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Dihedral Bounds for Mesh Generation in High Dimensions

Marshall Bern∗ Paul Chew† David Eppstein‡ Jim Ruppert§

Abstract

We show that any set of n points in IRd has a Steiner

Delaunay triangulation with O(ndd/2e) simplices, none of

which has an obtuse dihedral angle. This result improves

a naive bound of O(nd). No bound depending only on n

is possible if we require the maximum dihedral angle to

measure at most 90◦−ε or the minimum dihedral to measure

at least ε.

1 Introduction

A mesh is a partition of a geometric domain into small
simple cells (such as boxes or simplices) called elements.
Automatically generating high quality meshes is a cru-
cial preprocessing step in most numerical methods for
physical simulation.

A typical domain for automatic mesh generation
consists of a complicated polyhedral region of IRd.
In the current state of the art, arbitrary polygonal
regions in IR2 can be handled fairly easily, but higher-
dimensional mesh generation remains quite difficult [5].
As a simpler version of the higher-dimensional problem,
here we consider the problem of computing a simplicial
mesh for a point set in IRd. The given point set appears
as a subset of the mesh’s vertex set; additional vertices,
called Steiner points, may be added in order to form
better quality elements. The mesh covers a convex solid,
namely the convex hull of all input and Steiner points.
The complexity of a mesh is measured by its number of
simplices. For efficiency we naturally wish to minimize
the complexity of a mesh.

Mathematical folklore has long held that the best
meshes are those with elements of low aspect ratio,
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or “round” elements. An exception occurs in the
area of fluid dynamics; long thin elements have proved
very efficient in discretizing laminar flows, provided
that these elements are aligned with the simulated
flow. Babuška and Aziz [1] justified this practice by
proving that bounding angles away from 180◦ (but
not away from 0◦) in a two-dimensional triangular
mesh suffices to guarantee convergence of the finite
element method. A bound of 90◦ on the maximum
angle in a triangular mesh also has special importance
in the literature. This tradition is justified by both
numerical and geometric observations [2], especially in
the case of problems with physical characteristics (for
example, thermal conductivity) that vary greatly over
the domain [17].

The most convenient and appropriate generaliza-
tion of these angle considerations to higher-dimensional
simplicial meshes involves dihedral angles, that is, an-
gles between adjacent facets ((d−1)-dimensional faces).
Vavasis [17] in fact provides theoretical justification for
a dihedral bound of 90◦ in arbitrary dimension. In this
paper we look at all three important cases: dihedral an-
gles bounded away from 0◦, bounded away from 180◦,
and bounded at 90◦.

1.1 Previous Work. Most of the relevant previous
work has concentrated on triangulations in two dimen-
sions. Assuming that we allow point holes, polygonal
input generalizes the case of point sets. For polyg-
onal input, there are algorithms based on grids and
quadtrees [2, 6] and others based on Delaunay trian-
gulation [9, 16] that bound angles away from 0◦. Two
of these algorithms [6, 16] have complexity guarantees
as well: the complexity is within a constant factor of
the minimum possible for triangulations with bounded
minimum angle. There are also algorithms [2, 13] that
simultaneously bound the minimum angle away from 0◦

and the maximum at 90◦. For point set input only, there
is an algorithm [6] that bounds all angles between 36◦

and 80◦.
The complexity of any of these triangulations, how-

ever, depends not only on n—the number of input
vertices—but also on the geometry of the input. This
dependence is indeed necessary to bound the mini-
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mum angle away from 0◦ (by the complexity guaran-
tee mentioned above). This dependence, however, is
not necessary to bound only the maximum angle; and—
taking the viewpoint traditional to theoretical computer
science—it is fundamental to find triangulations of com-
plexity polynomial in n whenever possible. For point
set input, O(n)-complexity triangulations are possible
with all angles acute (some by an amount dependent
upon the geometry) [6]. Since any bound below 90◦ − ε
would lead to a bound of ε/2 on the minimum angle,
no further improvement is possible. For polygonal in-
put, Bern and Eppstein [4] gave an O(n2)-complexity
triangulation that bounds the maximum angle at 90◦.
This was improved very recently to linear complexity
by Bern, Mitchell, and Ruppert [7]. For a description of
related work see the survey by Bern and Eppstein [5].

