, if (rs.1) or (rs.2) holds, then getState(C, ROD) =
IdleBrod and there are no undelivered messages to or from ROD,
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PROOF (OF LEMMA 5.24). Let C be reachable from C0 via the transitions

[τi : Ci −→ Ci+1 | i < n]

where C0 satisfies the QoS Initial conditions and Cn = C. We show the condi-
tions hold for C by induction on n. If n = 0, we are done by definition of QoS
Initial since in this case (I.1) holds with status(PP) = false.

Now assume that the invariants hold for C j . We must show they hold for
C j+1. If τ j is a non-QoS transition then by the noninterference assumption
we are done, since nothing that the invariants depend upon can be changed.
Thus, we need only consider transitions arising from application of one of the
QoS meta-actor rules. We will discuss only a representative sample of such
transitions.

QBmmreq. QB received an MM request. For Lemma 5.24(I), we see that
(1) holds for C j and (3) holds for C j+1. For (II, III), the conditions for PP,
DR, ROD are unchanged and RS must be idle in both configurations. In
C j , there are no undelivered messages for RS, so the one message clause
holds in C j+1.

QBdsNotify. QB receives a notification. The updates contained in a pro-
cessable notification do not invalidate any ongoing scheduling or replication
decisions, and they do not otherwise effect the invariant properties.

RSschedule. RS receives a scheduling request. For a scheduling request
to be in the set of undelivered messages, (Lemma 5.24, I.3) must hold.
The properties relevant for (I), (II), and (III—PP,DR) are unchanged by the
transition. Furthermore, in C j , (rs.1) must be the case. If the rule applied
is RSscheduleGrant, then (rs.2) holds in C j+1 (using the property that
the schedule request was the only undelivered message to/from RS in C j ).
If the rule applied is RSscheduleDeny, then (rs.1) holds in C j+1. If the
rule applied is RSscheduleRod, then (rs.3) holds in C j+1 (using the fact
that ROD is idle with no undelivered messages to/from ROD in C j ).

RSdsReply. RS receives an assignment acknowledgment from some DS.
Again (I.3) must hold, and the properties relevant for (I), (II), and (III—
PP,DR) are unchanged by the transition. If there is an undelivered message
from a DS manager to RS, then (rs.2) must hold in C j and in C j+1 (rs.1g)
must hold.

DSassign. DSma(DS) receives an assignment request from RS. The
only property effected is (III.rs). If there is an undelivered message to
DSma(DS) from RS then (rs.2) must hold in C j and continues to hold in
C j+1 with the message to DSma(DS) from RS then replace by a message
from DSma(DS) to RS.

Definition 5.25 (Pending Update). A pending update is a change in the MM
state at some DS node but the update report is in an undelivered message or
is being held in the state of some QoS broker meta-actor, and thus has not yet
been reported to QB. More precisely, we say that mmsU is pending in C (with
U the undelivered QoS messages of C) if
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(1) mmsU is the update part of a message in U to QB from RS, PP, or DR, or
(2) getState(C, RS) = WaitBrs(mms, αreq, mmsU) and there is an assignAck to

RS in U , or
(3) getState(C, RS)=WaitBrs(mms, αreq, replU modby reqU) and mmsU =

replU and there is an assign from RS in U (replU, if nonempty, has been
done by ROD), or

(4) getState(C, ROD) = WaitBrod(replU) and there is a replAck to ROD in U , or
(5) getState(C, X ) = WaitBx(replU, dsout) and mmsU is replU/(DSnodes—D)

where DS ∈ D if there is a repl to DS (from X ) in U (the rest of replU has
been done) for X ∈ {PP, DR}

(6) mmsU is the update of a notification to QB in U .

COROLLARY 5.26 (QOSB INVARIANTS). Let C be a configuration in S, mms =
getMms(C), and let mmsU be the combined pending updates in C. Then,

—there are never any conflicting pending updates in C.
—for any pending mmsU the transition mms −→ mms modby mmsU obeys the

request-replica transition constraints.
—if mmsU is the union of the pending updates, then mms modby mmsU satisfies

the request, replica, and resource configuration constraints.

LEMMA 5.27 (MMS ACCURACY). Let C be a configuration in S, mms=
getMms(C), and let mmsU be the combined pending updates in C. Then
mms modby mmsU gives an accurate model of the MM state.

