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Abstract. We describe algorithms for drawing media, systems of states, tokens
and actions that have state transition graphs in the form of partial cubes. Our al-
gorithms are based on two principles: embedding the state transition graph in a
low-dimensional integer lattice and projecting the lattice onto the plane, or draw-
ing the medium as a planar graph with centrally symmetric faces.

1 Introduction

Media [7, 8] are systems of states, tokens, and actions of tokens on states that arise in
political choice theory and that can also be used to represent many familiar geomet-
ric and combinatorial systems such as hyperplane arrangements, permutations, partial
orders, and phylogenetic trees. In view of their importance in modeling social and com-
binatorial systems, we would like to have efficient algorithms for drawing media as
state-transition graphs in a way that makes the action of each token apparent. In this
paper we describe several such algorithms.

Formally, amediumconsists of a finite set ofstatestransformed by the actions of
a set oftokens. A string of tokens is called amessage; we use upper case letters to
denote states, and lower case letters to denote tokens and messages, soSwdenotes the
state formed by applying the tokens in messagew to stateS. Tokent is effectivefor
S if St 6= S, and messagew is stepwise effectivefor S if each successive token in the
sequence of transformations ofS by w is effective. A message isconsistentif it does
not contain the reverse of any of its tokens. A set of states and tokens forms a medium
if it satisfies the following axioms:

1. Each tokent has a uniquereversẽt such that, for any statesS 6= Q, St= Q iff Qt̃ = S.
2. For any statesS 6= Q, there exists a consistent messagew with Sw= Q.
3. If messagew is stepwise effective forS, thenSw= S if and only if the number of

copies oft in w equals the number of copies oft̃ for each tokent.
4. If Sw= Qz, w is stepwise effective forS, z is stepwise effective forQ, and bothw

andz are consistent, thenwz is consistent.

The states and state transitions of a medium can also be viewed as a graph, and
it can be shown that these graphs arepartial cubes[12]: that is, their vertices can be
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Fig. 1.11 of the 12 pentominos represent isometric lattice embeddings of media. The twelfth, the
U pentomino, does not, because a pair of vertices that are three edges apart in the graph have
placements that are only one unit apart.

mapped to a hypercube{0,1}d in such a way that graph distance equalsL1 distance in
the hypercube. For media, we can find such a mapping by choosing arbitrarily stateS,
and assigning any stateS′ a coordinate per tokent that is 1 when a consistent path from
Sto S′ containst and 0 otherwise. Conversely, anyd-dimensional partial cube gives rise
to a medium with its vertices as states and with 2d tokens; the action of any token is to
change one of the partial cube coordinates to a zero or to a one, if it does not already
have that value and if such a change would produce another vertex of the partial cube.

We assume throughout, as in [7], that we are given as input an explicit description of
the states, tokens, and actions of a medium. However, our algorithms are equally appli-
cable to any partial cube or family of partial cube graphs such as the median graphs. If a
partial cube representation is not given, it can be found (and the corresponding medium
constructed) in timeO(mn) via known algorithms [1,11,12,15].

2 Lattice dimension

As we have seen, media can be embeddedisometrically(that is, in a distance-preserving
way) into hypercubes{0,1}d (with L1 distance), and hypercubes can be embedded iso-
metrically into integer latticesZd, so by transitivity media can be embedded isometri-
cally onto integer lattices. Conversely any finite isometric subset of an integer lattice
forms a partial cube and corresponds as described above to a medium.

If the dimension of the lattice in which a medium is embedded is low, we may be
able to use the embedding as part of an effective drawing algorithm. For instance, if a
mediumM can be embedded isometrically onto the planar integer latticeZ2, then we
can use the lattice positions as vertex coordinates of a drawing in which each edge is
a vertical or horizontal unit segment (Figure 1). IfM can be embedded isometrically
onto the cubic latticeZ3, in such a way that the projection onto a plane perpendicular to
the vector(1,1,1) projects different vertices to distinct positions in the plane, then this
projection produces a planar graph drawing in which the edges are unit vectors at 60◦

and 120◦ angles (Figure 10, center).
Recently, we showed that thelattice dimensionof a medium or partial cube, that is,

the minimum dimension of a latticeZd into which it may be isometrically embedded,
may be determined in polynomial time [6]. We now briefly our algorithm for finding
low-dimensional lattice embeddings.
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Fig. 2.A medium, left, and its semicube graph, right. From [6].

