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Planar graphs have many nice properties

I They have nice drawings (no crossings, etc.)

I They are sparse (# edges ≤ 3n − 6)

I They have small separators, or equivalently low treewidth
(both O(

√
n), important for many algorithms)
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But many real-world graphs are non-planar

Even road networks, defined on 2d surfaces,
typically have many crossings [Eppstein and Goodrich 2008]
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Almost-planarity

Find broader classes of graphs
defined by having nice drawings

(bounded genus,
few crossings/edge,

right angle crossings, etc.)

Prove that these graphs still
have nice properties

(sparse, low treewidth, etc.)
RAC drawings of K5 and K3,4



k-planar graph properties

k-planar: ≤ k crossings/edge

# edges = O(n
√
k)

[Pach and Tóth 1997]

⇒ O(nk3/2) crossings

Planarize and apply planar
separator theorem

⇒ treewidth is O(n1/2k3/4)
[Grigoriev and Bodlaender 2007]

Is this tight?

1-planar drawing of the
Heawood graph



Lower bound for k-planar treewidth

√
n

k
×
√

n

k
× k grids are always k-planar

Treewidth = Ω

(√
n

k
· k
)

= Ω
(√

kn
)

when k = O(n1/3)

Subdivided 3-regular expanders give same bound for k = O(n)



Key ingredient: layered treewidth

Partition vertices into layers such that, for each edge,
endpoints are at most one layer apart

Combine with a tree decomposition
(tree of bags of vertices, each vertex in contiguous subtree of bags,

each edge has both endpoints in some bag)

Layered width = maximum intersection of a bag with a layer



Upper bound for k-planar treewidth

I Planarize the given k-planar graph G

I Planarization’s layered treewidth is ≤ 3 [Dujmović et al. 2013]

I Replace each crossing-vertex in the tree-decomposition by two
endpoints of the crossing edges

I Collapse groups of (k + 1) consecutive layers in the layering

I The result is a layered tree-decomposition of G
with layered treewidth ≤ 6(k + 1)

I Treewidth = O(
√
n · ltw) [Dujmović et al. 2013] = O(

√
kn).



k-Nonplanar upper bound

Suppose we combine k-planar and bounded genus by allowing
embeddings on a genus-g surface that have ≤ k crossings/edge?

I Replace crossings by vertices (genus-g -ize)

I Genus-g layered treewidth is ≤ 2g + 3 [Dujmović et al. 2013]

I Replace each crossing-vertex in the tree-decomposition by two
endpoints of the crossing edges

I Collapse groups of (k + 1) consecutive layers in the layering

I The result is a layered tree-decomposition of G
with layered treewidth O(gk)

I Treewidth = O(
√
n · ltw) = O(

√
gkn).



k-Nonplanar lower bound

Find a 4-regular expander graph with O(g) vertices

Embed it onto a genus-g surface

Replace each expander vertex by

√
n

gk
×
√

n

gk
× k grid

When n = Ω(gk3) (so expander edge ↔ small side of grid)
the resulting graph has treewidth Ω(

√
gkn)



Can sparseness alone imply nice embeddings?

Suppose we have a graph with n vertices and m edges

Then avoiding crossings may require genus Ω(m)

and embedding in the plane may require Ω(m) crossings/edge

But maybe by combining genus and crossings/edge
we can make both smaller?

+ = ?



Lower bound on sparse embeddings

For g sufficiently small w.r.t. m,
embedding an m-edge graph on a genus-g surface

may require Ω

(
m2

g

)
crossings

[Shahrokhi et al. 1996]

⇒ Ω

(
m

g

)
crossings per edge

There exist embeddings that get within an O(log2 g) factor of this
total number of crossings [Shahrokhi et al. 1996]

But what about crossings per edge?



Surfaces from graph embeddings (overview)

Embed the given graph G onto
another graph H, with:

I Vertex of G → vertex of H

I Edge of G → path in H

I Paths are short

I Paths don’t cross
endpoints of other edges

I Each vertex of H crossed
by few paths

I H has small genus
edges− vertices + 1

Replace each vertex of H by a
sphere and each edge by a
cylinder ⇒ surface embedding
with few crossings/edge



Surfaces from graph embeddings (details)

We build the smaller graph H in two parts:

Load balancing gadget

Connects n vertices of G to O(g) vertices in rest of H

Adds ≤ g/2 to total genus

Groups path endpoints into evenly balanced sets of size Θ(m/g)

7 1 4 4 1 4 2 1 3 2 1

7 5 5 4 3 3 2 1

72 1

4

33

5 5

8 8 7 7

Expander graph

Adds ≤ g/2 to total genus

Allows paths to be routed with length O(log g) and with
O(m log g/g) paths crossing at each vertex [Leighton and Rao 1999]



Conclusions

n-vertex k-planar graphs have treewidth Θ(
√
kn)

n-vertex graphs embedded on genus-g surfaces with k
crossings/edge have treewidth Θ(

√
gkn)

m-edge graphs can always be embedded onto genus-g surfaces

with O

(
m log2 g

g

)
crossings/edge (nearly tight)

Open: tighter bounds, other properties (e.g. pagenumber), other
classes of almost-planar graph, approximation algorithms for

finding embeddings with fewer crossings when they exist
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