In higher dimensions, there arise new types of an-
gles, between faces of different dimensions. Mitchell and
Vavasis [14] generalized the quadtree method [6] to three
dimensional polyhedra, in order to bound solid angles
at vertices away from zero, which implies bounds on
all other types of angles. As in two dimensions, this
bound requires nonpolynomial complexity. Do polyno-
mial bounds exist for less stringent angle requirements?
In this paper, we answer this question for point set in-
puts by characterizing exactly which no-bad-angle prob-
lems can be polynomially solved. Our lower bounds also
hold for the more difficult case of polyhedral inputs.

1.2 New Results. The first listing below formu-
lates a family of no-bad-angle problems for simplicial
meshes in d dimensions, thereby generalizing the two-
dimensional minimum and maximum angle problems.
The first three listings justify our focus on dihedrals.

1. Each k-face in a d-simplex defines an angle, and
all angles that involve the entire simplex are so de-
fined. To measure an angle, we place a small sphere
around the k-face and determine what fraction of
the sphere lies interior to the simplex. The sphere
is (d− k − 1)-dimensional and lies in a (d− k)-flat
perpendicular to the k-face; its center is the pro-
jection of the face onto the flat. If k = d − 2, we
call the angle a dihedral angle and we can write its
measure in degrees in the usual way. If k = 0, the
angle is a solid angle.

We can now define a family of problems: for each k,
we can demand either no small angles, that is, all
angles must be bounded away from zero, or no large
angles—all angles must be bounded away from flat
(half the sphere). We show that this family forms
two sequences of difficulty. No small angle at a 0-
face (no small solid angle) implies no small angle at

a 1-face, which implies no small angle at a 2-face,
and so forth up to no small angle at a (d− 2)-face.
No-large-angle problems reverse the order: no large
dihedral implies no large angle at a (d − 3)-face,
which implies no large angle at a (d− 4)-face, and
so forth down to no large solid angle. There are two
bridges between the sequences. No small solid angle
implies no large dihedral, and hence good angles of
all types. In the opposite direction, a large solid
angle implies a small dihedral, and hence bad angles
of all types.

2. If all dihedrals are required to be larger than some
fixed ε > 0, then for some point sets a simplicial
mesh must have Ω(n logA) complexity, where A is
a parameter that depends on geometry. Thus no
strongly polynomial bound (that is, polynomial in
n alone) is possible for the no-small-dihedral prob-
lem or any other no-small-angle problem. On the
other hand, a method based on quadtrees achieves
O(n logA) complexity for the hardest problem, no
small solid angles.

3. Quadtree triangulation gives O(n)-complexity
meshes with all dihedrals smaller than 180◦ − ε,
where ε is a constant depending only on the di-
mension. Thus the no-large-dihedral problem and
hence all no-large-angle problems admit polynomial
solutions.

4. Any point set in d dimensions can be triangulated
with O(ndd/2e) simplices with no obtuse dihedrals.
Our triangulation uses only self-centered simplices
(those containing their circumcenters) and thus
is a Delaunay triangulation of its vertices [15].
Moreover each face of each simplex is self-centered,
so that the mesh allows barycentric subdivision, the
natural generalization of perpendicular planar dual
embedding [4].

5. Bounding the dihedrals of a simplex to 90◦−ε forces
it to have bounded aspect ratio. A simplicial mesh
with simplices of bounded aspect ratio must have
Ω(n logA) complexity. Thus result 4 gives the best
possible (fixed) angle bound.

