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Abstract

We propose the Safe Community Awareness 
and Alerting Network (SCALE), a cyber-physical 
system (CPS) leveraging the pervasive Internet 
of Things (IoT) to extend a smarter, safer home 
to all residents at a low incremental cost. SCALE 
uses novel networking technolo-
gies, commodity sensor devices, 
cloud services, and middleware 
abstractions to sense, analyze, 
and act on sensed events in a 
distributed manner. It monitors environmental 
factors (i.e. smoke, explosive gas) and automat-
ically alerts residents via phone upon discovery 
of a possible emergency, enabling them to con-
firm the event and contact emergency dispatch-
ers with minimal effort. This article describes the 
inception, design, development, and deployment 
of a prototype system to achieve these goals. We 
discuss lessons learned and future directions for 
general CPS/IoT platforms.

Introduction
With the increasing pervasiveness of computers 
in our daily lives, the Internet of Things (IoT) 
concept is transitioning from a future prediction 
to real-world deployments. With this manifes-
tation comes a myriad of possible applications, 
from manipulating devices in our homes to large-
scale automation of industries and public utili-
ties. A common human-facing aspect of each of 
these applications is that they aim to improve 
our quality of life through inexpensive, common-
ly available technology. While home security 
systems have existed for decades, they are rath-
er expensive services, and only in recent years 
have we seen components become cheap and 
available enough that hobbyists experiment with 
do-it-yourself systems. So it seems natural that 
an open system, made possible with these recent 
advances, should be created to improve the lives 
of under served populations that previously 
could not afford such advanced home security 
and safety monitoring systems. This motivation 
led our team, assembled in response to the 

SmartAmerica Challenge,1 to envision, design, 
build, and demonstrate the Safe Community 
Awareness and Alerting Network (SCALE).

SCALE aims to improve the safety of resi-
dents through the use of modern connected 
devices and computer systems, particularly low-
er-income and elderly residents who often do 
not have access to advanced technologies such as 
home security systems, smartphones, and com-
puters with Internet connections. To accomplish 
this goal, we designed an event-driven distributed 
system to sense safety-related data from devic-
es in homes or on individuals, analyze it locally 
or within the cloud to detect possible emergen-
cy events, and automatically contact individuals 
(e.g. homeowners, caretakers, even emergency 
dispatchers) to notify them and confirm if there 
is indeed an emergency. We implemented a pro-
totype of this system and deployed it in Mont-
gomery County, Maryland, USA to enable rapid 
integration of components and testbeds from dif-
ferent partners.

The immediate goals of the SCALE project are:
•	Demonstrate our ability to extend a con-

nected safe home to everyone at a low 
incremental cost.

•	Jump-start a live testbed for identifying and 
researching IoT challenges (e.g. middle-
ware, networking, etc.).

•	 Identify suitable sensors, 
data schemas, and algorithms 
for detecting possible emer-
gency events.
•	 Implement and test work-

flows for cloud-based analytics and alerting.
•	Demonstrate an open data platform for 

connecting disparate systems with minimal 
coordination.

System Architecture
SCALE devices upload sensed events, and the 
analytics service looks for possible emergencies, 
it sends residents emergency alerts to confirm or 
reject, and interested individuals (i.e. emergency 
dispatchers) visualize events through a dashboard. 
This section discusses the high-level requirements, 
logical components, architectural design decisions, 
and implementation details of the system proto-
type. It first discusses a cloud data exchange and 
then the components of the system that perform 
sensing, analysis, and actuation.

Cloud Data Exchange for IoT
To facilitate machine-to-machine (m2m) com-
munication for exchanging IoT data in SCALE 
(sensed events, analytics, alerts, etc.), we pro-
pose the Data in Motion Exchange (DIME) sys-
tem, shown in Fig. 1. We envisioned DIME as an 
open communications hub for IoT that simplifies 
the development and deployment processes. 

