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ABSTRACT
Situational awareness (SA) applications monitor the real
world and the entities therein to support tasks such as rapid
decision-making, reasoning, and analysis. Raw input about
unfolding events may arrive from variety of sources in the
form of sensor data, video streams, human observations, and
so on, from which events of interest are extracted. Location
is one of the most important attributes of events, useful for
a variety of SA tasks. In this paper, we propose an approach
to model and represent (potentially uncertain) event loca-
tions described by human reporters in the form of free text.
We analyze several types of spatial queries of interest in SA
applications. Our experimental evaluation demonstrates the
effectiveness of our approach.

Categories and Subject Descriptors
H.2.8 [Information System]: Database Management—
Spatial databases and GIS

General Terms
Algorithms, Performance

Keywords
Modelling, Retrieval, Uncertain, Probability

1. INTRODUCTION
In this paper, we study the problem of representing and

querying uncertain location information about real-world
events that are described using free text. As a motivating
example, consider the excerpts from two real reports filed
by Port Authority Police Department (PAPD) Officers who
participated in the events of September 11th, 2001:
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1. “ . . . the PAPD Mobile Command Post was located on
West St. north of WTC and there was equipment being
staged there . . . ”

2. “ . . . a PAPD Command Truck parked on the west side
of Broadway St. and north of Vesey St. . . . ”

These two reports refer to the same location of the same
command post – a point-location in the New York, Man-
hattan area. However, neither the reports specify the exact
location of the events, nor do they mention the same street
names. We would like to represent such reports in a way that
it enables efficient evaluation of spatial queries and analyses.
For instance, the representation must enable us to retrieve
events in a given geographical region (e.g., around World
Trade Center). Likewise, it should enable us to determine
similarity between reports based on their spatial properties;
e.g., we should be able to determine that the above reports
might refer to the same location.

Our primary motivation in studying the afore-mentioned
problem comes from designing database solutions to sup-
port applications where the real world is being monitored
(potentially using a variety of sensing technologies) to sup-
port tasks such as situation assessment and decision-making.
Such Situational Awareness (SA) applications abound in
a variety of domains including homeland security, emer-
gency response, command and control, process monitoring/
automation, business activity monitoring, to name a few.
Our particular interest lies in the domain of emergency re-
sponse and security. We already alluded to the usefulness of
spatial reasoning over free text in the example above. Such
solutions are useful in a variety of other application scenarios
in emergency response. For instance, such a system could
support real-time triaging and filtering of relevant communi-
cations and reports among first responders (and the public)
during a crisis. In our project, we are building SA tools to
enable social scientists and disaster researchers to perform
spatial analysis over two such datasets: (1) the transcribed
communication logs and reports filed by the first responders
after the 9/11 disaster, and (2) newspaper articles and blog
reports covering the S.E. Asia Tsunami disaster. We believe
that techniques such as ours can benefit a very broad class
of applications where free text is used to describe events.

Our goal in this paper is to represent uncertain locations
specified in reports to allow for effective execution of analyt-
ical queries. Clearly, merely storing location in the database
as free text is not sufficient either to answer spatial queries
or to disambiguate reports based on spatial locations. For
example, spatial query such as ‘retrieve events near WTC’,
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Figure 1: SAT Components

free text s-expression

‘near WTC’ near(WTC)
‘on West St., north of WTC’ on(West St.) ∧ north(WTC)

Figure 2: Examples of s-expressions.
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Figure 3: Free text location 7→ pdf

based on keywords alone, can only retrieve the first report
mentioned earlier.

To support spatial analyses on free text reports, we need
to project the spatial properties of the event described in the
report onto the domain. In this paper, we model uncertain
event locations as random variables that have certain prob-
ability density functions (pdfs) associated with them. We
develop techniques to map free text onto the corresponding
pdf defined over the domain.