—replX(C, DS, MM) = (mms modby mmsU)(DS, MM)(X ) for X one of State,
BW, Class

—reqX(C, αreq) = (mms modby mmsU)(αreq)(X ) for X one of ClientId, ObjId,
QoS, State, Replica and αreq an existing request actor.

PROOF (OF LEMMA 5.27). By induction on the number of transitions from
a QoS Initial configuration using the QoSB invariants Lemma (5.24) and
Corollary (5.26).

To prove the QB progress Lemma 5.29, we need to establish progress prop-
erties for RS, ROD, and DR.

LEMMA 5.28 (RS,ROD,DR PROGRESS). For any computation path π of S, and
for any stage i of π , with source configuration Ci the following hold:

(DR) If getState(Ci, DR) = WaitBdr(replU, dsout), then there is a stage i+ j such
that getState(Ci, DR) = IdleBdr and a message QBC dereplReply(replU) @DR
is pending.

(ROD) If getState(Ci, ROD)=WaitBrod(replU), then there is a stage i + j such
that getState(Ci, RO D)= IdleBrod and a message RSC replAck(replU)@ ROD
is pending.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 1, January 2004.



Formal Model for Adaptive QoS-Enabled Middleware • 133

(RS) If getState(Ci, RS) = WaitBrs(mms, αreq, mmsU), then there is a stage i +
j such that getState(Ci, RS) = IdleBrs and a message QBC scheduleReply
(mmsU) @ RS is pending.

PROOF OF LEMMA 5.28. Using the Invariants Lemma (5.24), we see that, if
ROD or DR is waiting, then there is a pending message that will cause that
process to send a reply to RS or QB, respectively, and become idle, or there
are pending messages to some DSma(DS) whose replies will do this. Since
DSma(DS) messages are never disabled they will be delivered and replied to
(by system fairness and the transition rules). If RS is waiting with mmsU = nil,
then by the the Invariants lemma and the above argument, it will eventually
receive a reply from ROD and either become idle after replying to QB (request
denied), or become waiting with mmsU 6= nil. If RS is waiting with mmsU 6=
nil, then there is either an undelivered assignAck for RS from some DSma(DS)
or an undelivered assign request to some DSma(DS) which will eventually
be delivered and whose delivery will result in the sending of an assignAck.
By system fairness and the rules for RS, pending assignAck for RS will be
delivered, and RS will become idle, having sent a scheduleReply to QB.

LEMMA 5.29 (QB PROGRESS). For any computation path π of S, and for any
stage i of π there is a stage i + j such that invariant case (Lemma 5.24, I.1)
holds (thus QB is enabled for request delivery).

PROOF OF LEMMA 5.29. Now we prove Lemma 5.29. Let C be the configuration
at stage i in π and let status = getStatus(C). If the invariant case (Lemma 5.24,
I.1) does not hold, then either status(DR) = true or status(RS) ∈ ReqActors, but
not both. Using Lemma 5.28, the argument for the two situations is similar. We
consider the situation in which status(DR) = true. There are three subcases:

(1) getState(C, DR) = IdleBdr and there is an undelivered derepl to DR.
(2) getState(C, DR) = WaitBdr(replU, dsout).
(3) getState(C, DR) = IdleBdr and there is an undelivered dereplReply to QB.

If (1) holds, then by message fairness, the derepl request will be delivered and
then (2) holds. If (2) holds, then by Lemma 5.28, eventually (3) holds. If (3) holds,
then by message fairness the dereplReply will be delivered and the status of
DR becomes false as desired.

PROOF OF THEOREM 5.21. Now we complete the proof that the hypotheses
of Theorem 5.21 imply that the system provides Resource-based service. By
Lemma 5.29 and the rule QBreqrcv, requirement (2) of Resource-based ser-
vice holds. Thus, we need only show that for any configuration C of S, any
transition τ = C −→ C ′, and any computation path π for C, requirement (1)
holds:

(1.1) φrepl holds
(1.1.1) τ obeys the class diagram requirement
(1.1.2) τ obeys the rules for replState change
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(1.1.3) π obeys the progress constraints—by QoS Resource Behavior
definition.

