
IEEE Communications Magazine — Communications Standards Supplement • December 2015

Abstract

We propose the Safe Community Awareness
and Alerting Network (SCALE), a cyber-physical
system (CPS) leveraging the pervasive Internet
of Things (IoT) to extend a smarter, safer home
to all residents at a low incremental cost. SCALE
uses novel networking technolo-
gies, commodity sensor devices,
cloud services, and middleware
abstractions to sense, analyze,
and act on sensed events in a
distributed manner. It monitors environmental
factors (i.e. smoke, explosive gas) and automat-
ically alerts residents via phone upon discovery
of a possible emergency, enabling them to con-
firm the event and contact emergency dispatch-
ers with minimal effort. This article describes the
inception, design, development, and deployment
of a prototype system to achieve these goals. We
discuss lessons learned and future directions for
general CPS/IoT platforms.

Introduction
With the increasing pervasiveness of computers
in our daily lives, the Internet of Things (IoT)
concept is transitioning from a future prediction
to real-world deployments. With this manifes-
tation comes a myriad of possible applications,
from manipulating devices in our homes to large-
scale automation of industries and public utili-
ties. A common human-facing aspect of each of
these applications is that they aim to improve
our quality of life through inexpensive, common-
ly available technology. While home security
systems have existed for decades, they are rath-
er expensive services, and only in recent years
have we seen components become cheap and
available enough that hobbyists experiment with
do-it-yourself systems. So it seems natural that
an open system, made possible with these recent
advances, should be created to improve the lives
of under served populations that previously
could not afford such advanced home security
and safety monitoring systems. This motivation
led our team, assembled in response to the

SmartAmerica Challenge,1 to envision, design,
build, and demonstrate the Safe Community
Awareness and Alerting Network (SCALE).

SCALE aims to improve the safety of resi-
dents through the use of modern connected
devices and computer systems, particularly low-
er-income and elderly residents who often do
not have access to advanced technologies such as
home security systems, smartphones, and com-
puters with Internet connections. To accomplish
this goal, we designed an event-driven distributed
system to sense safety-related data from devic-
es in homes or on individuals, analyze it locally
or within the cloud to detect possible emergen-
cy events, and automatically contact individuals
(e.g. homeowners, caretakers, even emergency
dispatchers) to notify them and confirm if there
is indeed an emergency. We implemented a pro-
totype of this system and deployed it in Mont-
gomery County, Maryland, USA to enable rapid
integration of components and testbeds from dif-
ferent partners.

The immediate goals of the SCALE project are:
•	Demonstrate our ability to extend a con-

nected safe home to everyone at a low
incremental cost.

•	Jump-start a live testbed for identifying and
researching IoT challenges (e.g. middle-
ware, networking, etc.).

•	 Identify suitable sensors,
data schemas, and algorithms
for detecting possible emer-
gency events.
•	 Implement and test work-

flows for cloud-based analytics and alerting.
•	Demonstrate an open data platform for

connecting disparate systems with minimal
coordination.

System Architecture
SCALE devices upload sensed events, and the
analytics service looks for possible emergencies,
it sends residents emergency alerts to confirm or
reject, and interested individuals (i.e. emergency
dispatchers) visualize events through a dashboard.
This section discusses the high-level requirements,
logical components, architectural design decisions,
and implementation details of the system proto-
type. It first discusses a cloud data exchange and
then the components of the system that perform
sensing, analysis, and actuation.

Cloud Data Exchange for IoT
To facilitate machine-to-machine (m2m) com-
munication for exchanging IoT data in SCALE
(sensed events, analytics, alerts, etc.), we pro-
pose the Data in Motion Exchange (DIME) sys-
tem, shown in Fig. 1. We envisioned DIME as an
open communications hub for IoT that simplifies
the development and deployment processes.