DIME allows any device or service to publish 
or subscribe to any other data feed, regardless 
of the protocols used at the device level. This 
simple loose coupling enables developers to 
incorporate new services and devices without the 
need to modify existing ones. This simplifies sys-
tem evolution, and it also creates a level playing 
field for innovation. Any party can introduce new 
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capabilities, or improvements to existing ones, to 
the system with minimal need for coordination 
among current components. They can perform 
analysis on sensed data, or even higher-level 
events, and contribute the results back to the 
exchange, driving science and innovation faster 
as more devices connect.

Sensed Event Data: To build an exchange for IoT 
data, we first defined the type of data that DIME 
should handle. We decided to treat raw sensed 
data and higher-level events equivalently. This 
aligns with our concept of virtual sensors, pre-
viously proposed in [1]. Virtual sensors abstract 
low-level data by processing sensor data streams, 
which may be directly or indirectly derived from 
physical sensor devices, and exposing higher-lev-
el semantics through advanced analytics. 

Recognizing the rich amount of information 
contained within a higher level event as well as 
subtle device differences that affect lower-level 

events, we wanted a well-adopted flexible schema 
that could allow, but not require, inclusion of 
additional information fields beyond what is nec-
essary to convey the sensor reading. These addi-
tional fields should not break the schema or require 
all entities in the system to understand them.

For simplicity and flexibility, we opted to use 
JSON to format the data for transmission to the 
broker, as it provides a commonly-used self-de-
scribing format supported by mature software 
modules. We defined what we thought was a rea-
sonable starting point for the schema. It includes 
information about the platform (hardware, oper-
ating system, etc.), sensor (device type, identifier, 
etc.), data (units, value, timestamp, priority, etc.), 
a pointer to the specific schema in use to facili-
tate interoperability, and any other miscellaneous 
domain-specific information that developers 
want to include. One should note that we do not 
believe this schema to be comprehensive; rather, 
we envision a system where different domains 
could define their own schema and publish infor-
mation about how to interpret it so as to encourage 
interoperability between vendors/systems.

Current Implementation: In its current form, DIME uses 
MQTT,2 a fast, lightweight, publish-subscribe-style 
protocol. It was developed by IBM for lightweight 
telemetry, donated to open source, and has since 
gained popularity for use as an m2m protocol 
for IoT data. The publish-subscribe model allows 
multiple servers to collect data from DIME and 
multiple clients to send it without requiring any 
configuration on our part. The DIME server cur-
rently uses the open source Eclipse Paho MQTT 
broker.3 While Paho could be run anywhere, we 
used IBM’s MessageSight4 software appliance, 
which handles millions of concurrent data streams, 
running on the IBM SoftLayer Cloud.

In DIME, sensor data is published to a partic-
ular topic, which consists mainly of a device iden-
tifier and sensed event type. Other services, such 
as the SCALE server, subscribe to this data by a 
particular device, sensor type, or just to all data.

For compatibility, DIME also provides a 
RESTful interface, implemented via HTTP, ini-
tially residing on the SCALE server for ease of 
deployment. This interface translates incoming 
data into the proper format and publishes them 
via MQTT. In this manner, we quickly imple-
mented DIME as a simple MQTT server, though 
we plan to extend it to directly support other 
protocols (e.g. HTTP and XMPP).

Sensing
This section describes the development and 
deployment of several SCALE clients that sense, 
minimally analyze, and report data to DIME for 
ingestion by the analytics server.

Networking Technologies: To support a heterogeneous 
mix of devices and improve the client’s flexibil-
ity in deployment, we integrated multiple net-
working technologies. In addition to the standard 
Wi-Fi and Ethernet connections, the clients 
supported ultra-narrowband (UNB) wireless 
adapters. UNB allows for long-range, low-power, 
low-bandwidth uplinks. Sigfox provided a UNB 
basestation to install in Montgomery County. We 

Figure 1. DIME facilitates the exchange of data between main SCALE 
components. DIME Components shown in solid boxes have been 
implemented, and those in dashed boxes remain as future work.
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were able to deploy several SCALE devices with 
Sigfox UNB adapters in Rockville, Maryland, and 
send data to DIME via the basestation from up to 
several kilometers away, despite using lower-pow-
ered basestation and client adapter antennas.

