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Tradeoff in label size for map labeling

Too small: hard to find
among other features

Too big: overlap each other,
difficult to separate

Depends on local density more than absolute size



Goal: Find maximum feasible label size

Formally: Place non-overlapping circles with given centers,
maximizing some objective function. But what to maximize?

Max min radius:
easy (min dist/2)

but too global (one
close pair makes all

circles small)

Max total area:
too unbalanced,

leads to zero-radius
circles

Max sum of radii:
connected circles

can stay balanced,
disconnected circles
vary independently



Detour through abstract metric spaces

Metric space: points with a symmetric non-negative distance
function that obeys the triangle inequality: a shortest path from
x to y is never longer than a path from x to y passing through z

d = 39 d = 25

d = 56 < 39 + 25

Example: Any finite set of points in R2 and their distances



Metric balls and when they overlap

Wrong definition: Ball = {points within distance r of center}
Balls overlap when their intersection is nonempty

Difficult to use computationally
Changes when you embed the space into one with more points

r = 3

Right definition: Ball = pair (center,radius)
Balls overlap when sum of radii > distance of centers



Metric radius-sum maximization

Given a finite metric space (X , d)
(the circle centers and their distances):

I Choose a radius ri ≥ 0
for each center xi in X

I Obey non-overlapping circle
constraints ri + rj ≤ d(xi , xj)

I Maximize
∑

ri

This is a linear program!

. . . but does it have a combinatorial solution?



Linear programming duality

Every linear program has a dual with:

I a variable for each primal constraint

I a constraint for each primal variable

I the same solution value

Our linear program’s dual is:

I Find a weight wij ≥ 0 for each pair (i , j)

I With each point xi having total weight
∑

j wij ≥ 1

I Minimizing
∑

i ,j wij d(xi , xj)

This is the LP relaxation of minimum-length perfect matching on
the complete graph of the given center points

Matching: all weights wij are 0 or 1; matched edges have weight 1

Relaxation: optimal weights may be 0, 1, or 1/2



What the dual of our LP actually solves

Choose 2wij edges between each pair of points (xi , xj)

The result is the minimum-length 2-regular multigraph over Kn

(a partition of the vertices into odd cycles and 2-cycles)

Equivalent (up to unimportant choice of orientation for >2-cycles)
to minimum-length matching of the bipartite double cover
K2 × Kn, a graph with two vertices for each input point xi



From matching back to optimal radii

Most bipartite matching algorithms are primal-dual, giving both
matched edges and variables of the dual of the LP relaxation

Applying this to matching on K2 × Kn gives us two dual variables
per vertex: radii of red and blue circles such that each red-blue

pair with different centers are non-overlapping

Averaging these two variables gives one optimal radius per center



A better graph than the complete graph

We need a supergraph of the optimal 2-regular multigraph

...but it doesn’t need to be the complete graph

Instead, use intersection graph of
balls with radius = nearest neighbor distance



Properties of nearest-neighbor intersection graph

I Smallest disk
intersects O(1) others

I #edges = O(n)

I Separator theorem:
split into constant-
factor-smaller pieces
by removing
O(n1−1/d) disks

I Can be constructed in
time O(n log n)
(for constant d)



Separator-based weighted bipartite matching

I Construct separator hierarchy

I With separator hierarchy already constructed, shortest paths
take linear time [Henzinger et al., JCSS 1997]

I Recursively solve weighted matching for two subgraphs whose
intersection is separator and whose union is the whole graph

I For each separator vertex, set dual variable to min from two
subproblems and keep matched edge from that subproblem

I Use fast shortest path algorithm to find augmenting paths
(≤ 1 per separator vertex) until no more can be found

Time = separator size× O(n)

Shaves a log from best published bound by Lipton & Tarjan (1980)

Computes dual variables, not just the matching itself



Putting it all together

Weighted matching on K2 × nearest-neighbor intersection graph

Average two dual variables per point to get optimal radii

Time O(n3) in metric spaces, O(n2−1/d) in Euclidean spaces

Optimal solution = odd cycles + pairs of tangent disks