DIME allows any device or service to publish
or subscribe to any other data feed, regardless
of the protocols used at the device level. This
simple loose coupling enables developers to
incorporate new services and devices without the
need to modify existing ones. This simplifies sys-
tem evolution, and it also creates a level playing
field for innovation. Any party can introduce new

SCALE: Safe Community Awareness
and Alerting Leveraging the

Internet of Things
The authors propose the Safe Community Awareness and Alerting Network (SCALE), a

cyber-physical system (CPS) leveraging the pervasive Internet of Things (IoT) to extend a
smarter, safer home to all residents at a low incremental cost. SCALE uses novel networking

technologies, commodity sensor devices, cloud services, and middleware abstractions to sense,
analyze, and act on sensed events in a distributed manner.

Kyle Benson, Charles Fracchia, Guoxi Wang, Qiuxi Zhu, Serene Almomen, John Cohn, Luke D’Arcy,
Daniel Hoffman, Matthew Makai, Julien Stamatakis, and Nalini Venkatasubramanian

COMMUNICATIONS
TANDA RDS S

270163-6804/15/$25.00 © 2015 IEEE

Kyle Benson, Guoxi
Wang, Qiuxi Zhu, and
Nalini Venkatasubrama-
nian are with University of
California.

Charles Fracchia is with
BioBright.

Serene Almomen and
Julien Stamatakis are with
Senseware, Inc.

John Cohn is with IBM.

Luke D’Arcy is with
Sigfox.

Daniel Hoffman is with
Montgomery County.

Matthew Makai is with
Twilio.

1 http://smartamerica.
org/

28 IEEE Communications Magazine — Communications Standards Supplement • December 2015

capabilities, or improvements to existing ones, to
the system with minimal need for coordination
among current components. They can perform
analysis on sensed data, or even higher-level
events, and contribute the results back to the
exchange, driving science and innovation faster
as more devices connect.

Sensed Event Data: To build an exchange for IoT
data, we first defined the type of data that DIME
should handle. We decided to treat raw sensed
data and higher-level events equivalently. This
aligns with our concept of virtual sensors, pre-
viously proposed in [1]. Virtual sensors abstract
low-level data by processing sensor data streams,
which may be directly or indirectly derived from
physical sensor devices, and exposing higher-lev-
el semantics through advanced analytics.

Recognizing the rich amount of information
contained within a higher level event as well as
subtle device differences that affect lower-level

events, we wanted a well-adopted flexible schema
that could allow, but not require, inclusion of
additional information fields beyond what is nec-
essary to convey the sensor reading. These addi-
tional fields should not break the schema or require
all entities in the system to understand them.

For simplicity and flexibility, we opted to use
JSON to format the data for transmission to the
broker, as it provides a commonly-used self-de-
scribing format supported by mature software
modules. We defined what we thought was a rea-
sonable starting point for the schema. It includes
information about the platform (hardware, oper-
ating system, etc.), sensor (device type, identifier,
etc.), data (units, value, timestamp, priority, etc.),
a pointer to the specific schema in use to facili-
tate interoperability, and any other miscellaneous
domain-specific information that developers
want to include. One should note that we do not
believe this schema to be comprehensive; rather,
we envision a system where different domains
could define their own schema and publish infor-
mation about how to interpret it so as to encourage
interoperability between vendors/systems.

Current Implementation: In its current form, DIME uses
MQTT,2 a fast, lightweight, publish-subscribe-style
protocol. It was developed by IBM for lightweight
telemetry, donated to open source, and has since
gained popularity for use as an m2m protocol
for IoT data. The publish-subscribe model allows
multiple servers to collect data from DIME and
multiple clients to send it without requiring any
configuration on our part. The DIME server cur-
rently uses the open source Eclipse Paho MQTT
broker.3 While Paho could be run anywhere, we
used IBM’s MessageSight4 software appliance,
which handles millions of concurrent data streams,
running on the IBM SoftLayer Cloud.

In DIME, sensor data is published to a partic-
ular topic, which consists mainly of a device iden-
tifier and sensed event type. Other services, such
as the SCALE server, subscribe to this data by a
particular device, sensor type, or just to all data.

For compatibility, DIME also provides a
RESTful interface, implemented via HTTP, ini-
tially residing on the SCALE server for ease of
deployment. This interface translates incoming
data into the proper format and publishes them
via MQTT. In this manner, we quickly imple-
mented DIME as a simple MQTT server, though
we plan to extend it to directly support other
protocols (e.g. HTTP and XMPP).