Our approach is based on the assumption1 that people
report event locations based on certain landmarks. Let Ω ⊂
R 2 be a 2-dimensional physical space in which the events
described in the reports are immersed. Landmarks corre-
spond to significant spatial objects such as buildings, streets,
intersections, regions, cities, areas, etc. embedded in the
space. Spatial location of events specified in those reports
can be mapped into spatial expressions (s-expressions) that
are, in turn, composed of a set of spatial descriptors (s-de-
scriptors) (such as near, behind, infrontof, etc) described
relative to landmarks. Usually, the set of landmarks, the
ontology of spatial descriptors, and the precise interpreta-
tions of both are domain and context dependent. Figure 2
shows excerpts of free text referring to event locations and
the corresponding spatial expressions. These expressions use
WTC and West St. as landmarks. While the locations of
landmarks are precise, spatial expressions are inherently un-
certain: they usually do not provide enough information to
identify the exact point-locations of the events.

Our approach to representing uncertain locations described
in free text consists of a two-step process, illustrated in Fig-

1We have validated this claim through a careful study of a
variety of crisis related data sets we have collected in the
past. This is also addressed in [15,26].

ure 3. First, a location specified as a free-text is mapped into
the corresponding s-expression, which in turn is mapped to
its corresponding pdf representation. Given such a model,
we develop techniques to represent, store and index pdfs to
support spatial analysis and efficient query execution over
the pdf representations.

The primary contribution of this paper is an approach
to mapping uncertain location information from free text
into the corresponding pdfs in the domain Ω (Section 4).

The rest of the paper is organized as follows. In Section 2
we present an overall overview for our end-to-end SAT sys-
tem for creating spatial awareness from text. Section 3 dis-
cusses related work. The main contribution of this paper,
the approach for mapping textual locations into their prob-
abilistic representations, is described in Section 4. We then
discuss which aspects should guide the design of queries for
SA applications and define some of the probabilistic queries
that we use in our experiments. We empirically evaluate
modeling aspects of our approach in Section 6. Finally, we
conclude in Section 7.

2. SYSTEM OVERVIEW
Development of an end-to-end approach for spatial aware-

ness from raw textual input must address several practical
challenges. First, a mathematical model should be chosen or
devised to allow to represent and manipulate with uncertain
location information. Second, references to locations should
be identified in raw reports, parsed and extracted. Third,
a process should be devised for mapping the extracted tex-
tual locations into their representations in the chosen model.
Next, a database representation should be designed, that
would allow to efficiently store the uncertain locations in
the database. The requirements of SA applications should
be analyzed and the desired functionality should be reflected
in choosing the set of spatial queries to be used by those ap-
plications. Queries are also might need to be adjusted to
work with the given uncertainty model. Algorithms and
auxiliary data structures will need to be designed for fast
processing of the queries. Finally, SA applications would
require convenient and intuitive interfaces for visualization
and querying.

Figure 1 illustrates the major components of the proto-
type SAT system (Situational Awareness from Textual in-
put) we have developed [19]. In this paper, we cover only
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one component, crucial to the whole process of creating spa-
tial awareness. That component maps textual input into
the probabilistic model and it is described in detail in Sec-
tion 4. We next briefly overview the functionality of other
SAT components.

Model. We use the spatial probabilistic model developed
in [3, 4, 7], which will be discussed in more detail in the
subsequent sections.

Extraction. There are many exciting research chal-
lenges that are related to extracting locations from text.
This is a well studied problem that has received wide atten-
tion due to its importance in a variety of applications [1,29].
Nowadays, many of the state of the art extraction software
packages, such as GATE and REX, already have a built-in
functionality that allows for certain types of location ex-
traction. As a rule, they provide the flexibility to further
enhance this functionality, for instance by introducing new
extraction rules and incorporating more domain knowledge,
e.g. from Gazetteers. In the context of SAT, such tools need
to be enhanced to also extract basic spatial descriptors, such
as near, on, etc. Some of the extraction challenges arise due
to ambiguous names of locations, e.g. a location specified
only as ‘Washington’ can be used for both, WA state or
‘Washington, D.C.’, leading to ambiguity. Frequently con-
text is used to help the disambiguation process or such issues
are resolved using the analyst supervision.

Mapping. The process of mapping the extracted spatial
locations into their corresponding probabilistic representa-
tions will be discussed in detail in Section 4. The analyst
oversees this process to correct errors that arise from the
mapping process and also to resolve extraction ambiguities.
We integrate the mapping process as a toolkit to the stan-
dard GIS system as illustrated in Figure 5. For example, our
extraction and modeling tools can automatically determine
the uncertainty regions of the two reports in Section 1, and
display them as in Figure 4.

