Computing the Depth of a Flat

Marshall Bern
Xerox PARC
and
David Eppstein
UC Irvine

Robust Regression

Given data with dependent and independent vars

Describe dependent varsasfunction of indep. ones

Should be robust against arbitrary outliers

Prefer di stance-free methods for robustness agai nst skewed and data-dependent noise

Example: Data Depth
 (no variables independent)

Fit a point to a cloud of data points

Depth of a fit x
$=\min \#$ data points in halfspace containing x

Tukey median
$=$ point with max possible depth

Known Results for Data Depth

Tukey median has depth $\geq\left\lceil\frac{n}{d+1}\right\rceil$ [Radon 1946]

Deep (but not optimally deep) point can be found in time polynomial in n and d
[Clarkson, Eppstein, Miller, Sturtivant, Teng 1996]

Deepest point can be found in time $O\left(\mathrm{n}^{\mathrm{d}}\right)$
(linear program with that many constraints)

Computing the depth of a point is
NP-completefor variabled [J ohnson \& Preparata 1978]
$\mathrm{O}\left(\mathrm{n}^{\mathrm{d}-1}+\mathrm{n} \log \mathrm{n}\right)$ for fixed d [Rousseeuw \& Struyf 1998]

Example: Regression Depth

 (all but one variable independent)[Hubert \& Rousseeuw 1998]

Fit a hyperplane to a cloud of data points

Nonfit $=$ vertical hyperplane
(doesn't predict dependent variable)

Depth of a fit = min \# data points crossed while moving to a nonfit

Known Results for Regression Depth

Deepest hyperplane has depth $\geq\left\lceil\frac{n}{d+1}\right\rceil$
[Amenta, Bern, Eppstein, Teng 1998; Mizera 1998]

Deepest hyperplane can be found in time $\mathrm{O}\left(\mathrm{n}^{\mathrm{d}}\right)$ (breadth first search in arrangement)

Planar deepest line can be found in $\mathrm{O}(\mathrm{n} \operatorname{logn})$
[van Kreveld et al. 1999; Langerman \& Steiger 2000]

Computing the depth of a hyperplane is NP-complete for variable d [Amenta et al. 1998] $\mathrm{O}\left(\mathrm{n}^{\mathrm{d}-1}+\mathrm{n} \log \mathrm{n}\right)$ for fixed d [Rousseeuw \& Struyf 1998]

Multivariate Regression Depth

 (any number k of independent variables)[Bern \& Eppstein 2000]

Definition of depth for k-flat

Equals data depth for $\mathrm{k}=0$

Equals regression depth for $k=d-1$

Deepest flat has depth $\Omega(\mathrm{n})$
Conjecture: depth $\geq\left\lceil\frac{\mathrm{n}}{(\mathrm{k}+1)(\mathrm{d}-\mathrm{k})+1}\right\rceil$
true for $k=0, k=1, k=d-1$

New Results

Computing the depth of a k-flat is $\mathrm{O}\left(\mathrm{n}^{\mathrm{d}-2}+\mathrm{n} \log \mathrm{n}\right)$ when $0<\mathrm{k}<\mathrm{d}-1$

Saves a factor of n compared to
similar results for regression depth, data depth

Deterministic O($n \log n$) for lines in space ($k=1, d=3$)

Randomized $\mathrm{O}\left(\mathrm{n}^{\mathrm{d}-2}\right)$ for all other cases

Likely can be derandomized using ϵ-net techniques

Projective Geometry

Augment Euclidean geom. by "points at infinity" One infinite point per family of parallel lines Set of infinite pointsforms "hyperplaneat infinity"

Equivalently: view hyperplanes and points as equators and pairs of poles on a sphere

Nonfit $=k$-flat touching some particular ($d-k-1$)-flat at infinity

Projective Duality

Incidence-preserving correspondence between k-flats and ($\mathrm{d}-\mathrm{k}-1$)-flats

Cloud of data points becomes arrangement of hyperplanes

In coordinates (two dimensional case):

$$
\begin{aligned}
(a, b) & \mapsto y=a x+b \\
y=m x+c & \mapsto(-m, c)
\end{aligned}
$$

Crossing Distance

Crossing di stance between a j-flat and a k-flat in a hyperplane arrangement
$=$ minimum number of hyperplanes crossed by any line segment connecting the two flats

(incl. line segments "through infinity")

Definition of Depth

Depth of a k -flat F

$=$ crossing distance between dual(F) and dual ($(d-k-1)$-flat at infinity)

In primal space, minimum \# data points in double wedge bounded by F and by ($(\mathrm{d}-\mathrm{k}-1)$-flat at infinity

Nonfit al ways has depth zero (zero-length line seg, empty wedge)

Parametrizing Line Segments

Let F_{1}, F_{2} be flats (unoriented projective spaces)
If $F_{1} \cap F_{2}=\emptyset$, any pair $\left(p_{1} \in F_{1}, p_{2} \in F_{2}\right)$ determines unique line through them

Need one more bit of information
to specify which of two line segments: double cover (oriented proj. spaces) $\mathrm{O}_{1}, \mathrm{O}_{2}$

Two-to-one correspondence $\mathrm{O}_{1} \times \mathrm{O}_{2} \mapsto$ line segments

When does a segment cross a hyperplane?

Set of line segments crossing hyperplane H is $h_{1} \oplus h_{2}$ where h_{i} are hal fspaces in O_{i} with boundary $\left(\mathrm{h}_{\mathrm{i}}\right)=\mathrm{H} \cap \mathrm{O}_{\mathrm{i}}$

Or more simply, disjoint union of two sets halfspace \times halfspace

Line seg w/ fewest crossings
= point covered fewest times by such sets

Algorithm for $\mathrm{k}=1, \mathrm{~d}=3$:

Want point in torus $\mathrm{O}_{1} \times \mathrm{O}_{2}$ covered by fewest rectangles $\mathrm{h}_{1} \times \mathrm{h}_{2}$

Sweep left-right (i.e., by O_{1}-coordinate), use segment tree to keep track of shallowest point in sweep line

Time: O(nlogn)

Algorithm for Higher Dimensions:

Replace segment tree by history tree of randomized incremental arrangement

Replace sweep by traversal of history tree
$\mathrm{O}\left(\mathrm{n}^{\mathrm{j}+\mathrm{k}-1}\right)$ for crossing distance between j-flat and k -flat $\Rightarrow \mathrm{O}\left(\mathrm{n}^{\mathrm{d}-2}\right)$ for flat depth

Conclusions

Presented efficient algorithm for testing depth

Many remaining open problems in al gorithms, combinatorics, \& statistics

How to find deepest flat efficiently?
What is its depth?
Can we find deep flats efficiently when d is variable?

Do local optimization heuristics work?
Are similar ideas of depth useful for nonlinear regression?