(1.2) φreq holds
(1.2.1) τ obeys the constancy constraints and rules for change of reqState
(1.2.2) π obeys the progress constraints—by QoS Resource Behavior def-

inition, (1.1.3), and transition rules.

(1.3) φrr(C) holds.
(1.4) φres(C) holds.

These follow from the Invariant Lemma (5.24) and Corollary (5.26), the MMS
accuracy Lemma (5.27) and transition rules.

5.5 Implementation of Algorithms within the Broker Framework

In this section, we illustrate how we introduce the implementation of a specific
algorithm for resource management into the Resource-Based MM Behavior
Specification. As an example, we show how to use the load-factor based adaptive
scheduling algorithm to refine the behavior of the request scheduler meta-actor
and ensure that required constraints are not violated. To show this is correct,
we need only show that the resource-based behavior requirements are met.
This follows from the fact that the algorithm meets the constraints implicit in
the request scheduler transition rules.

The adaptive scheduling algorithm performs the task of data server selection.
It is executed as a single transition step when the request scheduling meta-actor
RS receives a scheduling request from the QoS Broker QB. The algorithm takes
as input a MM request and dynamically chooses the best data source (server)
on which to schedule that request. The choice of data server is adaptive in that
the current load on the DS’s in the system when the request arrives is used as
the basis for server selection.

5.5.1 Obtaining Node State Information for Determining Load Factor. Re-
call that the request scheduler receives scheduling requests of the form

RSC schedule(mms, αreq, rod)

from the QoS broker, where mms is the QoS broker’s perception of the current
MM state. In particular, mms contains information about existing replicas and
request assignments that reflects the availability of resources at each data
source. We adapt the load-factor function (Section 3) to calculate the load-factor
obtained upon assigning the request to that particular DS using an MM state, a
request actor and a DS node as arguments, and using correspondingly adapted
functions for calculating the resource allocation in a given configuration. This is
then used to define the Candidates function that determines the best candidate
DS node(s) for assigment of the request according to the load factor criteria.

Definition 5.30 (Candidate Function). We calculate the available re-
sources on each node for the load factor calculation by subtracting the resources
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currently allocated from the total capacity of a data source.

Available(mms, DS, Res) = capacity(DS, Res)—ResAlloc(mms, DS, Res),

where ResAlloc(mms, DS, Res) is amount of resource Res allocated to requests
on DS, according to the information in mms. Recall the four managed resources:
network bandwidth (NetBW), CPU cycles (CPU), disk bandwidth (DiskBW), and
memory buffer (BufMem). The adaptive load factor calculation is then defined
on MM states as follows.

LF(mms, αreq, DS) = max
(

qtDiskBW

DiskBWDS
,

qtBufMem

BufMemDS
,

qtCPU

CPUDS
,

qtNetBW

NetBWDS

)
,

where

qt = mms
(
αreq, QoS

)
ResDS = Available(mms, DS, Res) for Res ∈ Resources.

The candidate data sources, Candidates(mms, αreq) based on the adaptive load
factor calculation are those such that the load factor is minimal and not infinite,
and a replica of the requested MM object exists on the data source.

LEMMA 5.31 (CORRECTNESS OF Candidates). The Candidates set is a valid re-
placement for the assignable set of DSnodes for the purpose of request scheduling.
Specifically,

—Candidates(mms, αreq) ⊆ assignable(mms, αreq).
—Candidates(mms, αreq) = ∅ ⇒ assignable(mms, αreq) = ∅.

In the generic request scheduling behavior (RSB), a request represented by
αreq must be scheduled without violating resource constraints. If many such
data servers DS are possible, the RS picks one and notifies the DS manager of
that node. With the refined adaptive request scheduling behavior, the value of
DS is the candidate data source returned by the adaptive scheduling algorithm.
If there is no candidate value possible, a value nil is returned by the adaptive
scheduling algorithm

We define Adaptive Request Scheduling MM Behavior by replacing the rules
for scheduling requests discussed in Section 5.3 by rules based on the adaptive
load factor calculation. We replace

—(RSscheduleGrant) with (AdaptiveRSscheduleGrant),
—(RSscheduleDeny) with (AdaptiveRSscheduleDeny),
—(RSscheduleROD) with (AdaptiveRSscheduleROD),

where the new rules are defined below. The rules for ROD are similarly modified
to use the load factor calculation to find a canditate node for replication.

