Algorithms for Drawing Media

David Eppstein

Univ. of California, Irvine
Donald Bren School of Information and Computer Sciences

Hypercubes

Cartesian product of unit intervals
= convex hull of points with all coordinates zero or one
Hamming distance (L_{1} metric) between vertices
= number of coordinates at which they differ

Partial cube = graph with distance-preserving embedding onto a hypercube

Partial cubes:

Not partial cubes:

Medium = state-transition system with partial cube connectivity
(used to model voter states in political choice theory)

Examples of partial cubes

Arrangement of hyperplanes
vertices = arrangement cells
edges = adjacency between cells
Topological orderings of DAGs
vertices = topological orderings edges = swap vertices adjacent in order but nonadjacent in graph

Acyclic orientations of undirected graph vertices $=$ orientations
edges $=$ reverse orientation of single edge
Weak orderings (total ordering with ties) of n-item set
vertices = orderings
edges = split or merge group of tied items

New results:

Two drawing algorithms for partial cube graphs \& media

Embed into low-dim lattice then project onto the plane
Polynomial time
Works for any partial cube
Drawing has crossings but good separation properties

Planar drawing with all faces = symmetric polygons
Linear time
Graphs with such drawings = subset of partial cubes

Minimum-dimension lattice embedding

[Eppstein, Eur. J. Combinatorics, to appear]
Define semicube graph of partial cube vertices = halves of underlying hypercube edge = two halves cover partial cube with nonempty intersection

Min dimension of integer lattice containing the partial cube = hypercube dimension - \# edges in maximum matching of semicube graph

From lattice embeddings to drawings

$$
\text { If min dimension }=2
$$

Already have a planar drawing with square faces
Unit-distance vertex separation, right angle separation

If \min dimension $=3$
Search for main-diagonal projection distinguishing all vertices from each other

Gives planar drawing with 60-120 rhombus faces
Good vertex and angle separation

From lattice embeddings to drawings

If min dimension > 3 or no 3d planar projection exists
For each dimension i of lattice choose integer X_{i}, Y_{i}

Values X_{i} chosen in order by i so that
sets of vertices with same coords $\geq i$ project to distance ≥ 1 apart

Values Y_{i} chosen similarly but in reverse order by i
separating vertices with same coords $\leq i$

Project lattice point v to $(X \bullet v, Y \bullet v)$

Properties of projected lattice drawings

All vertices have distinct integer positions

All edges are drawn as straight line segments

Unit separation between vertices and nonadjacent edges

Edges drawn parallel iff they are parallel in lattice (so lattice structure easy to recover from drawing)

Quadratic area bound for drawings of hypercubes (but not necessarily for partial cubes)

More examples of projected lattice drawings

Face-symmetric planar drawings

Planar straight line graph drawing
All faces (except the outer one) are centrally symmetric convex polygons

Graphs with face-symmetric drawings are dual to weak pseudoline arrangements

Arrangement of curves, cross at most once per pair, endpoints in outer face
Form by connecting midpoints of opposite edges in each face

Therefore, all such graphs are partial cubes

Weak pseudoline arrangements are dual to graphs with face-symmetric drawings

Choose vector for each pseudoline so no $\mathbf{> 1 8 0}$-degree concavities
Space curve endpoints equally around large circle
Choose unit vector perpendicular to segment between curve endpoints

Apply lattice projection method to hypercube embedding with dimension = \# curves in arrangement

Finding a face-symmetric drawing

Find the dual weak pseudoline arrangement
Linear-time algorithm: based on SPQR tree
Implemented (quadratic) algorithm: construct arrangement incrementally (one curve per dimension of hypercube embedding)

Choose vectors and apply vector projection

Result: can find drawing (if it exists) in O(n) time

Conclusions

Interesting special class of graphs

Two new drawing algorithms

Drawings highlight the partial cube structure of the graph
Projection method: can read lattice embedding from drawing
Face-symmetric: dual to weak pseudoline arrangement, must be partial cube

Open problems

How to test for existence of a planar lattice projection? (may not be face-symmetric)

Optimize choice of vectors for face-symmetric drawing? (e.g. to maximize angular separation)

Better area requirements for either kind of drawing?