Sensing
This section describes the development and
deployment of several SCALE clients that sense,
minimally analyze, and report data to DIME for
ingestion by the analytics server.

Networking Technologies: To support a heterogeneous
mix of devices and improve the client’s flexibil-
ity in deployment, we integrated multiple net-
working technologies. In addition to the standard
Wi-Fi and Ethernet connections, the clients
supported ultra-narrowband (UNB) wireless
adapters. UNB allows for long-range, low-power,
low-bandwidth uplinks. Sigfox provided a UNB
basestation to install in Montgomery County. We

Figure 1. DIME facilitates the exchange of data between main SCALE
components. DIME Components shown in solid boxes have been
implemented, and those in dashed boxes remain as future work.

SCALE sensing and multi-networking

Alerts/analytics

Confirmation

MQTT

Publish/subscribe broker

JSON storage

Se
cu

ri
ty

/p
ri

va
cy

Q
ue

ry
 e

ng
in

eHTTPXMPP

SCALE data exchange (DIME)

Alerts
SCALE
analytics
service

Dispatch personnelResident in potential
danger/distress

SCALE actuation and human-in-the-loop interaction

Sensed events/analytics

Sensed events

2 http://mqtt.org.

3 http://www.eclipse.org/
paho/

4 http://www-03.ibm.com/
software/products/en/
messagesight

were able to deploy several SCALE devices with
Sigfox UNB adapters in Rockville, Maryland, and
send data to DIME via the basestation from up to
several kilometers away, despite using lower-pow-
ered basestation and client adapter antennas.

Sigfox adapters send data in 12-byte pack-
ets, so MQTT was not an option. Instead, we
coded the data to fit within this packet and cre-
ated the aforementioned HTTP interface where
Sigfox directed this data. We also integrated
Senseware’s proprietary mesh networking solu-
tion into the SCALE system, as described below.

Hardware Platforms: We wanted a flexible client plat-
form to allow deploying heterogeneous sensors,
devices, and networking technologies. Some cli-
ents may plug into a stable power source and
Internet access to support a multitude of sensors
and more advanced local data analytics, while
others may be battery-powered and just upload
raw sensed data via wireless. To support the per-
vasiveness of these systems and address the lat-
ter of these device types by reducing reliance on
home Internet access, crucial for our mission to
support under served populations, we aimed to
integrate platforms and technologies that could
provide long-range low-power connections. To
address both styles, we chose to use commodi-
ty off-the-shelf components wherever possible,
which had additional benefits of reducing infra-
structure costs; increasing the number of possible
integrated devices and sensors; reducing devel-
opment costs by leveraging extensive community
support; and allowing other researchers, hobby-
ists, and new team members to easily understand
our design so that they may copy and extend it.

We first built a general-purpose sensor box
named FlexSCALE that supports many differ-
ent sensors and network adapters. The com-
pute units and sensors are housed within a large
cable box to protect wires and maintain a clean-
er facade. Environmental sensors (e.g. light and
temperature) were fastened on top so they pro-
truded from holes in the lid, gaining external
access with minimal wiring exposed. The initial
version housed both a Raspberry Pi and a She-
evaplug, each running a form of Debian Linux,
as the compute units. We transitioned to just
using the Raspberry Pi to simplify platform sup-
port and handle a greater variety of peripherals
thanks to I/O ports and pins other than USB
and Ethernet.

Each FlexScale box has light (luminance),
explosive gas, passive infrared (motion detec-
tion) sensors, an accelerometer (acting as a seis-
mograph), and thermometer as well as a Wi-Fi
dongle and a Sigfox UNB adapter. A powered
USB hub supported the two USB sensors and
two USB network adapters on the Sheevaplug
and older Raspberry Pis.