AdaptiveRS. Suppose RS receives a scheduling request, schedule(mms,
αreq, rod) and let D = Candidates(mms, αreq). If D is nonempty, then RS picks
a a node from D on which the request represented by αreq can be scheduled
and notifies the DS manager of that node (AdaptiveRSscheduleGrant). If
D is empty (there is no DS node on which the request represented by αreq
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can be scheduled without violating resource constraints) and rod is false (i.e.,
disabled), then RS sends the broker a denied update (AdaptiveRSschedule-
Deny). If D is empty and rod is true, then RS sends a request to ROD containing
mms, along with the requested MM object and QoS requirement of the request
(AdaptiveRSscheduleROD).

5.5.2 (AdaptiveRSscheduleGrant)

〈RS : IdleBrs〉, RSC schedule(mms, αreq, rod)

−−−→
〈RS : WaitBrs(mms, αreq, mmsU)〉, DSma(DS)C assign(mmsU) @ RS

if DS ∈ Candidates(mms, αreq) 6= ∅
where mmsU = assignTo(mms, αreq, DS)

5.5.3 (AdaptiveRSscheduleDeny)

〈RS : IdleBrs〉 , RSC schedule(mms, αreq, false)

−−−→
〈RS : IdleBrs〉 , QBC scheduleReply([αreq = [State = Denied]]) @ RS

if Candidates(mms, αreq) = ∅
5.5.4 (AdaptiveRSscheduleROD)

〈RS : IdleBrs〉 , RSC schedule(mms, αreq, true)

−−−→
〈RS : WaitBrs(mms, αreq, nil)〉 , RODC repl(mms, MM, qt) @ RS

where MM = mms(αreq, ObjId), t = mms(αreq, QoS)

if Candidates(mms, αreq) = ∅
Adaptive Request Scheduling MM Behavior is defined by a simple modifica-

tion of the definition of Resource-based MM Behavior.

Definition 5.32 (Adaptive RS MM Behavior). A system S has Adaptive Re-
quest Scheduling MM Behavior with respect to the underlying system archi-
tecture (nodes and capacity function), the QoS meta actors QB, RS, ROD, DR,
PP, and the DS node managers DSma(DSnodes), if it satisfies the conditions
for Resource-based MM behavior, modified by replacing the request scheduler
rules as discussed above.

The correctness theorem for Adaptive RS MM Behavior is the following.

THEOREM 5.33 (ADAPTIVE RS MM BEHAVIOR IMPLIES QOS-BASED MM SERVICE).
If

—S has Adaptive RS MM behavior (Definition 5.32),
—S satisfies the QoS NonInterference Requirement (Definition 5.20),
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—every C ∈ S is reachable from a configuration satifying the QoSInitial condi-
tions (Definition 5.19),

—QoSTranslate satisfies the QoSTranslate requirements (Definition 5.3),

then S provides QoS-based MM Service (Definition 5.1).

PROOF. By Theorem 5.22, we only need to show that under the QoS-Initial
and QoS-NonInterference assumptions a system that has Adaptive RS MM
Behavior also has Resource-based MM Behavior. For this, it is sufficient to
check that for each of the three Adaptive RS rules replacing a generic Resource-
based rule, every transition arising from a appliction of an Adaptive RS rule
is a transition allowed by the corresponding Resource-based rule. This follows
from Lemma 5.31.

6. RELATED WORK

In this section, we compare our work to related research in object-based mid-
dleware, reflective middleware and QoS-based multimedia systems.

Commercially available object-based middleware infrastructures such as
CORBA represent a step toward compositional software architectures but do not
support the development and maintenance of applications in highly dynamic
environments. Specifically, they do not deal with interactions of multiple ob-
ject services executing at the same time, or the implication of composing object
services that has been the focus of this article. Extended software architec-
tures are required that play a role in building systems that solve and maintain
architectural properties (e.g., composability, evolvability, scalability, debugga-
bility) [OMG Workshop on Compositional Software Architectures 1998]. For
instance, the Electra framework [Maffeis and Schmidt 1997] extends CORBA
to provide support for fault tolerance using group-communication facilities and
protocols like reliable multicast. Architectures that provide real-time exten-
sions to CORBA [Schmidt et al. 1997; Wolfe et al. 1995] necessary to support
timing-based QoS requirements [Zinky et al. 1997] have been proposed. TAO
is a framework that supports real-time CORBA extensions to provide end-to-
end QoS; it has been used to study performance optimizations [Gokhale and
Schmidt 1997], and patterns for extensible middleware [Schmidt and Cleeland
1998]. Similarly, real-time method invocations have been explored by transmit-
ting timing information in CORBA data structures [Wolfe et al. 1995].