Database Representation. In the context of SA ap-
plications, such as [19, 22], we need to be able to represent
pdfs of complex and irregular shapes in the database. In this
case, pdfs are continuous functions in 2-dimensional space,
which need to be stored in the database. Various repre-
sentations of pdfs has been explored in the past, includ-
ing using histograms and representing pdfs as a mixture of
other well-known distributions, e.g. Gaussians. Our solu-
tion is to first conceptually represent pdfs as histograms.
Histograms, in turn, are represented as quad trees, with
probability-summarization statistics attached to each node
of the quad trees. These summarization statistics, precom-
puted in advance, allow for very effective query processing,
since they help to avoid the corresponding costly integra-

tion operations during the runtime. We have also designed
several lossy compression algorithms that allow to compress
the quad-trees, resulting in overall storage improvement and
query speedup due to reduced disk I/Os [18].

Probabilistic Spatial Query Component. SAT pro-
vides a query component to support common spatial query
types. For example, using a spatial region query, an analyst
can express a query such as “find all the events, the location
of which are around WTC”. Figure 4 visually illustrates this
query (shaded region). The SAT system will compute the
probability of the events to be inside this region, and filter
away low probability events. In Section 5 we focus on the
query requirement and semantics of different query types for
SA applications.

Indexing and query processing. A system, that pro-
vides situational awareness on uncertain data, is of practical
value only if it can demonstrate fast query processing capa-
bilities and can scale to large domains. To achieve that,
components 7 and 8 in Figure 1 handle indexing and effi-
cient processing of spatial queries. The related techniques
are covered in detail in [18].

3. RELATED WORK
In this section, we review relevant work on spatial mod-

eling. We will use the probabilistic model for spatial un-
certainty developed in [3–7], because it has the following
properties:

• Formality. It builds on the formal probability theory.
• Practicality. It has been implemented in practice.
• Generality. This model is capable of handling (prob-

abilistic versions of) many different types of spatial
queries, as opposed to retrieval (selection) queries only.

• Effectiveness. Existing solutions that employ this
model are known to be effective and scalable.

In the probabilistic model, an uncertain location ℓ is treated
as a continuous random variable (r.v.) which takes values
(x, y) ∈ Ω and has a certain probability density function
(pdf) fℓ(x, y) associated with it. Interpreted this way, for
any spatial region R, the probability that ℓ is inside R is
computed as

∫

R
fℓ(x, y)dxdy.

In general, spatial uncertainty has been explored both
in the GIS and in database literature. The GIS literature
has traditionally focused on qualitative approaches to rep-
resenting uncertain spatial information [10, 11, 17, 25]. Spa-
tial relations are classified as topological relations (e.g., dis-
joint, overlap), direction relations (e.g., North, South), or-
dinal relations (e.g., inside, contain), and distance relations
(e.g., far, near). Geospatial ontologies have been explored
in [2, 16]. Uncertain spatial information has been explored
in the context of moving objects in [27]. In [24] authors pro-
posed a probabilistic spatial data model that captures po-
sitional uncertainty arising due to imprecise data collection
(e.g., such as GPS). In [28] the data model quantifies uncer-
tainty arising from spatial analysis such as the discretization
of thematic attributes.

Another related work is on georeferencing and spatial re-
trieval of documents, e.g. [29]. If we view the spatial domain
as a uniform grid of cells, their modeling task can be for-
mulated as follows. Given a document, for each cell in the
grid, determine the number of times this cell is covered by
the regions, mentioned in the document. Our modeling task
is different: given a description of an event, for each cell,



Relation Class Descriptors
Topological indoor/inside outdoor/disjoint meet at/on/equal

Cardinal Direction north east south west

Orientation behind in front of to the left of to the right of

Distance within dist near far around

Figure 6: Examples of S-descriptors.

Landmark Class Name Shape Type Area/footprint Length Height City
Building Y Polygon Housing/business/government m2 NA story/meter Y
Street Y Polyline Highway/major/minor NA meter NA Y
Street Intersection Y Point Highway/major/minor NA NA NA Y

Figure 7: Examples of Landmark Objects

determine the probability that the event happened in this
cell.