Sigfox adapters send data in 12-byte pack-
ets, so MQTT was not an option. Instead, we 
coded the data to fit within this packet and cre-
ated the aforementioned HTTP interface where 
Sigfox directed this data. We also integrated 
Senseware’s proprietary mesh networking solu-
tion into the SCALE system, as described below.

Hardware Platforms: We wanted a flexible client plat-
form to allow deploying heterogeneous sensors, 
devices, and networking technologies. Some cli-
ents may plug into a stable power source and 
Internet access to support a multitude of sensors 
and more advanced local data analytics, while 
others may be battery-powered and just upload 
raw sensed data via wireless. To support the per-
vasiveness of these systems and address the lat-
ter of these device types by reducing reliance on 
home Internet access, crucial for our mission to 
support under served populations, we aimed to 
integrate platforms and technologies that could 
provide long-range low-power connections. To 
address both styles, we chose to use commodi-
ty off-the-shelf components wherever possible, 
which had additional benefits of reducing infra-
structure costs; increasing the number of possible 
integrated devices and sensors; reducing devel-
opment costs by leveraging extensive community 
support; and allowing other researchers, hobby-
ists, and new team members to easily understand 
our design so that they may copy and extend it.

We first built a general-purpose sensor box 
named FlexSCALE that supports many differ-
ent sensors and network adapters. The com-
pute units and sensors are housed within a large 
cable box to protect wires and maintain a clean-
er facade. Environmental sensors (e.g. light and 
temperature) were fastened on top so they pro-
truded from holes in the lid, gaining external 
access with minimal wiring exposed. The initial 
version housed both a Raspberry Pi and a She-
evaplug, each running a form of Debian Linux, 
as the compute units. We transitioned to just 
using the Raspberry Pi to simplify platform sup-
port and handle a greater variety of peripherals 
thanks to I/O ports and pins other than USB 
and Ethernet.

Each FlexScale box has light (luminance), 
explosive gas, passive infrared (motion detec-
tion) sensors, an accelerometer (acting as a seis-
mograph), and thermometer as well as a Wi-Fi 
dongle and a Sigfox UNB adapter. A powered 
USB hub supported the two USB sensors and 
two USB network adapters on the Sheevaplug 
and older Raspberry Pis.

In contrast with the larger and more extensible 
FlexSCALE Box, we experimented with dedicated 
devices to monitor a single sensor and report its 
readings with almost no analysis. We were par-
ticularly interested in retrofitting existing house-
hold sensing devices and connecting them with the 
SCALE service. Therefore, we modified an off-
the-shelf 9-volt smoke detector and attached it to 
an Arduino Micro for the purpose of monitoring 

the voltage level of the battery. See Fig. 2 for the 
wiring diagram used for this device. The Arduino 
constantly sends (every ~4 sec.) the measured 
voltage level to DIME via a Sigfox adapter. If this 
level drops significantly, indicative of the alarm 
going off, the server sends an alert. The theory 
here is that the alarm consumes more power than 
just the sensor itself and so the additional function 
drops the voltage level of the battery significantly. 
The Arduino and Sigfox devices fit into a small 
project box, similar in size to a mint tin.

To complement the aforementioned dedicat-
ed and flexible sensing platforms, we also built 
an Android application for personal fall detec-
tion. It analyzes the device’s accelerometer read-
ings using the algorithm presented in [2]. Upon 
detecting a user falling, the application presents 
them with an option to cancel the alert, thus pre-
venting false alarms, before a countdown timer 
expires and the phone publishes the alert via 
MQTT to call for help. 

To test and showcase how existing proprietary 
systems could integrate with DIME and SCALE 
with minimal modifications, we partnered with 
Senseware, a Virginia-based startup. They build 
modular sensor devices that transmit data via 
mesh networks to a gateway for upload to a web-
based cloud service. The user-friendly devices 
are easy to deploy and can have a variety of con-
nected sensors (i.e. air quality, humidity), making 
them an ideal candidate to expand the SCALE 
testbed with commercial hardware. Senseware 
integrated their sensors’ data by forwarding it to 
a Senseware-specific HTTP endpoint to facilitate 
this connection, similar to how we integrated Sig-
fox devices.
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Figure 2. Wiring diagram for the hacked smoke detector device.
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Software Design: We wanted a cross-platform 
extensible software package that runs on the 
majority of devices. This package should be 
modular and support plugging in different 
component implementations (e.g. new sen-
sors or network protocols) without disrupting 
other modules. Adding or changing hardware 
components should not require any software 

changes, but should rather be handled through 
a simple configuration file.