The Java Development Environment is a distributed object implementation
framework that transforms a heterogeneous network of machines into a homo-
geneous network of Java virtual machines. Java’s main advantage is that it
provides mobility; however, the semantics of interaction with other customiza-
tions is dependent on the implementation. For instance, the ability to deal
with the management of thread priorities for real-time thread management
is dependent on the underlying threads implementation, making QoS support
complicated to achieve.

Dynamic composition of communication protocols to satisfy requirements
such as fault tolerance and security has been addressed in systems such as
Cactus [He et al. 2001; Hiltunen et al. 1999]. Cactus uses microprotocols and
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event-based programming style to provide customized services that can toler-
ate certain classes of failures. Various systems such as the Infospheres Infras-
tructure [Chandy et al. 1996] and the Globe System [van Steen et al. 1998]
explore the construction of large scale distributed systems using the paradigm
of distributed objects. Cactus supports configurability by providing events and
shared variables that maximize the independence between micro-protocols.

To our knowledge, none of the above systems provides a formal semantics
for the composition of middleware services and protocols. The distinguishing
feature of the TLAM architecture on which the CompOSE|Q system is based
is that it is based on formal semantics that supports safe and correct compos-
ability of the services being implemented. This in turn, provides a framework
for the dynamic composition and safe adaptation of middleware services that
can provide application level QoS guarantees.

6.1 Reflective Middleware

Reflection allows application objects to customize the system behavior [Smith
1982] as in Apertos [ichiro Itoh et al. 1995] and 2K [Kon et al. 1998]. The Aspect
Oriented Programming paradigm [Kiczales et al. 1997] makes it possible to ex-
press programs where design decisions can be appropriately isolated permitting
composition and re-use. Some of the more recent research on actors has focused
on coordination structures and meta-architectures [Agha et al. 1993] and run-
time systems such as Broadway [Sturman 1996] and the Actor Foundry [Astley
1999]. In other reflective models for distributed object computation [Okamura
et al. 1992; Costa et al. 1998; Blair et al. 1998], an object is represented by mul-
tiple models allowing behavior to be described at different levels of abstraction
and from different points of view.

Adaptability and extensibility are prime requirements of middleware sys-
tems, and several groups are doing research on reflective middleware [Kon and
Saikoski 2000]. Reflective middleware typically builds on the idea of a metaob-
ject protocol, with a metalevel describing the internal architecture of the mid-
dleware, and reflection used to inspect and modify internal components. Many
of the middleware systems described focus heavily on implementation issues
while the focus of the work presented in this paper is on developing formal
semantics and reasoning for a QoS-based middleware environment.

DynamicTao [Kon et al. 2000] is a reflective CORBA ORB [Object
Management Group 1999] built as an extension of the Tao real-time CORBA
ORB [Schmidt et al. 1997]. DynamicTao supports on-the-fly reconfiguration
while maintaining consistency by reifying both internal structure and depen-
dency relations using objects called configurators. In Wang et al. [2000] the use
of reflective middleware techniques to enhance adaptability in Quality of Ser-
vice (QoS)-enabled component-based applications is discussed and illustrated
using the Tao ORB. The distributed Multimedia Research Group at Lancaster
University has proposed a reflective architecture for next-generation middle-
ware based on multiple metamodels [Blair et al. 1998, 2000], and a prototype
has been developed using the reflective capabilities of Python.

Middleware systems often contain components that are reflectively related
to the application level and/or the underlying infrastructure. For example
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Quo [Zinky et al. 1997; Loyall et al. 1998] has system condition objects that
provide interfaces to resources, mechanisms, orbs etc. that need to be observed,
measured or controlled. Delegates reify method requests and evaluate them
according to contracts that represent strategies for meeting service level agree-
ments. Another example is the Grid Protocol architecture proposed in Foster
et al. [2001], in which the resource level contains protocols for query and control
of individual resources. The TLAM approach models run-time services and the
application using a single framework and uses the framework to reason about
interactions between application actors, between metalevel services as well as
ensure the correct behavior of base-meta interactions.