Finally, there has been some theoretic work, e.g. [9], on
modeling spatial uncertainty in text using heuristics and
fuzzy logic techniques.

Mapping text into probabilistic model. While we
employ an existing probabilistic model, the process of map-
ping textual locations into the corresponding representations
in a probabilistic model has not been studied before. Such
a mapping is one of the pivotal steps in developing the end-
to-end awareness system, we cover it Section 4.

We have above summarized the existing body of research
on spatial uncertainty most related to our paper. Other con-
cepts/techniques (e.g., histograms, quad-trees, indexing),
which are related to our work as well, will be discussed in
this paper when the need arises.

4. MODELING LOCATION UNCERTAINTY
We model uncertain locations as continuous random vari-

ables that have certain pdfs associated with them. When
processing a report about an event, our goal is to determine
f(x, y|report): the location of the event, given the informa-
tion contained in that report. A report might contain sev-
eral types of information that can influence f(x, y|report).
We focus on a frequent case where this density is context-
invariant and in the form f(x, y|s, t). Here s is an s-expres-
sion and t is the type of the event. We first consider how to
compute f(x, y|s). After that we will consider f(x, y|s, t).

For instance, in the report ‘A traffic accident near World
Trade Center’, we have s = near(WTC) and t = ‘traffic ac-
cident’. Let us observe that, among all types of information
mentioned in the report, s narrows down the possible loca-
tion of the event most significantly. Then, we can employ
the event type, ‘traffic accident’, to refine our answer fur-
ther by observing that an event of that type is more likely
to occur on a road than somewhere else.

Our approach first extracts s and t from the report (Sec-
tion 4.1). S-expression s is a composition of s-descriptors
D1, . . . ,Dn. S-descriptors are less complex than s-expres-
sions, and can be mapped into the corresponding pdfs (Sec-
tion 4.2). The desired pdf f(x, y|s, t) is computed by com-
bining the pdfs f(x, y|Di) and f(x, y|t) (Section 4.3).

4.1 Mapping free text onto s-expression
Mapping of free-text locations into s-expressions has been

studied before in the context of spatial ontologies. Even
though spatial ontologies is not a focus of this paper, we

summarize some of the related concepts to explain our ap-
proach.

The basic idea is that each application domain A has, in
general, its own spatial ontology D(A). The ontology de-
fines what constitutes the landmarks in A. It also defines
the set of basic s-descriptors {D1,D2, . . . ,Dn} and ways to
compose them, such that any free-text location from A can
be mapped onto a composition of s-descriptors. The four
major classes of s-descriptors are topological relations (e.g.,
disjoint, inside) [10], cardinal direction relations (e.g., north,
west) [12], orientation relations (e.g., left of, right of) [14],
and distance relations (e.g., near, around) [13]. Examples of
landmarks and s-descriptors are provided in Figures 6 and 7.
Each s-descriptor is of the form Di(L1,L2, . . . ,Lm): it takes
as input m ∈ N landmarks, where m is determined by the
type of s-descriptor. Figure 2 shows examples of free text
referring to event locations and the corresponding s-expres-
sions. Some descriptors may not take any parameters, e.g.
an ontology may use the concepts of indoor and outdoor,
to mean ‘in some building’ and ‘not in any building’.

One can define multiple types of s-expressions, such as
AND-, OR-, NOT-expressions. However, there are only two com-
mon scenarios in practice: (1) s-expression consists of a sin-
gle instantiated s-descriptor and (2) s-expression is an AND-
expression. An AND-expression arises when the same location
ℓ is described using n different descriptions s1, s2, . . . , sn,
which we denote as:

s = s1 ∧ s2 ∧ · · · ∧ sn.

As an example, assume a person is asked ‘where are you?’
to which he replies ‘I am near building A and near build-
ing B’, which corresponds to the s-expression near(A) ∧
near(B).

Let us note that representing event location using s-ex-
pression requires first extracting them from text. Although
extracting spatial properties is complex in general, when on-
tologies and domains are fixed, the task becomes relatively
simpler. The analyst manually supervises the extraction
process to correct exceptional situations and errors.