We regard statement 4 above as our main result.
This result betters a naive bound of O(nd) simplices,
resulting from passing axis-aligned planes through each
input point and then triangulating the resulting boxes.
OurO(ndd/2e)-complexity algorithm uses a product con-
struction to produce an unstructured mesh, meaning a
mesh in which vertices have nonisomorphic local neigh-
borhoods. It is interesting to note that for this problem
an unstructured mesh offers significant—by a square
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Figure 1: Tetrahedra classified by bad angles.

root—savings in complexity, more than compensating
for the usual constant-factor space and time advan-
tages of structured meshes [5]. Finally, we remark that
Haiman [12] uses a similar sort of product construction
for the problem of triangulating the d-cube with few
simplices.

2 Why Dihedrals?

Assume that we have defined angles within a d-simplex
S as above, and the measure of a flat angle (one
subtending a hemisphere) is 1

2 . Let NS (k, ε) denote the
property that no angle at a k-face within S measures
less than ε. Similarly let NL(k, ε) denote the property
that no angle at a k-face within S measures more than
1
2 − ε. The following theorem states that the NS and
NL properties are each linearly ordered by implication.
We then connect the two sequences.

Theorem 2.1. There exists ε′ > 0 depending only on
d and ε, such that NS (k, ε) implies NS (k + 1, ε′) and
NL(k + 1, ε) implies NL(k, ε′) for each k between 0 and
d− 3.

Proof. To prove that NS (k, ε) implies NS (k + 1, ε′),
place a small (d − k − 1)-sphere around any k-face
of a (k + 1)-simplex within S. Slicing this sphere
perpendicular to the (k+ 1)-simplex gives a (d−k− 2)-
sphere that measures the angle at the (k + 1)-simplex.
The fraction of the (d− k− 1)-sphere covered by S can
be no greater than the covered fraction of the (d−k−2)-
sphere—imagine integrating over many such slices—so
NS (k + 1, ε′) holds with ε′ = ε.

To prove that NL(k+1, ε) implies NL(k, ε′), consider
the contrapositive. If an angle at a k-face f covers
almost all of a (d − k − 1)-hemisphere, then its slices
nearly cover (d − k − 2)-hemispheres, so the angles at
all the (k + 1)-faces incident to f must be large. 2

Theorem 2.2. There exists ε′ > 0 depending only on
d and ε, such that NS (0, ε) implies NL(d − 2, ε′) and

NS (d− 2, ε) implies NL(0, ε′).

Proof. To prove the first part, assume for contradiction
that simplex S has a large dihedral angle at a (d − 2)-
face f . Then the edge opposite f subtends almost a
semicircle, so the solid angles at the endpoints of this
edge are arbitrarily small in at least one direction.

To prove the second part, assume that S has a large
solid angle at vertex v. Then the perpendicular h from
v to the opposite facet f is very short and lands well
interior to f , so all the dihedrals subtended by h (that
is, all dihedrals at facets of f) must be small. 2

Theorems 2.1 and 2.2 can be used to classify sim-
plices. A (j, k)-bad-angle simplex, 0 ≤ j, k ≤ d − 1,
allows small angles at faces of dimension up to j − 1
and large angles at faces of dimension down to k. The
case j = 0 allows no small angles, and hence no bad
angles at all, so k is irrelevant. On the other extreme,
k = 0 allows a large solid angle and renders j irrelevant.
Except for these extreme cases all other combinations
of j and k are possible, so there are 2+(d−1)2 different
types of simplices.

Figure 1 illustrates this classification for the case
d = 3. A “needle” allows small solid angles, but not
small or large dihedrals; a “wedge” allows small but not
large dihedrals, and so forth. Similar but less systematic
classifications have appeared in the mesh generation
literature [3, 11].

3 No Small Dihedrals

We now consider mesh generation with no small dihe-
drals, the weakest condition in the NS sequence. Let
the width of a simplex be the minimum distance be-
tween parallel supporting hyperplanes; equivalently it is
the minimum distance between nonadjacent faces. We
first claim that a lower bound on dihedrals imposes a
constraint on the shapes of our simplices.
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Lemma 3.1. Let simplex S have width w and no dihe-
dral angle smaller than some fixed ε > 0. Then every
facet of S has width Θ(w).

