
An Eigenvalue-less Eigenvector Algorithm. The eigenvectors of the real symmetric
matrix

M =

 a b c

b d e
c e f




are the real solutions (r, s, t) for the system of equations

r 2(bs + ct) + r(s2(d − a) + t2( f − a) + 2est) − (s2 + t2)(bs + ct) = 0

s2(br + et) + s(r 2(a − d) + t2( f − d) + 2crt) − (r 2 + t2)(br + et) = 0

t2(cr + es) + t (r 2(a − f ) + s2(d − f ) + 2brs) − (r 2 + s2)(cr + es) = 0.

To see why this is true, make the following substitutions into the max-min character-
istic polynomials. X X = 1

2 (−a + d + f ), Y Y = 1
2 (a − d + f ), Z Z = 1

2 (a + d − f ),
XY = −b, X Z = −c, Y Z = −e. Note that Y Y + Z Z = a, X X + Z Z = d, X X +
Y Y = f . Then observe that every (necessarily real) eigenvalue of a real symmetric
matrix is associated with a real eigenvector.

This note is dedicated to Gus Watts (1916–2000), a retired aeronautical engineer, who died shortly after crafting
for the author a tetrahedron of solid poplar through which holes were bored by a specially designed non-
wandering drill bit so that the tetrahedron could rotate freely about a rod through any of its principal axes.
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Tangent Spheres and Triangle Centers

David Eppstein

1. TANGENT SPHERES. Any four mutually tangent spheres determine six points
of tangency. We say that a pair of tangencies {ti , t j } is opposite if the two spheres
determining ti are distinct from the two spheres determining t j . Thus the six tangencies
are naturally grouped into three opposite pairs, corresponding to the three ways of
partitioning the four spheres into two pairs. Altshiller-Court [1, §630, p. 231] proved
the following result about these opposite pairs, which we use to define two new triangle
centers.

Lemma 1. The three lines through opposite points of tangency of any four mutually
tangent spheres in R

3 are coincident.
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Figure 3. A triangle ABC and its new center M .

Proof. If three spheres have a common tangency, the three lines all meet at that point;
otherwise, each sphere either contains all of or none of the other three spheres. Let the
four given spheres Si (i ∈ {1, 2, 3, 4}) have centers x̄i and radii ri . If Si contains none
of the other spheres, let Ri = r−1

i , else let Ri = −r−1
i . Then the point of tangency ti j

between spheres Si and Sj can be expressed in terms of these values as

ti j = Ri

Ri + R j
x̄i + R j

Ri + R j
x̄ j .

This is a weighted average of the two sphere centers, with weights inversely propor-
tional to the (signed) radii.

Now consider the point

M =
∑4

i=1 Ri x̄i∑4
i=1 Ri

formed by taking a similar weighted average of all four sphere centers. Then

M = R1 + R2

(R1 + R2) + (R3 + R4)
t12 + R3 + R4

(R1 + R2) + (R3 + R4)
t34,

i.e., M is a weighted average of the two tangencies t12 and t34, and therefore lies on the
line t12 t34. By a symmetric argument, M also lies on line t13 t24 and line t14 t23, so these
three lines are coincident.

A similar weighted average for three mutually externally tangent circles in the plane
gives the Gergonne point of the triangle formed by the circle centers. Altshiller-Court’s
proof is based on the fact that the lines x̄i ti j meet in triples at the Gergonne points of
the faces of the tetrahedron formed by the four sphere centers. We need the following
special case of the lemma in which the four sphere centers are coplanar:

Corollary 1. The three lines through opposite points of tangency of any four mutually
tangent circles in R

2 are coincident.
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2. NEW TRIANGLE CENTERS. Any triangle ABC uniquely determines three
mutually externally tangent circles centered on the triangle vertices; if the triangle’s
sides have length a, b, c then these circles have radii (−a + b + c)/2, (a − b + c)/2,
and (a + b − c)/2. The sides of triangle ABC meet its incenter at the three points of
tangency of these circles.

For any three such circles OA, OB , OC , there exists a unique pair of circles OS and
OS′ tangent to all three. The quadratic relationship between the radii of the resulting
two quadruples of mutually tangent circles was famously memorialized in Frederick
Soddy’s poem, “The Kiss Precise”.