4.2 Pdf for a single s-descriptor
Merely having locations represented as spatial expressions

is still not sufficient. We also need to be able to project
the meaning of each s-expression onto the domain Ω. We
achieve this by (a) computing the projection (i.e., the pdf)
of each individual s-descriptor in the s-expression; and (b)
combining the projections, as illustrated in Figure 8.

Let us first understand how a basic s-descriptor can be
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Figure 8: Combination of s-descriptors 7→ pdf.

A

BC

x
y

(a) Part of campus.
x

y

c

0

f(x,y)

(b) PDF: outdoor.

x
y

f(x,y)

(c) PDF: near(A).
x

y

f(x,y)

(d) PDF: outdoor ∧ near(A).

Figure 9: Part of campus and various pdfs.

projected into Ω in an automated fashion, i.e. not manually.
In Section 4.3, we will demonstrate how to compose those
projections to determine the pdfs for s-expressions. Let us
note that other components of the overall approach for creat-
ing spatial awareness from text are independent from a par-
ticular algorithm for mapping basic s-descriptors into pdfs.
This section presents only one such algorithm, which can be
treated as a guideline for creating customized density func-
tions suited for a particular domain.

To illustrate the steps of the algorithm more vividly, con-
sider a simple scenario demonstrated in Figure 9(a). This
figure shows a portion of a university campus with three
buildings A, B, and C. We will illustrate the concepts with
the help of two descriptors: outdoor and near(A). Notice
that, in general, at run time the algorithm might need to
compute the pdf for near(L) for any landmark L. If it is
desirable to automate this pdf computation, intuitively, one
should avoid manually predefining a separate pdf per each
known landmark L in the domain in advance, since there can
be many landmarks. Instead, a more preferable approach is
to design a single generic pdf-generating procedure for all
possible landmarks. Given any landmark L, such a proce-
dure will generate the desired pdf based only on the relevant
properties of the landmark, such as its footprint and height.

That is, one method for determining the pdf f(x, y|D) for
any s-descriptor D(L1,L2, . . . ,Lm) is to make reasonable
assumptions about the functional form of f(x, y|D) based
on the properties of the landmarks it takes as input. Those
assumptions can be refined or rejected later on, e.g. using
Bayesian framework [8].

For instance, we can define the pdf f(x, y|outdoor) for
the s-descriptor outdoor as having the uniform distribution
everywhere inside the domain Ω except for the footprints of
the buildings that belong to Ω, as illustrated in Figure 9(b).
That is f(x, y|outdoor) = c for any point (x, y) ∈ Ω except
when (x, y) is inside the footprint of a building, in which
case f(x, y|outdoor) = 0. The real-valued constant c is de-

termined from the constraint
∫

Ω
f(x, y|outdoor)dxdy = 1.

Another example of an s-descriptor is near(A), which
means somewhere close to the landmark A (the closer the
better), but not inside A. Let us observe that, unlike the
density for outdoor, the pdf for near(A) is clearly not uni-
form. Rather, a more reasonable density can be a variation
of the truncated-Gaussian density, centered at the center of
the landmark, with variance determined by the spatial prop-
erties of the landmark A (its height, the size of its footprint).
Also, since the location cannot be inside A, the values of that
density should be zero for each point inside the footprint of
the landmark, as illustrated in Figure 9(c).

Using the above procedure, we can construct pdfs for arbi-
trarily complex s-descriptors in an automated fashion. Nat-
urally, there can be exceptions from the rule and for a limited
number of landmarks the above described general procedure
might not produce good pdfs. The analyst should handle
those cases beforehand, simply by manually assigning pdfs
for the corresponding s-descriptors in advance. In general,
the analyst can supervise the automated pdf construction
process as well.