Proof. We observe that a narrow-width facet implies
that S has the same or even narrower width. Thus
every facet of S has width Ω(w).

Let π1 and π2 be the supporting hyperplanes of
S with minimum separation w. Any facet forming an
angle greater than ε/2 with π1 must have width O(w).
Let F be the set of facets of large width, Ω(w) for a
sufficiently large constant. Each member of F is nearly
parallel to π1 and each pair of facets in a simplex meet
at a dihedral; hence two members of F must form a
dihedral angle either less than ε or greater than 180◦−ε.
By assumption the former case cannot occur, so pairs
of facets from F meet at very flat dihedral angles. Thus
in a perpendicular projection of (interiors of) facets of
F onto π1, points of π1 are covered at most once.

On the other hand, all points of π1, except for a set
of measure zero, are covered an even number of times
by projections of facets in S. Thus the small-width
facets (those in S\F ) cover the large-width facets in the
projection. But the projection of a facet has width no
greater than the width of the facet, so each projection
of a large-width facet is covered by projections of width
O(w). Since there are only d+ 1 facets, all facets must
have width O(dw) = O(w). 2

We define the aspect ratio of a simplex to be the
ratio between the largest and smallest separations of
parallel supporting hyperplanes. Alternate definitions
include the ratio between circumradius and inradius,
but a bound on one such ratio implies a bound on the
other, so the exact definition is immaterial for results
such as the one below.

Theorem 3.1. Triangulation with no dihedral angle
smaller than ε can require Ω(n logA) simplices, where
A is the maximum aspect ratio of a simplex in the
Delaunay triangulation of the input point set.

Proof. We first show the result for n = d + 2. It can
be extended to any n by making many copies of the
construction.

Consider the vertices of a unit-volume regular sim-
plex, together with one extra point at small distance δ
from a simplex vertex. The Delaunay triangulation of
this point set has a simplex of aspect ratio A = Θ(1/δ).
We wish to show that any Steiner triangulation of this
point set that has no small dihedrals must have Ω(logA)
simplices.

Suppose we have a Steiner triangulation of the point
set that has no small dihedral angles. Consider the

line segment between the extra point and the nearby
vertex. Either it is entirely within some simplex of the
triangulation, or it crosses some simplex face disjoint
from the extra point. In either case we have found a
simplex in our triangulation of width O(1/A). On the
other hand, the volume of the intersection of a simplex
of width w with the initial, unit-volume, regular simplex
is O(w), so if there are a total of s simplices in the
triangulation, some simplex must have width Ω(1/s).

Since our triangulation covers a connected region
of IRd, we can find a path of simplices, joined facet to
facet, connecting any pair of simplices. By Lemma 3.1,
the width of each facet—and hence each simplex—in
such a path can grow by only a constant factor at each
step. Thus a path from the width-O(1/A) simplex to
the width-Ω(1/s) simplex must pass through Ω(log A

s )
distinct simplices. Hence s is Ω(logA)−O(log s), which
implies that s is Ω(logA). 2

A matching O(n logA) upper bound can be
achieved by using quadtrees to find a triangulation with
bounded aspect ratio [6].

4 No Large Dihedrals

In this section, we use methods of Bern, Eppstein,
and Gilbert [6] to solve the hardest problem in the
NL sequence—bounding the largest dihedral away from
180◦. We construct a higher-dimensional analog of a
quadtree (a 2d-ary tree) for the point set. To do this,
we begin with a d-dimensional root cube containing all
the points, and then recursively subdivide each cube
until none contains more than one point. We balance
the quadtree by further subdividing cubes until no cube
is orthogonally adjacent to one of side length less than
half its own.

If a sequence of cube subdivisions continues for
some constant number of steps without separating any
points, we can “shortcut” the subdivision process by
clustering points as in [6]. Briefly, we collect a subset
of points that have small diameter relative to their
distance to the rest of the input points. We recursively
triangulate this subset and then treat the resulting
triangulated quadtree as a unit back in our original
quadtree.