In contrast with the larger and more extensible
FlexSCALE Box, we experimented with dedicated
devices to monitor a single sensor and report its
readings with almost no analysis. We were par-
ticularly interested in retrofitting existing house-
hold sensing devices and connecting them with the
SCALE service. Therefore, we modified an off-
the-shelf 9-volt smoke detector and attached it to
an Arduino Micro for the purpose of monitoring

the voltage level of the battery. See Fig. 2 for the
wiring diagram used for this device. The Arduino
constantly sends (every ~4 sec.) the measured
voltage level to DIME via a Sigfox adapter. If this
level drops significantly, indicative of the alarm
going off, the server sends an alert. The theory
here is that the alarm consumes more power than
just the sensor itself and so the additional function
drops the voltage level of the battery significantly.
The Arduino and Sigfox devices fit into a small
project box, similar in size to a mint tin.

To complement the aforementioned dedicat-
ed and flexible sensing platforms, we also built
an Android application for personal fall detec-
tion. It analyzes the device’s accelerometer read-
ings using the algorithm presented in [2]. Upon
detecting a user falling, the application presents
them with an option to cancel the alert, thus pre-
venting false alarms, before a countdown timer
expires and the phone publishes the alert via
MQTT to call for help.

To test and showcase how existing proprietary
systems could integrate with DIME and SCALE
with minimal modifications, we partnered with
Senseware, a Virginia-based startup. They build
modular sensor devices that transmit data via
mesh networks to a gateway for upload to a web-
based cloud service. The user-friendly devices
are easy to deploy and can have a variety of con-
nected sensors (i.e. air quality, humidity), making
them an ideal candidate to expand the SCALE
testbed with commercial hardware. Senseware
integrated their sensors’ data by forwarding it to
a Senseware-specific HTTP endpoint to facilitate
this connection, similar to how we integrated Sig-
fox devices.

29IEEE Communications Magazine — Communications Standards Supplement • December 2015

Figure 2. Wiring diagram for the hacked smoke detector device.

J3
J2

Pa
rt

1

J1

R1 49
0k

Ω

R2 49
0k

Ω

V
C

C
1

9V

Arduino
pro
mini

RAW

RESET

DTR

A1

A2

A3

A4

A5

A0

D13/SCK

D12/MISO

VCC

D11 PWM/MOSI

D9 PWM

D8

D7

D6 PWM

D5 PWM

D4

D3 PWM

D2

D1 RX

D0 TX

D10 PWM/SS

GND

+ -

30 IEEE Communications Magazine — Communications Standards Supplement • December 2015

Software Design: We wanted a cross-platform
extensible software package that runs on the
majority of devices. This package should be
modular and support plugging in different
component implementations (e.g. new sen-
sors or network protocols) without disrupting
other modules. Adding or changing hardware
components should not require any software

changes, but should rather be handled through
a simple configuration file.

Figure 3 shows the prototype FlexSCALE
software we built to address the above require-
ments. This Python package connects with var-
ious sensor devices attached to the compute
system, records data, and publishes events
according to some policy. Data originates at an

Figure 3. The SCALE Client architecture.

<<Interface>>

Sensor SensedEvent

+ device: DevicePath

+ run()
+ _read(): SensedData
+ _policy_check(SensedData): SensedEvent
+_report_event(SensedEvent)

+ connect()
+ send(SensedEvent)

+ sensor: Sensor
+ data: SensedDate
+ priority: int
+ timestamp: datetime

Fall
detection
(Android)

Physical and
virtual sensors

Application layer
networking

MAC layer
networking

Multi-protocol
cloud data
exchange

SCALE client

Creates

Writes To

SensedEvents

SensedEvents

SensedEvents

DIME

SensedEvents

SensedEvents SensedEvents SensedEvents

Forwards Events To

*

EventQueue

Sensed
Events

LocalPublisher

EventReporter

<<Interface>>
EventPublisher

MQTT

instantiation of the abstract sensor class, which
allows us to rapidly connect new sensor types
and define new virtual sensors. Sensors create
SensedEvents, which encapsulate the sensor data
schema described earlier, and place them in a
queue for reporting to DIME or further analysis
by relevant VirtualSensors.

Each networking protocol that connects the cli-
ent to DIME is abstracted with a concrete instanti-
ation of the EventPublisher class. Similar to adding
new sensors, this allows us to easily add new pro-
tocols and API endpoints with minimal additional
code. It currently supports MQTT via Wi-Fi or Eth-
ernet, Sigfox ultra-narrowband (UNB), and local
storage. EventPublishers also provide a degree of
control over quality of service (QoS), currently just
in the form of transmitting higher-priority events
first. We added this feature early on to address the
UNB transmitters’ low bandwidth.

