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Filters



Main idea of filters

Represent n-element sets using only O(n) bits

Better than hash tables, O(n) words

Better than bitmaps, O(N) bits where N = max element

What do we have to pay to get this savings?

Answers are approximate

If x ∈ S , filter will always say that x ∈ S
(cannot have “false negatives”)

But if x /∈ S , it might incorrectly say x ∈ S
(can have “false positives”)



False positive rate

Choose a random x that is not in your set S

What is the probability that your filter incorrectly says x ∈ S?

Called the “false positive rate”

We want it to be small, so we will use ε as notation

Typically known when we initialize filter structure,
used to determine its structural parameters

Often (but not always) ok to assume constant, e.g. ε = 0.1



When are filters useful?

If processing non-members is easier and you expect many of them

Filter can be small enough to fit in cache ⇒ fast
Use slower exact set data structure to check matched elements
Few false positives ⇒ few unnecessary calls to exact structure



When are filters useful?

If memory is limited and some false positives are harmless

Example: Access control for private internet server

Use filter on firewall to only allow whitelisted clients through

Firewall needs only small memory for filter

Server can handle smaller volume of non-clients that get through



Comparison of filters: Bloom filter

[Bloom 1970]; ≈ 28k other publications

Widely implemented, practical

Storage: 1.44n log2
1
ε bits

larger than optimal by the 1.44 factor

Membership testing: O(log 1/ϵ) time

Can add but not remove elements



Comparison of filters: Cuckoo filter

[Fan et al. 2014]; ≈ 1600 other publications

Implemented and practical,
better in practice than Bloom

Storage: (1 + o(1))n log2
1
ε bits, optimal!

Membership testing: O(1) time
(with good locality of reference: works well with cache)

Can add and remove elements

Storage bound requires ϵ = o(1)
bigger sets need to have smaller false positive rates

(Some sources exaggerate this requirement by saying that
“in theory, Cuckoo filters do not work”)



Comparison of filters: Recent alternatives

Xor filters: [Graf and Lemire 2020]
Binary fuse filters: [Graf and Lemire 2022]

Fast, optimal storage for constant error rates, not dynamic

Quotient filters: [Pandey et al. 2017]
Morton filters: [Breslow and Jayasena 2020]
Vector quotient filters: [Pandey et al. 2021]

Similar design and performance to cuckoo filters
Quotient has least space; vector quotient is fastest



Bloom filters



Main idea of Bloom filters

Two parameters, N and k , to be chosen later

Store a table B of N bits, initially all zero

Construct k hash functions h1(x), . . . hk(x)

To add x to the set, set its bits to one:
B[h1(x)] = B[h2(x)] = · · · = B[hk(x)] = 1

To test membership, check that all bits are one:
for i = 1, 2, . . . k :

if B[hi (x)] = 0:
return False

return True

B is just the bitmap representation of the set of hashes of elements!



Example of Bloom filter

Suppose N = 9 and k = 3 with hash functions mapping a → 0, 3, 4; b → 1, 5, 7;
c → 2, 3, 5; d → 1, 4, 8; e → 0, 3, 5

Initially B = b8b7b6 b5b4b3 b2b1b0 = 000 000 000

Add a, setting bits 0, 3, 4: B = 000 011 001

Add b, setting bits 1, 5, 7: B = 010 111 011

Add c , setting bits 2, 3, 5: B = 010 111 111

Test membership for d : b1 = b4 = 1, b8 = 0 ⇒ return False

Test membership for e: b0 = b3 = b5 = 1 ⇒ return True
This is a false positive!



Bloom filter analysis

Let f be the fraction of bits that are one ⇒
(by random hash assumption) false positive rate ε = f k

Can’t use Chernoff bound (bits are not independent of each other)
but related Azuma–Hoeffding inequality ⇒ f ≈ E [f ]

Linearity of expectation ⇒ E [f ] = Pr[any given bit is one]

Pr[bit is 1] = 1 − Pr[same bit is 0]
= 1 − Pr[all hashes of elements miss that bit]

= 1 −
(
1 − 1

N

)kn
= 1 −

((
1 − 1

N

)N)kn/N

≈ 1 −
(1
e

)kn/N



Bloom filter analysis (continued)

Simplifying assumptions: Suppose we already know N

Let’s try plugging fractional values of k into the calculation
(even though in the actual data structure it must be an integer)

What choice of k gives the best false positive rate ε?