Once the quadtree has been sufficiently subdivided,
we further subdivide all boxes a constant number of
times, and then merge boxes locally so that each point
or recursively triangulated cluster is situated near the
middle of an unsubdivided cube. We then triangulate
each cube of the quadtree in a way consistent with its
neighbors. We omit the proof of the following theorem,
because the complexity bound is similar to the previous
analysis [6] and the dihedral bound follows from a rather
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uninteresting case analysis.

Theorem 4.1. The algorithm sketched above gives a
Steiner triangulation of linear complexity, in which the
maximum dihedral measures at most 180◦ − ε, where ε
is a constant depending only on dimension.

We do not know the best possible bounds for
Theorem 4.1. For IR3, it should be fairly straightforward
to achieve maximum dihedral arbitrarily close to 120◦.

5 No Obtuse Dihedrals

For some applications, dihedrals bounded away from
180◦ may suffice. But for others, and in particular in the
“wild coefficient” model of Vavasis [17], the dihedrals
should be no larger than 90◦.

5.1 Nonobtuse Simplices. We start by describing
the building blocks of our nonobtuse triangulations:
nonobtuse simplices. Coxeter [10] describes a general
class of nonobtuse simplices, formed as follows. Any tree
T with d+1 vertices and d edges can be embedded in IRd

so that the edge lengths are preserved and any two edges
are at right angles to each other: treat distinct edges as
vectors of the appropriate lengths parallel to distinct
coordinate axes, place one vertex v0 at the origin, and
place each remaining vertex vi by adding the vectors on
the path in the tree from vi to v0. The convex hull of
these d+ 1 vertices forms a simplex ST in IRd.

Definition 1. An orthogonal simplex is a simplex ST
for some tree T .

Lemma 5.1. (Coxeter [10]) Dihedral angles in ST
opposite edges of T are acute; all remaining dihedral
angles are right.

Coxeter proves a number of other metric properties
of orthogonal simplices. Since orthogonal simplices have
a maximum number of right-angled dihedrals, they can
be considered an appropriate generalization of right
triangles in the plane. One important property of right
triangles, however, does not always hold for orthogonal
simplices.

Definition 2. A simplex is self-centered if it contains
its circumcenter.

A triangle is self-centered if and only if it has
no obtuse angle. Thus an alternate generalization of
nonobtuse triangles would be self-centered simplices.
This generalization alone, however, is insufficient for
mesh generation, because self-centered simplices—for
example the “sliver” in Figure 1—can have dihedrals
arbitrarily close to 180◦. An example of an orthogonal

simplex that is not self-centered is the convex hull of the
three standard unit vectors in IR3.

Self-centered triangulations (those containing only
self-centered triangles) boast two useful properties. A
self-centered triangulation is necessarily a Delaunay tri-
angulation, and the planar dual of a self-centered trian-
gulation can be embedded such that dual edges cross at
right angles. Rajan [15] proved that the first property
holds in arbitrary dimension. For higher-dimensional
generalizations of the second property, however, we re-
quire something stronger.

Definition 3. A simplex is fully self-centered if each
face is self-centered.

The following generalization of dual embedding
holds: any fully self-centered simplex can be triangu-
lated into (d+ 1)! fully self-centered simplices (actually
path simplices, as defined below) by barycentric subdi-
vision. Barycentric triangulations of neighboring sim-
plices fit together to form a refinement of the original
triangulation.

We now define a special type of orthogonal simplex
that fulfills all our needs. These simplices have no
obtuse dihedrals, a maximum number of right dihedrals,
and are fully self-centered.

Definition 4. A path simplex is a simplex ST for a
tree T that is a path.

Definition 1 above defines an orthogonal simplex by
the position of its vertices. For a path simplex, there is
also a nice dual description in terms of facets.

Lemma 5.2. Any path simplex is isometric to a simplex
of the form

{(x1, x2, . . . , xd) | 0 ≤ c1x1 ≤ c2x2 ≤ . . . ≤ cdxd ≤ 1}

for some set of positive constants c1, c2 . . . cd, and every
simplex of this form is a path simplex.