We used SaltStack5 for configuration man-
agement: remotely deploying and updating soft-
ware on the sensor boxes. We chose SaltStack
because it is highly scalable, supports redundant
master servers, and (most importantly) connects
with devices deployed behind network address
translators (NATs) as are commonly found in
residential homes.

Analytics
The SCALE analytics service monitors sensor
data and events streaming from DIME and pub-
lishes detected emergency events, which may
trigger alerts to individuals when appropriate as
described earlier. Refer to Fig. 4 and the descrip-
tion below for how we designed and implement-
ed the analytics server.

We implemented the analytics engine as an
asynchronous event-driven Python server that acts
on sensed events in accordance with their type
using appropriate event-handlers. Thus, adding
new sensor and event types only requires addition-
al programming by end application developers,
not those responsible for server development.

The server, deployed on the IBM BlueMix
platform, receives sensed data through Eclipse
Paho’s MQTT client6 and routes it to the appro-
priate event-detection function. These functions,
which we refer to as virtual sensors, convert low-
er-level events to higher-level ones (e.g. alarm
buzzing to smoke detected to possible fire), esca-
lating events and publishing them back to DIME.
When a possible emergency event is detected,
SCALE may alert a resident as described earlier.

We used the above incremental approach as
it allows different server components to live on or
replicate across separate machines and locations,
improving scalability, response times, modularity,
reliability, and ease of creating an audit trail. An
audit trail exposes intermediate events to external
entities, which helps in building trust in particular
event sources (i.e. sensing devices, event-detection
algorithms) and adding new hooks for separate
services to make use of these states. We accom-
plished this distributed approach using the Celery
task queue manager7 that distributes event-han-
dling across worker processes.

Some historical storage of recent events is nec-
essary to detect changes over time and disambig-
uate sensor readings indicative of the same event.

We used the Django framework’s object-relation-
al mapping (ORM) to abstract the PostgreSQL
database tables seen in Fig. 4 as Python objects.
Periodically, the database removes old events,
though in the future we will instead archive them
for historical analysis and audit purposes.

Actuation
This subsection describes SCALE’s mechanisms
for interacting with and alerting human users.

Alerting: Once possible emergency events are
detected, concerned individuals must be notified
in a timely, reliable, accessible, and interactive
manner. Users will receive alert messages after
connecting their home monitoring devices to
SCALE and registering these devices and contact
information with the alerting system. Ideally, this
system could eventually integrate with emergency
dispatch centers to automatically alert author-
ities. To mitigate false-positives, it supports a
confirmation step in which the user determines
whether the emergency is real and emergency
personnel should be alerted.

Because SCALE especially aims to make the
system as accessible as possible, especially for

31IEEE Communications Magazine — Communications Standards Supplement • December 2015

Figure 4. Depiction of data flow and database tables in the analytics and
alerting services.

DIME

Analytics

Receives

Owns

Senses
tectUsed to det

Generated fromenerated from

Alert

Human
decision-
making

End-user
applications

+ contact
+ response
+ source

SensedEvent

+ data
+ device
+ source
+ type

Contact

+ name
+ phone#

Device

+ id
+ contact
+ location

Virtual
sensors &
analytics

Raw
sensor
data

streams and
previously
detected
events

Pu
bli

sh
 ne

w
ev

en
ts

an
d

fin
din

gs

5 http://www.saltstack.
com/

6 http://www.eclipse.org/
paho/

7 http://www.celeryproj-
ect.org

32 IEEE Communications Magazine — Communications Standards Supplement • December 2015

lower-income and/or less technologically-savvy
users, it does not require access to a computer or
smartphone when receiving and acting on alerts.
It supports simple phone calls so that users with
land lines, but no cell phones, can still use it.
It does support SMS (text messaging) as most
people in the U.S. nowadays have cell phones,
especially since government programs8 exist to
provide them to low-income residents.