In many of the above reflective models for distributed object computa-
tion [Okamura et al. 1992; Costa et al. 1998; Blair et al. 1998], an object is
represented by multiple models allowing behavior to be described at different
levels of abstraction and from different points of view. In the TLAM, each meta
actor can examine and modify the behavior of a group of base level actors—
namely, those located on the same node. Other work on using reflective ORBs
to customize resource management behavior, for example, scheduling is re-
ported in, Singhai et al. [1997]. The two-level architecture naturally extends
to multiple levels, with each level manipulating the level below while being
protected from manipulation by lower levels. In practice, however, expressing
a computation in terms of multiple metalevels becomes unwieldy. A purely re-
flective architecture provides an unbounded number of metalevels with a single
basic mechanism. The formal verification of interaction semantics between the
different layers in the reflective hierarchy can be quite complex and requires
further investigation.

6.2 QoS in Multimedia Systems

Multimedia QoS enforcement has been a topic of extensive research. Related
work in this area includes projects such as Omega [Nahrstedt and Steinmetz
1995], QualMan [Nahrstedt et al. 1998] and several algorithms for MM server
management [Yu et al. 1992; Vin and Rangan 1993; Lougher and Shepherd
1993; Keeton and Katz 1993; Dan et al. 1996; Wolf et al. 1995; Dan and Sitaram
1995]. QualMan [Nahrstedt et al. 1998] is a QoS aware resource management
platform which contains a set of resource brokers that provides negotiation,
admission and reservation capabilities for sharing end-system resources such
as CPU, memory and network bandwidth.

Much of the work on formal models for QoS has been in the context of QoS
specification mechanisms and constructs [Frolund and Koistinen 1998]. In
some implementation driven methods of QoS specification, the specification
of QoS requirements is intermixed with the service specification [Leydekkers
and Gay 1996; Lima and Madeira 1996]. Other approaches address the rep-
resentation of QoS via multiparadigm specification techniques that specify
functional behavior and performance constraints distinctly using multiple lan-
guages [Blair et al. 1988; Zave and Jackson 1997; Blair and Blair 1999a, 1999b].
The TLAM approach, on the other hand, models run-time services and the ap-
plication using a single framework and uses the framework to reason about
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interactions between application actors, between metalevel services as well
as ensure the correct behavior of base-meta interactions. Synchronizers and
RtSynchronizers [Frølund 1996; Ren et al. 1996] allow us to express QoS con-
straints via coordination constraints in the actor model either as local syn-
chronization constraints or multi-actor coordination constraints. The TLAM
supports both local and multi-actor coordination and supports reasoning about
the relation between the model held at the metalevel and the base-level being
modeled.

7. CONCLUDING REMARKS

In this article, we have shown, using the QoS broker MM architecture, how the
TLAM framework can be used to specify and reason about distributed middle-
ware services and their composition, and have also indicated how specifications
in the framework can lead to implementations. A key concern of our work is
to exploit concurrency while preserving the desired behavior of applications
and systems. To ensure correct concurrent execution of middleware services,
we attempt to develop a reasonably minimal set of constraints that ensure con-
sistent system behavior. The constraint set presented in this article is a result
of trying to formally analyze the behavior of an actual implemented system.
In fact the reasoning process yielded new constraints that were not originally
enforced. This demonstrates the utility of a formal model in the development
of middleware systems.

The work presented here focused on managing the resources that support
real-time and QoS requirements. We are actively working on extending the
existing meta-architecture to support more services for MM interaction. Mod-
eling client interaction requires a notion of session and resources within a ses-
sion. Our next step is to develop constructs and techniques for modeling and
reasoning about sessions and session-based services in distributed MM sys-
tems. Specifying and reasoning about the enforcement of timing-based QoS
requirements of multiple sessions involves a more thorough treatment of time
and synchronization. For end-to-end QoS, it is necessary to determine how real-
time scheduling strategies for time constrained task management interact with
strategies for other tasks such as CPU intensive calculations, or network com-
munication with clients. Further work is also required in order to model request
migration in the meta-architecture and develop strategies for its effective use.