Proof. Let ST be a path simplex for path T . Rename
the coordinate axes so that edge d+1− i in T is parallel
to the ith coordinate axis; let ci be the reciprocal of
the length of this edge; and define simplex S′ by the
inequalities above. It is not hard to see that the vertices
of T are the extremal points of S′. Both ST and S′

are the convex hulls of their extremal points, so ST is
isometric to S′.

In the other direction, let S′ be defined by the
inequalities above and let the extremal points vi of
S′ be defined as vi = (0, . . . , 0, 1/ci, 1/ci+1, . . . , 1/cd).
Then in the path T with vertices v0, v1, . . . , vd, distinct
edges are parallel to distinct coordinate axes, and hence
S′ = ST . 2
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The next two lemmas establish path simplices as
the closest generalization of right triangles.

Lemma 5.3. Every path simplex is fully self-centered.

Proof. Let ST be a path simplex, characterized as in
Lemma 5.2. Note that the vertices of ST are a subset
of the vertices of the box

{ (x1, x2, . . . xd) | 0 ≤ cixi ≤ 1 }.

The circumcenters of the simplex and the box are
the same, namely the point ( 1

2c1
, 1

2c2
, . . . 1

2cd
) halfway

between the first and last vertices, v0 and vd, of the
path T . The circumcenter lies in ST , hence ST itself is
self-centered. If a face of ST includes both v0 and vd,
its circumcenter will be the same as that of all of ST ,
since the circumsphere of ST is the diameter sphere of
v0vd. If a face f of ST does not include vertex vd, then
f is also a face of the path simplex formed by removing
vd from T . Similarly, if a face does not include vertex
v0, then it is also a face of a smaller path simplex. By
induction on dimension, these smaller path simplices
are fully self-centered, so the given face is self-centered.
Thus all faces of ST are self-centered. 2

Lemma 5.4. Any orthogonal simplex that is self-
centered is a path simplex.

Proof. For d ≤ 2, all orthogonal simplices are path
simplices. For d = 3, the only orthogonal simplex that
is not a path simplex is a corner of a box; it is not hard
to see that such a simplex cannot be self-centered.

Now suppose d > 3 and the tree T associated
with the orthogonal simplex is not a path. Then T
contains a vertex v of degree at least three; let T ′ be
the subtree containing v and three of its neighbors. This
subtree generates an orthogonal simplex ST ′ in IR3 that
is not a path simplex, hence not self-centered. We now
show that this implies that ST cannot be self-centered.
The circumsphere of ST intersects the three-dimensional
subspace spanned by ST ′ in a sphere that touches the
vertices of ST ′ , in other words, in the circumsphere of
ST ′ . So in the perpendicular projection onto the three-
dimensional subspace, the circumcenter of ST projects
onto the circumcenter of ST ′ . But ST itself projects
perpendicularly onto ST ′ , so ST must be disjoint from
its circumcenter. 2

5.2 Products of Simplices. For any point set
in IRd, we can compute a Steiner triangulation with
O(nd) path simplices by forming a grid of nd boxes and
partitioning each box into d! path simplices. Our aim
in the remainder of Section 5 is to show that this naive
bound can be greatly improved. We reduce the number

of simplices to O(ndd/2e), roughly the square root of the
naive bound.

Let S1 be a set in IRd1 , and S2 be a set in IRd2 . We
define their product S1 × S2 to be the set

{ (x1, x2, . . . , xd1 , y1, y2, . . . , yd2) |
(x1, x2, . . . xd1) ∈ S1 and (y1, y2, . . . yd2) ∈ S2 }.

Products can also be defined in terms of inequalities. If
S1 is the convex region satisfying a set I1 of inequalities,
and if S2 is similarly the region satisfying a set I2 of
inequalities, such that no variable appears in both I1
and I2, then S1 × S2 is the region satisfying I1 ∪ I2.

We now show that products of path simplices are
well-behaved, in that they can themselves be decom-
posed into unions of path simplices. In this subsection
and the next, P1 and P2 denote path simplices with d1

and d2 dimensions respectively. We call the triangula-
tion given by the following lemma the product triangu-
lation of P1 × P2.