While a smartphone application is a poten-
tial future addition, we opted to use an Internet
telephone service for alerting. We chose Twilio,
which has a rich API for programming interac-
tions with users through the server’s web inter-
face, to issue SMS/phone call alert messages and
handle correspondence with participants (event
confirmation/rejection, registration/unregistra-
tion, contact method preferences, etc.).

When the analytics subsystem detects a
possible emergency, it sends an Alert message
through MQTT to instruct the alerting subsystem
to contact the registered user(s) of the device
from which the sensor data originated. This con-
tact info is retrieved from the database as shown
in Fig. 4, and the database stores an Alert entry
representing this communication. When the con-
tact responds, the database updates the state of

the Alert to rejected if the user responds with
“emergency” or presses 1 and event confirmed
if the user responds with “okay” or presses 2.).
If no one responds within some amount of time
(currently 30 to 60 seconds) of initiating the
alert, a trigger fires that escalates the emergency
event. Currently, it is set to confirm the event,
but public officials likely would adopt a differ-
ent policy that perhaps dispatches an individual
to investigate further rather than scrambling an
entire unit.

Dashboard: To help dispatch personnel visualize
alert events and sensed data, we built a dash-
board for the SCALE system. We wanted an
intuitive, lightweight, web-based solution so we
could later port it to mobile devices and bor-
row functionality for a smartphone application
aimed at residents for monitoring their personal
SCALE deployment(s). Figure 5 shows the main
user interface.

The main view of the SCALE dashboard pres-
ents a list of recent alerts, their locations in a Goo-
gle Maps view, and a summary of the number of
high, medium, and low priority events. It includes
contact information about the individual alerts and
a currently non-functional interface for calling,

Figure 5. The main view of the SCALE dashboard.

8 http://www.fcc.gov/
lifeline

texting, or emailing residents. The user can also
confirm or reject events manually. A second view
presents raw sensed events as they arrive, which
is simply for debugging purposes. The dashboard,
also hosted on BlueMix, is built on top of software
designed by BioBright. It is written using Node.js
at the backend, Javascript and Twitter Bootstrap
in the front-end, and a browser MQTT client.

Conclusions and Future Research
Our experience in designing, developing, and
deploying the first iteration of SCALE described
in this article has proven the feasibility of a dis-
tributed IoT approach to improving resident
safety at a low incremental cost. This initial
exploration requires much further development
before this system could be deployed in any real
capacity. However, the lessons we learned will
help drive future research and development for
IoT. We discuss some of these topics below and
present our future plans and vision for SCALE.

Resilience Concerns
From a hardware perspective, our biggest lesson
learned was that cheap sensors break. We pur-
chased many of our devices online for under $10
to $20 (U.S.) and some failed. The explosive gas
sensors in particular tended to burn out after a
few uses. While some of these issues can be alle-
viated by using better quality components, this
likely drives up the price of the device without
completely ensuring reliable operation, and so
care must be taken to plan for these issues.

Regarding power, we found that the number
of peripherals on the Raspberry Pi required a
higher-amperage power adapter. We also used a
powered USB hub to support all of the USB sen-
sors and wireless adapters used on the Sheevaplug.
We experimented with battery backup and deter-
mined that the system dies after about 10 hours.
Future work will explore graceful degradation of
devices (turning off network adapters, adjusting
sampling rates, etc.) to improve this battery life.

From a software perspective, we found the
design of the client around simple abstract pipe-
line components to be very flexible when adding
new hardware support.

Currently, we are experimenting with addi-
tional networked sensor devices to extend the
coverage of a SCALE deployment and improve
its resilience. We are adding support for an
ad-hoc Wi-Fi mode that supports distributed
emergency detection and alerting even during
power and network failures by having FlexSCALE
boxes exchange data with each other directly.
We are also adding inexpensive battery-powered
microcontrollers with attached sensors and IEEE
802.15.4-based wireless so additional sensors
can be deployed throughout a residence without
requiring additional FlexSCALE boxes.

Data Exchange
While we found MQTT suitable for rapidly
developing an IoT system, we did find it limited
due to its simplistic lightweight approach. Below
we outline some considerations for future IoT
protocol standardization efforts and security con-
siderations for data management in IoT systems.