4.3 The pdf of a spatial expression
Now that we know how to map s-descriptors into the cor-

responding pdfs, let us consider how to compute the pdf for
an AND- s-expression. Let us first assume an AND-expres-
sion s consists of only two sub-expressions: s = s1 ∧ s2,
as in near(A)∧ near(B). Our goal is to derive f(x, y|s1, s2)
from already known f(x, y|s1), f(x, y|s2), and f(x, y). Here,
f(x, y|s1, s2) is the pdf of the event location, given the report
contains s1 and s2. The density f(x, y) is the global prior
which tells us where an event is likely to occur in the absence
of any knowledge about the event. To derive f(x, y|s1, s2)
we first apply Bayes formula:

f(x, y|s1, s2) =
P(s1, s2|x, y)f(x, y)

P(s1, s2)
,

where P(s1, s2|x, y) is the probability to observe s1 and s2 in
a report, given the location is (x, y). While the presence of
s1 in a report is clearly not independent from the presence
of s2, it is reasonable to assume that they are conditionally
independent given the location. In other words, it holds that:

P(s1, s2|x, y) = P(s1|x, y) P(s2|x, y),

but

P(s1, s2) 6= P(s1) P(s2).

For example, if buildings A and B are very close to each
other, things that are ‘near A’ will also tend to be ‘near B’
and thus the two are dependent. However, once we know
the location (x, y), we do not need to know whether this
location is ‘near A’ to decide whether it is ‘near B’ and vice
versa. Using the assumption of conditional independence,
we have:

f(x, y|s1, s2) =
P(s1|x, y) P(s2|x, y)f(x, y)

P(s1, s2)
.

By applying Bayes formula we compute:

P(s1|x, y) =
f(x, y|s1) P(s1)

f(x, y)
,

P(s2|x, y) =
f(x, y|s2) P(s2)

f(x, y)
.



Thus

f(x, y|s1, s2) =
f(x, y|s1)f(x, y|s2)

f(x, y)
·
P(s1) P(s2)

P(s1, s2)
. (1)

We can assume that the global prior f(x, y) is uniform, or
make a weaker assumption that it is locally uniform, that is,
it is not uniform in general but look uniform inside smaller
regions in Ω. Let us observe that if U1 is an uncertainty re-
gion for f(x, y|s1) and U2 for f(x, y|s2), then an uncertainty
region for f(x, y|s1, s2) can be computed as:

U1∧2 = U1 ∩ U2.

For the global prior that is uniform, or locally uniform in
U1∧2, Eq. (1) can be written as:

f(x, y|s1, s2) = f(x, y|s1)f(x, y|s2) · c,

or, equivalently, as:

f(x, y|s1, s2) ∝ f(x, y|s1)f(x, y|s2).

Here, c is a real-valued constant that depends on s1 and s2

but does not depend on x and y. To compute c, observe that
by definition of an uncertainty region, the true event loca-
tion is somewhere inside U1∧2. Consequently, f(x, y|s1, s2)
integrates to 1 over U1∧2 and thus the value of c is:

c =
1

∫

U1∧2

f(x, y|s1)f(x, y|s2)dxdy
.

Let us note that if the integral in the denominator inte-
grates to zero, this constant is undefined. The latter corre-
sponds to an inconsistent definition of a location, such as in
‘near L.A., California and London, England’. Thus

{

f(x, y|s1, s2) = f(x, y|s1)f(x, y|s2) ·
1

I
if I 6= 0;

f(x, y|s1, s2) is undefined if I = 0,
(2)

where I =

∫

U1∧2

f(x, y|s1)f(x, y|s2)dxdy.

Similarly, for a general s-expression s = s1 ∧ · · ·∧ sn it holds
that:

f(x, y|s1, . . . , sn) ∝ f(x, y|s1) × · · · × f(x, y|sn).

Incorporating event type. Let us observe that the
event type t can be viewed as another AND condition in
f(x, y|s, t) and we can apply the above deduction to derive
that:

f(x, y|s, t) ∝ f(x, y|s)f(x, y|t).

If the event type does not provide any new information
where the event could occur, then we assume f(x, y|t) is (lo-
cally) uniform. However, often f(x, y|t) is not uniform and
can help us to reduce the uncertainty further. For example,
we know that t = ‘home robbery’ implies an event happened
at a home and not in the middle of a street. It is interesting
to observe that f(x, y|t), in essence, serves as a local prior:
it tells us where an event of a given type is likely to occur in
the absence of other knowledge.