Lemma 5.5. Let P1 and P2 be path simplices with d1

and d2 dimensions respectively. Then P1 × P2 can be
triangulated with

(
d1+d2
d1

)
path simplices.

Proof. P1×P2 is a region defined by a set of inequalities
of the form cixi ≤ cjxj , with all variables also satisfying
0 ≤ cixi ≤ 1. These inequalities give a partial ordering
on the variables that can be extended to

(
d1+d2
d1

)
total

orderings. By Lemma 5.2, these total orderings yield
distinct path simplices that together triangulate P1 ×
P2. 2

As a special case of Lemma 5.5, a box in IRd (which
is a product of d one-dimensional simplices) can be
triangulated by d! path simplices. Incidentally, every
triangulation of the product of two simplices has the
same number of simplices [8, 12].

5.3 Oriented Path Simplices. In our final trian-
gulation algorithm we will need to glue together several
product triangulations. In order to ensure consistency,
we orient simplex edges.

Definition 5. An orientation of a path simplex is an
assignment of directions to edges, in such a way that the
resulting edge digraph is acyclic and the path defining
the simplex is a directed path.

Since the edges of a simplex form a complete graph,
a path simplex is oriented if and only if its edges are
acyclically oriented with the source and sink equal to
the two vertices v0 and vd on the long diagonal. We say
that a triangulation of path simplices is oriented when
the edges are given directions so that each simplex is
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oriented. The next two lemmas show that product tri-
angulation can be extended to oriented path simplices.
Finally, Lemma 5.8 will be used by our algorithm to
produce an initial oriented path-simplex triangulation.

Lemma 5.6. Every simplex of the product triangulation
of P1×P2 contains vertices v0×w0 and vd1×wd2 , where
v0vd1 is the long diagonal of P1 and w0wd2 is the long
diagonal of P2.

Proof. Each such simplex is defined by some inequalities
cixi ≤ cjxj , sufficient to totally order the variables,
together with the inequalities 0 ≤ cixi ≤ 1. These
inequalities are all satisfied if every cixi is zero, giving
point v0 × w0, or if every cixi is one, giving point
vd1 × wd1 . 2

Lemma 5.7. If P1 and P2 are each oriented with source
at the origin, then the simplices in the product triangu-
lation of P1 × P2 can all be oriented consistently with
each other.

Proof. By Lemma 5.6, the long diagonal of each such
simplex runs from v0 × w0 to vd1 × wd2 . Each simplex
has a unique acyclic orientation such that the endpoints
of the long diagonal are source and sink; moreover, since
every undirected graph has some acyclic orientation
with a given source and sink, these unique orientations
give an acyclic orientation of the graph formed by all
edges in the triangulation. 2

Lemma 5.8. Let ∆ be a barycentric subdivision of a
fully self-centered triangulation. Then ∆ can be ori-
ented.

Proof. In barycentric subdivision, one vertex is added
in the center of each face of the original triangulation.
The new vertex inside face f is then connected to the
centers of all the lower-dimensional faces bounding f .
Directing each edge from the higher-dimensional face
to the lower-dimensional face gives an acyclic graph, in
which orthogonal paths—those paths that visit centers
of faces of each dimension—are consistently oriented. 2

5.4 Triangulation of Point Sets. We are now
ready to describe our triangulation algorithm.

Theorem 5.1. Any point set in IRd can be triangulated
with O(ndd/2e) path simplices.

Proof. We prove by induction that there is such an ori-
ented triangulation. For d = 1 the result is trivial. For
d = 2 either a quadtree-based algorithm [6] or the recent
nonobtuse triangulation algorithm for polygons [7] can
be used to produce a linear complexity triangulation

with no obtuse triangles. Lemma 5.8 shows that the
barycentric subdivision of a nonobtuse triangulation is
an oriented triangulation of two-dimensional path sim-
plices (right triangles).