Standards Considerations: When designing our analytics
system and topic hierarchies, we found MQTT’s
lack of support for fine-grained queries somewhat
limiting. It does not handle ranges at all, and the
expressiveness of wildcards cannot match that of
regular expressions. For example, to perform a
query over a target geography one would need
to define a tag for that geography, which limits
flexibility for defining new targets. Our current
inefficient solution is to subscribe to all events and
filter them based on content. Future protocols
should consider the desire to issue such queries
and filters, as sorting through the results by con-
tent on the client-side may be intractable with the
larger-scale systems the IoT vision promises.

A major advantage of MQTT is its light-
weight nature and simplicity. Future IoT stan-
dards should follow this model, while allowing
for extensions that provide additional services
when, but only when, developers/deployers
wish to use them. For example, the size of the
DDS9 standard may intimidate some newcomers,
whereas getting started with MQTT takes only a
matter of minutes. Protocol designers must keep
in mind that many IoT developers will enter the
market with little systems experience or come
from a Web 2.0 background. As such, providing
a simple intuitive starting point, perhaps with
RESTful APIs, for them to develop systems will
help lower the barrier to entry, resulting in more
projects with diverse applications. This approach
appears to have worked very well with Node.js,
which has enjoyed rapid adoption in part because
it gives the developer community the freedom to
pick from a variety of options for accomplishing
a given task rather than specifying one standard
approach. To further lower this barrier, future
standards should also allow developers to use
familiar tools, languages, etc. whenever possible.
For example, they should emphasize interopera-
bility with other protocols, such as how CoAP [3]
can interoperate with HTTP.

Security and Privacy: While we did not implement
security mechanisms in SCALE beyond requir-
ing SSH keys to remotely access devices, we did
discuss security and privacy implications through-
out the project and plan to address them in
future versions. MQTT supports authentication
and identification directly, but not authoriza-
tion. It can be run using TLS so that the user
name and password used for authentication are
encrypted during transmission. Identification
is handled using a unique identifier or a public
digital certificate, with the latter clearly involv-
ing management of keys. Some MQTT server
implementations provide authorization as an
added service. In a scenario where user privacy
and integrity of the data and communications is
crucial, such a server should be used. This allows
the server to determine which client devices have
access to which resources, i.e. which topics they
are allowed to publish and subscribe to. This
would prevent unauthorized individuals from
retrieving readings from devices they do not own,
as well as prevent publishing of information to a
topic representing a different device. However,
this does not validate the actual data in question,
which could still be faked by an individual with
the proper secret keys.

33IEEE Communications Magazine — Communications Standards Supplement • December 2015

9 http://portals.omg.org/
dds/

Because SCALE espe-
cially aims to make the
system as accessible
as possible, especially
for lower-income and/
or less technological-
ly-savvy users, it does
not require access to
a computer or smart-
phone when receiving
and acting on alerts. It
supports simple phone
calls so that users with

land lines, but no cell
phones, can still use it.

IEEE Communications Magazine — Communications Standards Supplement • December 201534

One open concern is that of the devices’ phys-
ical security. As they are located in residents’
homes, they could be physically tampered with,
moved, or have their code modified by knowl-
edgeable users. This could result in undefined
behavior, misleading event reports, or completely
spoofed data. This is one of the main reasons
for involving human-in-the-loop sensing in order
to confirm events before notifying emergency
personnel. Whether this step is truly enough to
ensure correctness of the data in question is a
policy question outside the scope of this article.

Acknowledgments
This work was supported in part by the National
Science Foundation award nos. CNS 1143705,
CNS 0958520, and CNS 1450768. The authors
would also like to thank NIST and the Presi-
dential Innovation Fellows for issuing the
SmartAmerica Challenge that initiated our
team’s creation; Beall’s Grant Apartments for
hosting our initial test deployment; Kevin Malby
and Phu Nguyen from UCI for contributing to
SCALE; Mani Chandy from Caltech and Sharad
Mehrotra from UCI for their discussions involv-
ing sensing and SCALE; World Sensing, Anoma-
ly Systems and the Community Seismic Network
at Caltech for providing additional sensors.