Figure 3 shows the prototype FlexSCALE 
software we built to address the above require-
ments. This Python package connects with var-
ious sensor devices attached to the compute 
system, records data, and publishes events 
according to some policy. Data originates at an 

Figure 3. The SCALE Client architecture.
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instantiation of the abstract sensor class, which 
allows us to rapidly connect new sensor types 
and define new virtual sensors. Sensors create 
SensedEvents, which encapsulate the sensor data 
schema described earlier, and place them in a 
queue for reporting to DIME or further analysis 
by relevant VirtualSensors.

Each networking protocol that connects the cli-
ent to DIME is abstracted with a concrete instanti-
ation of the EventPublisher class. Similar to adding 
new sensors, this allows us to easily add new pro-
tocols and API endpoints with minimal additional 
code. It currently supports MQTT via Wi-Fi or Eth-
ernet, Sigfox ultra-narrowband (UNB), and local 
storage. EventPublishers also provide a degree of 
control over quality of service (QoS), currently just 
in the form of transmitting higher-priority events 
first. We added this feature early on to address the 
UNB transmitters’ low bandwidth.

We used SaltStack5 for configuration man-
agement: remotely deploying and updating soft-
ware on the sensor boxes. We chose SaltStack 
because it is highly scalable, supports redundant 
master servers, and (most importantly) connects 
with devices deployed behind network address 
translators (NATs) as are commonly found in 
residential homes.

Analytics
The SCALE analytics service monitors sensor 
data and events streaming from DIME and pub-
lishes detected emergency events, which may 
trigger alerts to individuals when appropriate as 
described earlier. Refer to Fig. 4 and the descrip-
tion below for how we designed and implement-
ed the analytics server.

We implemented the analytics engine as an 
asynchronous event-driven Python server that acts 
on sensed events in accordance with their type 
using appropriate event-handlers. Thus, adding 
new sensor and event types only requires addition-
al programming by end application developers, 
not those responsible for server development.

The server, deployed on the IBM BlueMix 
platform, receives sensed data through Eclipse 
Paho’s MQTT client6 and routes it to the appro-
priate event-detection function. These functions, 
which we refer to as virtual sensors, convert low-
er-level events to higher-level ones (e.g. alarm 
buzzing to smoke detected to possible fire), esca-
lating events and publishing them back to DIME. 
When a possible emergency event is detected, 
SCALE may alert a resident as described earlier. 

We used the above incremental approach as 
it allows different server components to live on or 
replicate across separate machines and locations, 
improving scalability, response times, modularity, 
reliability, and ease of creating an audit trail. An 
audit trail exposes intermediate events to external 
entities, which helps in building trust in particular 
event sources (i.e. sensing devices, event-detection 
algorithms) and adding new hooks for separate 
services to make use of these states. We accom-
plished this distributed approach using the Celery 
task queue manager7 that distributes event-han-
dling across worker processes.

Some historical storage of recent events is nec-
essary to detect changes over time and disambig-
uate sensor readings indicative of the same event. 

We used the Django framework’s object-relation-
al mapping (ORM) to abstract the PostgreSQL 
database tables seen in Fig. 4 as Python objects. 
Periodically, the database removes old events, 
though in the future we will instead archive them 
for historical analysis and audit purposes.

Actuation
This subsection describes SCALE’s mechanisms 
for interacting with and alerting human users.

Alerting: Once possible emergency events are 
detected, concerned individuals must be notified 
in a timely, reliable, accessible, and interactive 
manner. Users will receive alert messages after 
connecting their home monitoring devices to 
SCALE and registering these devices and contact 
information with the alerting system. Ideally, this 
system could eventually integrate with emergency 
dispatch centers to automatically alert author-
ities. To mitigate false-positives, it supports a 
confirmation step in which the user determines 
whether the emergency is real and emergency 
personnel should be alerted.