The above formulas allow us to derive the exact density
f(x, y|s, t) for the types of s-expressions studied in this sec-
tion, so that we can answer all types of probabilistic spatial
queries. As an example of a pdf that results from an AND-
expression, consider a possible pdf for outdoor ∧ near(A)

shown in Figure 9(d), in the context of the university cam-
pus scenario from Figure 9(a). Finally, observe that in SA
domains pdfs can be complex and can have highly irregular
forms, which do not lend themselves to simple Gaussian or
uniform approximation. Thus, special methods for repre-
senting and storing pdfs should be devised [18]. The repre-
sentation of data is normally determined by the nature of
queries that are executed on top of the data. In the next
section we take up the types of spatial queries that need to
be supported by SA applications.

5. SPATIAL QUERIES
SA applications for crisis response, in general, should pro-

vide support for all standard types of spatial queries, such
as range, NN, spatial join, and so on. Such applications,
however, have several salient features that must be taken
into account in the context of query design and processing.
They are (1) uncertainty in data; (2) the need for fast query
response; and (3) the need for triaging capabilities. In cri-
sis situations, triaging capabilities can play a decisive role
in reducing the amount of information the analyst should
process. Those capabilities operate by restricting the size of
query result sets and filtering out, or, triaging, only the most
important results, possibly in a ranked order. The rest of the
section lists the definitions of various region-based queries.
For more detailed examples of using those queries the reader
is referred to [18], which is an attendant publications also
published in ACM GIS 2006.2

A fundamental type of query that should be supported
by SA applications is a range or region query, such as “find
all the events, the location of which can be inside a given
region”. Those queries can be formally defined as:

Definition 1 Given a region (range) R and a set of objects
A = {a1, a2, . . . , an}, a basic region (range) query (RQ)
returns all the elements in A whose probability of being in-
side R is greater than zero.

The analytical formula for computing the probability that
a location ℓ ∼ fℓ(x, y) is located inside a region R is:

P(ℓ ∈ R) =

∫

R

fℓ(x, y)dxdy. (3)

Definition 2 A probabilistic query is a detached-proba-
bility query if it returns elements without the probabilities
associated with them. A query is an attached-probability
query, denoted as p-, if its result is a set of tuples where
each tuple consists of an element and the probability associ-
ated with this element.

By default, any spatial query is a detached-probability
query.

Definition 3 Given a threshold pτ , query τ -Q is said to be
query Q with the threshold semantics if on the same
input as Q it returns all the elements from the result set of
Q whose associated probabilities are greater than pτ .

Let us now introduce another concept that SA application
should support to enable triaging capabilities. In certain
situations, it can be hard for the analyst to determine the

2Similar queries have also been studied in [3, 4].



right value of the threshold pτ . As an alternative, it can
be desirable to draw conclusions based on only the top-k
ranked results. To support this functionality, we define:

Definition 4 Given k ∈ N , query k-Q is said to be query
Q with the top-k semantics if on the same input as Q

it returns min(k, |S|) elements from the result set S of Q

whose associated probabilities are the highest in S.

One can combine various query semantics to specify queries
with the desired functionality. For example, there can be
pτ -RQ or pkτ -RQ queries.

6. EXPERIMENTAL EVALUATION
In this section, we experimentally study the effectiveness

of the proposed approach. We ran all our experiments on a
P4-2GHz PC with 1GB RAM.

6.1 Experimental Setup
We use a real geographic dataset for the New York, Man-

hattan area, including area around World Trade Center.
The original dataset is in vector format. It contains infor-
mation about the buildings (polygons), streets/roads (line
segments), and street intersections (points). A 400 × 400
virtual grid is overlaid on top of this dataset, with 10 × 10
m2 cells, covering 4 × 4 km2.