The set R
2 \ (OA ∪ OB ∪ OC) has five connected components, three of which are

disks and the other two of which are three-sided regions bounded by arcs of the three
circles; we distinguish OS and OS′ by requiring OS to lie in the bounded three-sided
region and OS′ to lie in the unbounded region. Note that OS is always externally tan-
gent to all three circles, but OS′ may be internally or externally tangent depending on
the positions of points ABC . If OA, OB , and OC have a common tangent line, then we
consider OS′ to be that line, which we think of as an infinite-radius circle intermediate
between the internally and externally tangent cases.

We can then use Corollary 1 to define two triangle centers: let M denote the point
of coincidence of the three lines tAS tBC , tBS tAC , and tC S tAB determined by the pairs
of opposite tangencies of the four mutually tangent circles OA, OB , OC , and OS (Fig-
ure 3), and similarly let M ′ denote the point of coincidence of the three lines tAS′ tBC ,
tBS′ tAC , and tC S′ tAB determined by the pairs of opposite tangencies of the four mutu-
ally tangent circles OA, OB , OC , and OS′ . The definitions of M and M ′ do not depend
on the ordering of the vertices nor on the scale or position of the triangle.

Despite their simplicity of definition, and despite the large amount of work that has
gone into triangle geometry (see [2] and [3]), the centers M and M ′ do not appear in
the lists of over 400 known triangle centers collected by Clark Kimberling and Peter
Yff (personal communications).

3. RELATIONS TO KNOWN CENTERS. M and M ′ are not the only triangle cen-
ters related to the Soddy circles OS and OS′ . The centers S and S′ of the Soddy circles
are known (see [4] or [5]); S is also the point of coincidence of the three lines A tAS,
B tBS, C tC S and similarly for S′. The Gergonne point Ge can be defined in a similar
way as the point of coincidence of the three lines A tBC , B tAC , and C tAB . It is known
that S and S′ are collinear with and harmonic to Ge and I , where I denotes the in-
center of triangle ABC [5]. Similarly Ge and I are collinear with and harmonic to the
isoperimetric point and the point of equal detour [6].

Theorem 1. M and M ′ are collinear with and harmonic to Ge and I .

Proof. By using ideas from our proof of Lemma 1, we can express M as a weighted
average of S and Ge:

M = RA A + RB B + RCC

RA + RB + RC + RS
+ RS S

RA + RB + RC + RS

= RA + RB + RC

RA + RB + RC + RS
Ge + RS

RA + RB + RC + RS
S.

Hence, M is collinear with S and Ge. Collinearity with Ge and I follows from the
known collinearity of S with Ge and I . A symmetric argument applies to M ′.
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We omit the proof of harmonicity, which we obtained by manipulating trilinear
coordinates of the new centers in Mathematica. See http://www.ics.uci.edu/
~eppstein/junkyard/tangencies/trilinear.pdf for the detailed calcula-
tions.

A simple compass-and-straightedge construction for the Soddy circles and our new
centers M and M ′ can be derived from the following further relation:

Theorem 2. Let �A denote the line through point A, perpendicular to the opposite
side BC of the triangle ABC. Then the two lines �A and tAS tBC and the circle OA are
coincident.

Proof. Let OD be a circle centered at tBC , such that OA and OD cross at right angles.
Then inverting through OD produces a figure in which OB and OC have been trans-
formed into lines parallel to �A, while OA is unchanged. Since the image of OS is
tangent to OA and to the two parallel lines, it is a circle congruent to OA and centered
on �A. Therefore, the inverted image of tAS is a point p where �A and OA cross. Points
tBC , tAS, and p are collinear since one is the center of an inversion swapping the other
two.

Since �A, OA, and tBC are all easy to find, one can use this result to construct the line
tAS tBC , and symmetrically the lines tBS tAC and tC S tAB , after which it is straightforward
to find OS, S, and M . A symmetric construction exists for OS′ , S′, and M ′.
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Acyclic and Totally Cyclic Orientations
in Planar Graphs

Marc Noy

Let G be a planar graph imbedded in the plane, and let G∗ be its dual graph. The
graph G∗ has one vertex for every face of G, and for every edge e of G there is a
corresponding edge e∗ of G∗ joining the two faces adjacent to e. If we draw each e∗
so that it crosses only the edge e, then G∗ becomes a planar graph; see Figure 4. It
is well known that G and G∗ have the same number of spanning trees; see [2] for a
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