Because SCALE especially aims to make the 
system as accessible as possible, especially for 
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Figure 4. Depiction of data flow and database tables in the analytics and 
alerting services.
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lower-income and/or less technologically-savvy 
users, it does not require access to a computer or 
smartphone when receiving and acting on alerts. 
It supports simple phone calls so that users with 
land lines, but no cell phones, can still use it. 
It does support SMS (text messaging) as most 
people in the U.S. nowadays have cell phones, 
especially since government programs8 exist to 
provide them to low-income residents.

While a smartphone application is a poten-
tial future addition, we opted to use an Internet 
telephone service for alerting. We chose Twilio, 
which has a rich API for programming interac-
tions with users through the server’s web inter-
face, to issue SMS/phone call alert messages and 
handle correspondence with participants (event 
confirmation/rejection, registration/unregistra-
tion, contact method preferences, etc.).

When the analytics subsystem detects a 
possible emergency, it sends an Alert message 
through MQTT to instruct the alerting subsystem 
to contact the registered user(s) of the device 
from which the sensor data originated. This con-
tact info is retrieved from the database as shown 
in Fig. 4, and the database stores an Alert entry 
representing this communication. When the con-
tact responds, the database updates the state of 

the Alert to rejected if the user responds with 
“emergency” or presses 1 and event confirmed 
if the user responds with “okay” or presses 2.). 
If no one responds within some amount of time 
(currently 30 to 60 seconds) of initiating the 
alert, a trigger fires that escalates the emergency 
event. Currently, it is set to confirm the event, 
but public officials likely would adopt a differ-
ent policy that perhaps dispatches an individual 
to investigate further rather than scrambling an 
entire unit.

Dashboard: To help dispatch personnel visualize 
alert events and sensed data, we built a dash-
board for the SCALE system. We wanted an 
intuitive, lightweight, web-based solution so we 
could later port it to mobile devices and bor-
row functionality for a smartphone application 
aimed at residents for monitoring their personal 
SCALE deployment(s). Figure 5 shows the main 
user interface.

The main view of the SCALE dashboard pres-
ents a list of recent alerts, their locations in a Goo-
gle Maps view, and a summary of the number of 
high, medium, and low priority events. It includes 
contact information about the individual alerts and 
a currently non-functional interface for calling, 

Figure 5. The main view of the SCALE dashboard.

8 http://www.fcc.gov/
lifeline



texting, or emailing residents. The user can also 
confirm or reject events manually. A second view 
presents raw sensed events as they arrive, which 
is simply for debugging purposes. The dashboard, 
also hosted on BlueMix, is built on top of software 
designed by BioBright. It is written using Node.js 
at the backend, Javascript and Twitter Bootstrap 
in the front-end, and a browser MQTT client. 

Conclusions and Future Research
Our experience in designing, developing, and 
deploying the first iteration of SCALE described 
in this article has proven the feasibility of a dis-
tributed IoT approach to improving resident 
safety at a low incremental cost. This initial 
exploration requires much further development 
before this system could be deployed in any real 
capacity. However, the lessons we learned will 
help drive future research and development for 
IoT. We discuss some of these topics below and 
present our future plans and vision for SCALE.

Resilience Concerns
From a hardware perspective, our biggest lesson 
learned was that cheap sensors break. We pur-
chased many of our devices online for under $10 
to $20 (U.S.) and some failed. The explosive gas 
sensors in particular tended to burn out after a 
few uses. While some of these issues can be alle-
viated by using better quality components, this 
likely drives up the price of the device without 
completely ensuring reliable operation, and so 
care must be taken to plan for these issues.

Regarding power, we found that the number 
of peripherals on the Raspberry Pi required a 
higher-amperage power adapter. We also used a 
powered USB hub to support all of the USB sen-
sors and wireless adapters used on the Sheevaplug. 
We experimented with battery backup and deter-
mined that the system dies after about 10 hours. 
Future work will explore graceful degradation of 
devices (turning off network adapters, adjusting 
sampling rates, etc.) to improve this battery life.

From a software perspective, we found the 
design of the client around simple abstract pipe-
line components to be very flexible when adding 
new hardware support.