As applications must run in increasingly distributed and mobile environ-
ments, middleware services to support these applications becomes increasingly
important. As dependence on middleware services increases it becomes more
important to have clear semantic models and to be able to carry out a variety
of analyses based on these models in order to increase assurance of correct and
expected behavior.

Another important area of future research is the specification of flexible
security mechanisms and their integration into middleware frameworks. Se-
curity poses unique problems for customizability since many security policies
hide system-level information needed for customizability. Locality and security
are often closely integrated and this raises issues when migration of objects is
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required for load-balancing. Such issues are of particular relevance to providers
of electronic commerce services that require both transaction security and ef-
fective resource utilization.

In general, the dynamic nature of applications such as those of multime-
dia under varying network conditions, request traffic, etc. imply that resource
management policies must be dynamic and customizable. Current mechanisms,
which allow arbitrary objects to be plugged together, are not sufficient to cap-
ture the richness of interactions between resource managers and application
components. For example, they do not allow customization of execution proto-
cols for scheduling, replication, etc. This implies that the components must be
redefined to incorporate the different protocols representing such interaction.
We believe that a cleanly defined meta-architecture that supports customiza-
tion and composition of protocols and services is needed to support the flexible
use of component based software.

System specifications such as the one presented here can serve as a valuable
form of documentation of requirements, design and implementation decisions.
The relations between viewpoints provide a systematic and rigorous mechanism
to relate system requirements and the design and implementation descriptions.
Having this form of multiple view specification and documentation can be used
in configuration management to help isolate effects of change, to propagate
effects of change, and to reason about the effects of adaptation on application
behavior.

APPENDIX A. TRANSITION RULES FOR ROD, DR, PP

A.1 Transition Rules for ROD

To state the rules for ROD, we define two functions. rodRepl(DS, MM, bw) is the
replication update for placement of a new replica of MM on DS with minimum
replication bandwidth bw.

rodRepl(DS, MM, bw) = [(DS, MM) = [Class = 1,
BW = bw,
State = InQueue]].

rodOk(mms, MM, qt) is the set of pairs (DS, bw) such that replicating MM on
DS is allowed and having done this, assigning a request for MM with QoS qt to
DS is OK.

rodOk(mms, MM, qt) = {(DS, bw) ∈ DSnodes×UnitNetBW |
mms((DS, MM), Class) = 0∧
φres(mms modby reqU modby rodRepl(mms, DS, MM,
bw)) where reqU = [αreq = [State = Granted,

ObjId =MM,
QoS = qt,
Replica = DS]]}

for αreq 6∈ Dom(mms).
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The αreq above represents a hypothetical grantee for purpose of checking con-
straints.

A.1.1 (RODreplOk). When ROD receives a request, RODC repl(mms,
MM, qt) @ RS for replication of MM object, MM, supporting QoS resource re-
quirements qt, it looks, using mms, for a DS node that doesn’t have the needed
MM object and that has the required resources available. If one is found, a repli-
cation request is sent to that DS node and ROD waits for an acknowledgment.

〈ROD : IdleBrod〉 , RODC repl(mms, MM, qt) @ α

−−−→
〈ROD : WaitBrod(C, replU)〉 , DSma(DS)C repl(replU) @ ROD

if (DS, bw) ∈ rodOk(mms, MM, qt) ∧ replU = rodRepl(DS, MM, bw)

A.1.2 (RODreplFail). If no such DS node is found, then a failure reply is
sent to RS, which is the client C.

〈ROD : IdleBrod〉 , RODC repl(mms, MM, qt) @ C

−−−→
〈ROD : IdleBrod〉 , CC replAck(nil) @ ROD

if rodOk(mms, MM, qt) = ∅
A.1.3 (RODrepUpdAck). When the acknowledgment message is received, a

reply is sent to RS with MM state containing the replica update information.

〈ROD : WaitBrod(C, replU)〉 , RODC repUpdAck() @ DSma(DS)

−−−→
〈ROD : IdleBrod〉 , CC replAck(replU) @ ROD.