References
[1] B. Hore et al., “Design and Implementation of a Middleware for Sentient Spac-

es,” 2007 IEEE Intelligence and Security Informatics, May 2007, pp. 137–44.
[2] A. Bourke, J. O’Brien, and G. Lyons, “Evaluation of a Threshold-Based Tri-Ax-

ial Accelerometer Fall Detection Algorithm,” Gait & Posture, vol. 26, no. 2,
2007, pp. 194–99.

[3] Z. Shelby et al. RFC 7252 — The Constrained Application Protocol (CoAP).

Biographies
Kyle Benson (kebenson@uci.edu) is a computer science Ph.D. student at UC Irvine
and NSF GRFP Honorable Mention. He researches resilient pervasive sensing com-
munications platforms leveraging low-cost Internet-connected devices. During the
SmartAmerica Challenge, he led development on SCALE. His current research focus
is on the use of geo-aware overlays to improve IoT communications during disaster
scenarios, thereby enhancing situational awareness and emergency response efforts.

Charles Fracchia is an IBM Ph.D. Fellow at the MIT Media Lab in Joe Jacobson’s
Molecular Machines group, and in the Church lab at the Wyss Institute at Har-
vard Medical School. Charles is a founder of BioBright, a company building a
‘smart lab’ user interface that can capture and track everything that happens in
a biological experiment.

Guoxi Wang is a master’s student at the University of California, Irvine, majoring
in networked systems. He received his B.S. in information security from Wuhan
University in 2012. His research interests include wireless and sensor networks
and software-defined networking.

Qiuxi Zhu is a Ph.D. student in the Department of Computer Science at the Uni-
versity of California, Irvine. He received his B.E. degree in automation from Zhe-
jiang University in 2013. His research interests include mobile sensing, mobile
networking, and Internet of Things.

Serene Almomen is CEO and co-founder of Senseware, whose cloud-based data
platform, wireless modular technology, and patent pending universal sensor
interface provides clients with real-time data to optimize facility performance,
meet regulatory requirements, and reduce costs. Serene is passionate about
using technology to improve the world around us.

John Cohn is an IBM and IEEE Fellow in the IBM Internet of Things Division. He
received a BSEE from MIT, and a Ph.D. in CE from Carnegie Mellon. John is eager
to share his love of science and technology with anyone who will listen.

Luke D’Arcy is working to build a SIGFOX network covering the entire U.S. Previ-
ously he was a founder of Neul, an IoT networking company that was bought last
year by Huawei, and of the Weightless SIG, a standards body defining a standard
for low power IoT networks. Before that he was one of the first full time market-
ing staff at the chip company CSR.

Daniel Hoffman is the first chief innovation officer for Montgomery County,
Maryland, a position he has held since October 2012. The program he oversees
serves as a laboratory for civic improvement and a safe place to test out new
processes, technologies, and ideas. Project topics vary from the Internet of
Things (IoT) to autism technology to food security and more.

Matthew Makai is a Twilio developer evangelist and software developer with an
affinity for Python. He was a speaker at EuroPython, DjangoCon US in 2014, and
PyCon in 2015. Matt also writes Full Stack Python, which helps more than 25,000
developers a month learn to build and deploy Python web applications.

Julien Stamatakis is CTO and co-founder of Senseware, whose cloud-based
data platform, wireless modular technology, and patent pending universal
sensor interface provides clients with real-time data to optimize facility per-
formance, meet regulatory requirements, and reduce costs. Julien is an award
winning electrical engineer who designed and developed the mechanics behind
Senseware.

Nalini Venkatasubramanian is a professor in the School of Information and Com-
puter Science at the University of California Irvine. She has significant research
and industry experience in the areas of distributed systems, adaptive middle-
ware, pervasive and mobile computing, cyberphysical systems, distributed mul-
timedia and formal methods, She has more thn 200 publications in these areas.

One open concern is
that of the devices’
physical security.

As they are located
in residents’ homes
they could be physi-
cally tampered with,
moved, or have their

code modified by
knowledgeable users.

This could result in
undefined behavior,

misleading event
reports, or completely

spoofed data.