Currently, we are experimenting with addi-
tional networked sensor devices to extend the 
coverage of a SCALE deployment and improve 
its resilience. We are adding support for an 
ad-hoc Wi-Fi mode that supports distributed 
emergency detection and alerting even during 
power and network failures by having FlexSCALE 
boxes exchange data with each other directly. 
We are also adding inexpensive battery-powered 
microcontrollers with attached sensors and IEEE 
802.15.4-based wireless so additional sensors 
can be deployed throughout a residence without 
requiring additional FlexSCALE boxes.

Data Exchange
While we found MQTT suitable for rapidly 
developing an IoT system, we did find it limited 
due to its simplistic lightweight approach. Below 
we outline some considerations for future IoT 
protocol standardization efforts and security con-
siderations for data management in IoT systems.

Standards Considerations: When designing our analytics 
system and topic hierarchies, we found MQTT’s 
lack of support for fine-grained queries somewhat 
limiting. It does not handle ranges at all, and the 
expressiveness of wildcards cannot match that of 
regular expressions. For example, to perform a 
query over a target geography one would need 
to define a tag for that geography, which limits 
flexibility for defining new targets. Our current 
inefficient solution is to subscribe to all events and 
filter them based on content. Future protocols 
should consider the desire to issue such queries 
and filters, as sorting through the results by con-
tent on the client-side may be intractable with the 
larger-scale systems the IoT vision promises.

A major advantage of MQTT is its light-
weight nature and simplicity. Future IoT stan-
dards should follow this model, while allowing 
for extensions that provide additional services 
when, but only when, developers/deployers 
wish to use them. For example, the size of the 
DDS9 standard may intimidate some newcomers, 
whereas getting started with MQTT takes only a 
matter of minutes. Protocol designers must keep 
in mind that many IoT developers will enter the 
market with little systems experience or come 
from a Web 2.0 background. As such, providing 
a simple intuitive starting point, perhaps with 
RESTful APIs, for them to develop systems will 
help lower the barrier to entry, resulting in more 
projects with diverse applications. This approach 
appears to have worked very well with Node.js, 
which has enjoyed rapid adoption in part because 
it gives the developer community the freedom to 
pick from a variety of options for accomplishing 
a given task rather than specifying one standard 
approach. To further lower this barrier, future 
standards should also allow developers to use 
familiar tools, languages, etc. whenever possible. 
For example, they should emphasize interopera-
bility with other protocols, such as how CoAP [3] 
can interoperate with HTTP.

Security and Privacy: While we did not implement 
security mechanisms in SCALE beyond requir-
ing SSH keys to remotely access devices, we did 
discuss security and privacy implications through-
out the project and plan to address them in 
future versions. MQTT supports authentication 
and identification directly, but not authoriza-
tion. It can be run using TLS so that the user 
name and password used for authentication are 
encrypted during transmission. Identification 
is handled using a unique identifier or a public 
digital certificate, with the latter clearly involv-
ing management of keys. Some MQTT server 
implementations provide authorization as an 
added service. In a scenario where user privacy 
and integrity of the data and communications is 
crucial, such a server should be used. This allows 
the server to determine which client devices have 
access to which resources, i.e. which topics they 
are allowed to publish and subscribe to. This 
would prevent unauthorized individuals from 
retrieving readings from devices they do not own, 
as well as prevent publishing of information to a 
topic representing a different device. However, 
this does not validate the actual data in question, 
which could still be faked by an individual with 
the proper secret keys.
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ly-savvy users, it does 
not require access to 
a computer or smart-
phone when receiving 
and acting on alerts. It 
supports simple phone 
calls so that users with 

land lines, but no cell 
phones, can still use it.
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One open concern is that of the devices’ phys-
ical security. As they are located in residents’ 
homes, they could be physically tampered with, 
moved, or have their code modified by knowl-
edgeable users. This could result in undefined 
behavior, misleading event reports, or completely 
spoofed data. This is one of the main reasons 
for involving human-in-the-loop sensing in order 
to confirm events before notifying emergency 
personnel. Whether this step is truly enough to 
ensure correctness of the data in question is a 
policy question outside the scope of this article.
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