For higher values of d, we project the points perpen-
dicularly to two coordinate axes to produce a point set
in IRd−2, which by induction has an oriented triangula-
tion ∆ with O(ndd/2e−1) path simplices. If we project
the original point set perpendicularly to the remaining
axes we get a point set in IR2, which has an oriented
triangulation ∆′ with linear complexity.

The product ∆ × ∆′ is a polyhedral subdivision
containing O(ndd/2e) products of path simplices and the
original input point set as a subset of the vertices. By
Lemmas 5.5 and 5.7 we can further triangulate each
cell in ∆ × ∆′ using path simplices, and orient each
simplex consistently with the orientations in ∆ × ∆′.
Each face shared by a pair of adjacent cells in ∆×∆′ is
subdivided identically by each cell, due to the consistent
orientations, so the triangulations of cells can be put
together to form a triangulation of the entire product.
Since the orientations in ∆ and ∆′ are consistent, we
also have a consistent orientation in ∆×∆′, thus proving
the induction hypothesis and the theorem. 2

We note that consistent orientations are crucial: as
shown in Figure 2, five isosceles right triangles arranged
around a common center point form a two-dimensional
triangulation that cannot be consistently oriented, and
the product of this triangulation by an interval produces
a collection of right prisms that cannot be triangulated
by path simplices without additional Steiner points.

6 Only Acute Dihedrals

One might ask whether Theorem 5.1 can be strength-
ened to bound the dihedrals below 90◦ − ε for some
ε > 0. We now show that if we retain a strongly poly-
nomial complexity bound, such improvements are not
possible.

Lemma 6.1. There is some constant ε′ (depending on ε
and d) such that every simplex in IRd with no dihedral
angle larger than 90◦ − ε has aspect ratio at most 1/ε′.

Proof. Let S be a simplex with all dihedrals smaller
than 90◦−ε. Then the dihedrals of any facet f of S must
be smaller than 90◦ − ε. By induction on dimension,
facet f has bounded aspect ratio.

Now let us consider a specific f , the facet of S most
distant from its opposite vertex v. Vertex v cannot be
too distant from f (more than a constant times the
diameter of f), because it lies in the simplex bounded
by hyperplanes forming dihedral angles of 90◦ − ε with
f . And vertex v cannot be too close to f (less than a
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?

Figure 2: (a) A path-simplex triangulation that cannot be oriented. (b) Its product with an interval.

constant times the diameter of f), or else v would not
be most distant from its opposite facet. 2

Bern et al. [6] gave a lower bound for bounded
aspect ratio triangulation. Combining this lower bound
with Lemma 6.1 gives the following result.

Theorem 6.1. There are point sets such that every
triangulation with maximum dihedral at most 90◦−ε has
complexity Ω(n logA), where A is the maximum aspect
ratio of a simplex in the Delaunay triangulation. 2

Quadtree-based methods can be used to achieve a
matching O(n logA) upper bound on the complexity
of a bounded aspect ratio triangulation, although it is
unknown whether these triangulations can also achieve
dihedrals below 90◦ − ε. The analogous problem in two
dimensions has a solution: Bern et al. [6] showed how to
compute two-dimensional triangulations of complexity
O(n logA) with maximum angle at most 80◦.

7 Conclusions and Open Problems

We have extended work on two-dimensional bounded-
angle triangulation to point sets in arbitrary dimension.
A nontrivial part of this work was simply finding the
appropriate generalization of nonobtuse triangulation;
path simplices now seem inevitable. An interesting
and difficult open problem is to extend bounded-angle
triangulation to polyhedra.

There are also many open questions specifically
concerning the techniques used in this paper. What
are the best dihedral bounds that can be achieved with
the linear-complexity quadtree technique? And with the
O(n logA)-complexity quadtree technique?

Can we improve our O(ndd/2e) bounds on the com-
plexity of nonobtuse triangulation? If we could achieve
an improvement in some dimension using path (or other
fully self-centered) simplices, the improvement would
carry over to higher dimensions by the product con-
struction of Theorem 5.1.
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