A.2 Transition Rules for DR

To state the rules for DR we use two auxiliary functions. drRepl(DS, MM) is
the replication update marking MM for dereplication on DS, and for a set D of
DS node, MM object pairs, drRepl(D) is the composition of the updates for each
element of D.

drRepl(DS, MM) = [(DS, MM) = [Class = 2]]

drRepl(D) = [drRepl(DS, MM) | (DS, MM) ∈ D]

drOk(mms) is the set of pairs (DS, MM) such that dereplication is a possibility
in mms.

drOk(mms) = {(DS, MM) |mms((DS, MM), Class = 1}.
A.2.1 (DRderepl ). Upon receiving a dereplication request, based on the in-

formation in mms, DR may decide to reclassify some replicas from 1 to 2. The
DRderepl transition then notifies each DS node of any changes on that node,
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that is, it sends an appropriate message to the DSma on that node.

〈DR : IdleBdr〉 , DRC derepl(mms)

−−−→
〈DR : WaitBdr(replU, dsout)〉 , {DSma(DS)C repl(replU/DS) @ DR |
DS ∈ dsout} if D ⊆ drOk(mms) ∧ dsout = {DS ∈ DSnodes |
(∃MM)(DS, MM) ∈ D} ∧ replU = drRepl(D) ∧ φres(mms modby replU).

A.2.2 (DRdsAck). The DR waits for acknowledgments in the transition
DRdsAck that indicates that reclassification of replicas on the DS node have
completed.

〈DR : WaitBdr(replU, dsout)〉 , DRC replAck() @ DSma(DS)

−−−→
〈DR : WaitBdr(replU, dsout−DS)〉.
A.2.3 (DRdone). Once the DR receives an acknowledgment from the

DSnode indicating change of replica state, DR sends a reply QB containing
the replica state update.

〈DR : WaitBdr(replU, ∅)〉
−−−→

〈DR : IdleBdr〉 , QBC replAck(replU) @ DR.

A.3 Transition Rules for PP

We first define some auxiliary functions. ppRepl(mms, (DS, MM), bw) is the
replication update for reclassification of the replica class of MM on DS in mms,
including if needed initiating replication with minimum bandwidth bw. For a
set P of triples of the form (DS, MM, bw), ppRepl(mms, P ) is the union of the
replication updates for the elements of P in mms.

ppRepl(mms, (DS, MM, bw)) =
[(DS, MM) = [Class = 1,

BW = bw,
State =ifmms((DS, MM), Class) = 0

then InQueue
else mms((DS, MM), State)]]

ppRepl(mms, P ) = [ppRepl(mms, (DS, MM), bw) | (DS, MM, bw) ∈ P ].

ppOk(mms, P ) holds if P has at most one update for a given replica, updated
replicas are not class 1, and the overall update respects the total resource
constraint.
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ppOk(mms, P ) = (DS, MM, bw) ∈ P ∧ (DS, MM, bw′) ∈ P ⇒ bw = bw′ ∧
(DS, MM, bw) ∈ P ⇒ mms((DS, MM), Class) 6= 1∧
φres(mms modby ppRepl(mms, P )).

A.3.1 (PPplace). Based on the information in MM state mms of place re-
quest, PP may decide to reclassify some replicas from 0, 2, or 3 to 1 and in the
case of moving from 0 to 1 initiates replication. It then notifies each DS node of
any changes on that node in the transition PPplace.

〈PP : IdleBpp〉, PPC place(mms)

−−−→
〈PP : WaitBpp(replU, dsout)〉 , {DSma(DS)C repl(replU/DS) @ PP

DS ∈ dsout} if ppOk(mms, P )∧
replU = ppRepl(mms, P )∧
dsout = {DS ∈ DSnodes (∃MM, bw)(DS, MM, bw) ∈ P}.
A.3.2 (PPdsAck). P P waits for acknowledgments from DS nodes indicating

completion of reclassification of replica state in (PPdsAck).

〈PP : WaitBpp(replU, dsout)〉 , PPC replAck() @ DSma(DS)

−−−→
〈PP : WaitBpp(replU, dsout−DS)〉.
A.3.3 (PPdone). Once the PP receives the reclassification acknowledgment

from the DSnode, it sends a reply to QB containing the updated replica state
(PPdone). It then notifies each DS node of any changes on that node (PPplace),
waits for acknowledgments (PPdsAck), and then sends a reply to QB containing
the updated replica state (PPdone).

〈PP : WaitBpp(replU, ∅)〉
−−−→

〈PP : IdleBpp〉, Q BC placeAck(replU) @ PP.
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