Turns out to be: k that makes fraction of ones be f = 1/2

(Can prove by calculus, but intuitive reason: because then the Bloom filter has the
highest possible information content)

f =
1
2

⇒ 1 −
(1
e

)kn/N
=

1
2

⇒ N =
kn

log 2

With f = 1/2, ε = 1/2k giving k = log2
1
ε and N =

n log2 1/ε
log 2



Bloom filter summary

For sets of size n, with desired false positive rate ε:

Choose number of hash functions k ≈ log2
1
ε

Choose bit array size N ≈ n log2 1/ε
log 2

≈ 1.44n log2
1
ε

Store bitmap set of hashes of elements

Additions and membership tests take time O(k),
which is O(1) for ε = constant

Can’t remove any element because we don’t know which of its bits are shared with
other elements and which are used only by it



Cuckoo filters



Main idea

Use a hash function f to compute a short
“fingerprint” f (x) for each element x

Store fingerprints, not key-value pairs, in a cuckoo hash table
(each fingerprint can go in one of two possible home cells)

Saves space because fingerprints use fewer bits than full elements



Basic operations

Test if x is in set:
Check whether either of the two cells for x contains f (x)

False positive:
Some other element collides with x in both location and fingerprint

Insert x :
(Allowing > 1 fingerprint/cell to get load factor near one)

Add fingerprint f (x) to home cell for x
If fingerprints overflow, insert recursively to second home cells

Delete x :
Remove fingerprint from one of its two homes



Difficulties

When we move a fingerprint f (x) to its other cell,
we don’t know which element x generated it

⇒ compute new cell using only current cell and f (x)

Fingerprints in any one cell can only go to a small number of other cells (as many as
the number of different fingerprints)

⇒ the two cells for x cannot be chosen independently

Cuckoo hashing analysis depends on independence of pairs of cells
⇒ we need to prove that this works (all fingerprints can be inserted) all over again,

without using independence



How to find the two homes for a fingerprint

Original version:

Choose three hash functions h1, h2, and f

Map each element x to fingerprint f (x)
with two homes h1(x) and (h1(x) xor h2(f (x)))

When we see fingerprint f in cell with index i
its other home cell has index (i xor h2(f ))

We don’t need to know the x that generated it!

Works well in practice (up to same load factor as cuckoo hash)

No mathematical proof that it works!



How to find the two homes for a fingerprint

Simplified version [Eppstein 2016]:

Choose two hash functions h1 and f

Map x to fingerprint f (x) with homes h1(x) and (h1(x) xor f (x))

Effectively partitions big cuckoo hash table into many smaller ones,
within which pairs of home cells are chosen independently

Can reuse random-graph analysis from cuckoo hashing!



How much space do we need?

Assume k bits per fingerprint, then

Pr[false positive] ≤ (# elements that could collide)× Pr[collision]
= n × Pr[same h1(x)]× Pr[same f (x)]

= n × O
( 1
n

)
× 1

# fingerprints

= O
( 1

2k
)
.

Invert this: false positive rate ε needs k = log2
1
ε + O(1)

Insertion analysis needs k to be nonconstant (ϵ = o(1))
⇒ can replace +O(1) in formula for k by ×(1 + o(1))

Cuckoo load factor near one ⇒ multiply space by (1 + o(1))

So for false positive rate ε = o(1), need (1 + o(1))n log2
1
ε bits



Summary



Summary

▶ Set operations and their implementation in Python and Java
▶ How to combine sets using single-element operations
▶ Exact representations of sets using hash tables
▶ Exact representations of sets using bitmaps
▶ Filters: approximate representations of sets
▶ False positives versus false negatives
▶ Bloom filters and cuckoo filters
▶ Nonexistence of good data structures for disjointness
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