Uncertain location data for testing the accuracy is derived
based on the 164 reports filed by NYPD Officers. From these
reports, we use the probabilistic event modeling process in-
troduced in Section 4 to construct the pdfs attached to the
2359 events. Our supervised location extraction tool has a
knowledge base of all the street and building names in the
area. It extracts the landmarks (buildings, street intersec-
tions, and streets in our case) automatically, and zooms into
the corresponding text and highlights the s-descriptors. Our
tool also provides an initial suggestion of combining related
s-descriptors at sentence level to form an s-expression. The
analyst can either accept or reject the suggestion; the latter
offers an opportunity to the analyst to combine them differ-
ently. Once an s-expression is determined, our supervised
modeling tool models the involved s-descriptors separately
and generates the overall models for the s-expression based
on the mechanisms introduced in Section 4. Under the ana-
lyst’s supervision, the extraction tool can extract all the s-
expressions from the text. However, even with human help,
certain level of modeling error can still occur during the pro-
cess of converting s-expressions to pdf. In our experiments,
we show that even with certain level of modeling errors, our
modeling process still outperforms the naive solutions sig-
nificantly.

We then manually select 50 RQ queries based on the point
of interests (POIs) in the area. The size of the queries varies
from 10 × 10 to 100 × 100 vcells.

6.2 Experiments
The proposed modeling approach has two sources that

can introduce errors, and thus the accuracy of the approach
should be quantified. Firstly, there can be standard errors
associated with extracting spatial location from text. We
focus on the second type of error, most related to this paper,
that arises due to creating the model f(x, y|D) for various
instantiated s-descriptors D.

In Section 4 we have described a process for deriving
f(x, y|D) for an s-descriptor D. That process employs prop-
erties of landmarks and generates pdf fest(x, y|D) as its es-
timation of the true desired pdf f(x, y|D). Even though this
process is supervised by the analyst, who might pick good
generic models, in the end the parameters for the model (de-
rived from landmark properties) will not be 100% accurate,
leading to discrepancies between fest(x, y|D) and f(x, y|D).

Naturally, it is difficult to assess this discrepancy exactly,
because the true f(x, y|D) is unknown to us. However, it is
possible to analyze the effect of errors in parameters. For
that, we first generate the pdf f(x, y|D) according to some
realistic distribution and assume it is the true pdf. Then,
we choose fest(x, y|D) as the distribution for f(x, y|D) but
with manually disturbed parameters. Then we measure the
precision/recall quality of RQs and PRQs where instead of
f(x, y|D) we use fest(x, y|D).

We will also compare our approach against a baseline
method, where the analyst represents each uncertain loca-
tion ℓ by simply drawing its uncertainty region Uℓ, without
specifying its pdf fℓ(x, y). Using that representation, the an-
swer to a RQ with the range R and probabilistic threshold
pτ can be computed by measuring the fraction of the overlap
between Uℓ and R and comparing it to pτ . The comparison
to the baseline will show whether there is actually a merit
for keeping fℓ(x, y) for ℓ, or whether Uℓ is sufficient.

We will focus on two types of modeling errors that can
arise during the construction of the model fℓ(x, y|D). In the
first case, the analyst is overly confident in determining the
event location and the resulting fest(x, y|D) is too “tight”.
Similarly, in the second case the analyst is not confident
enough in locating the event and the resulting fest(x, y|D)
is too loose. We simulate the first type of error by reducing
the variance σ used in fℓ(x, y|D) by certain percentage (-
80%, -50%, -20%). Similarly, for the second case we increase
the σ by certain percentage (20%, 50%, 100%). Figure 10
show the comparisons of the modeling accuracy using the
well-known F1 measure (the harmonic mean of the preci-
sion and recall). To compute the F1 measure, we first run
the queries on true model fℓ(x, y) at different threshold lev-
els (i.e., 20%, 50% and 80%). That gives us the ground
truth, which we use in computing F1 for estimated models
fest(x, y). Figure 10 shows that when the error is small, e.g.
20%, the accuracy of the estimated model approaches the
optimal F1 measure – equal to 1 – at all threshold levels.
We also can observe that the baseline method (Uℓ) performs
poorly, especially when the threshold levels are high (e.g.,
80%), which demonstrates that Uℓ is inadequate during the
situations where high threshold levels are needed for priori-
tizing and triaging events.

7. CONCLUSION
In this paper, we presented our approach for building spa-

tial awareness from textual input. We focus on the practi-
cal aspects of modeling and query design. We also demon-
strated the effectiveness of our solution. This paper also
opens up a variety of interesting follow up research problems
on better automated extraction and modeling techniques.
We plan to address those problems as our future work.
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