Fig. 3.A matching in the semicube graph (left, solid edges) completed to a set of paths by adding
edges from each semicube to its complement (left, dashed edges), and the corresponding lattice
embedding of the original medium (right). From [6].

Suppose we are given an undirected graphG and an isometryµ : G 7→ {0,1}τ from
G to the hypercube{0,1}τ of dimensionτ. Let µi : G 7→ {0,1} map each vertexv of
G to theith coordinate ofµ(v), and assume that each coordinateµi takes on both value
0 and 1 for at least one point . FromG and µ we can define 2τ distinct semicubes
Si,χ = {v∈V(G) | µi(v) = χ}, for any pairi,χ with 0≤ i < τ andχ ∈ {0,1}. We now
construct a new graph Sc(G), which we call thesemicube graphof G. We include
in Sc(G) a set of 2τ verticesui,χ, 0≤ i < τ and χ ∈ {0,1}. We include an edge in
Sc(G) betweenua,b anduc,d wheneverSa,b∪Sc,d = V(G) andSa,b∩Sc,d 6= /0; that is,
whenever the corresponding two semicubes cover all the vertices ofG non-disjointly.
Although defined from some particular isometryµ, the semicube graph turns out to be
independent of the choice ofµ. An example of a partial cubeG and its semicube graph
Sc(G) is shown in Figure 2. The main result of [6] is that the lattice dimension ofG can
be determined from the cardinality of a maximum matching in Sc(G):

Theorem 1 (Eppstein [6]).If G is a partial cube with isometric dimensionτ, then the
lattice dimension of G is d= τ−|M| where M is any maximum matching inSc(G).

More specifically, we can extend a matching in Sc(G) to a collection ofd paths
by adding to the matching an edge from each semicube to its complement. Thedth
coordinate of a vertex in the lattice embedding equals the number of semicubes that
contain the vertex in even positions along thedth path.

We can use this result as part of a graph drawing system, by embedding our in-
put medium in the lattice of the lowest possible dimension and then projecting that
lattice onto the plane. For two-dimensional lattices, no projection is needed, and we

3



have already discussed projection of certain three-dimensional integer lattices onto two-
dimensional triangular lattices. We discuss more general techniques for lattice projec-
tion in the next section. It is essential for this result that we require the embedding to
be isometric. Even for trees it is NP-complete to find an embedding intoZ2 with unit
length edges that is not required to be distance-preserving [2]. However a tree embeds
isometrically inZ2 if and only if it has at most four leaves [14].

3 Drawing high-dimensional lattice graphs

Two-dimensional lattice embeddings of media, and some three-dimensional embed-
dings, lead to planar graph drawings with all edges short and well separated by angles.
However, we are also interested in drawing media without low dimensional embed-
dings. We describe here a method for finding drawings with the following properties:

1. All vertices are assigned distinct integer coordinates inZ2.
2. All edges are drawn as straight line segments.
3. No edge passes closer than unit distance to a vertex that is not one of its endpoints.
4. The line segments representing two edges of the drawing are translates of each

other if and only if the two edges are parallel in the lattice embedding.
5. The medium corresponding to a Cartesian product of intervals[a0,b0]× [a1,b1]×

·· · [ad−1,bd−1] is drawn in areaO(n2), wheren is the number of its states.

Because of property 4, the lattice embedding and hence the medium structure of
the state transition graph can be read from the drawing. To achieve these properties, we
mapZd to Z2 linearly, by choosing wo vectorsX andY ∈ Zd, and mapping any point
p ∈ Zd to the point(X · p,Y · p) ∈ Z2. We now describe how these vectorsX andY
are chosen. IfL ⊂ Zd is the set of vertex placements in the lattice embedding of our
input medium, define aslice Li, j = {p∈ L | pi = j} to be the subset of vertices having
ith coordinate equal toj. We choose the coordinatesXi sequentially, from smalleri to
larger, so that all slicesLi, j are separated from each other in the range ofx-coordinates
they are placed in. Specifically, setX0 = 0. Then, fori > 0, define

Xi = max
j

( min
p∈Li, j

i−1

∑
k=0

Xkpk− max
q∈Li, j−1

i−1

∑
k=0

Xkqk),

where the outer maximization is over allj such thatLi, j andLi, j−1 are both nonempty.
We defineY similarly, but we choose its coordinates in the opposite order, from largeri
to smaller:Yd−1 = 0, and

Yi = max
j

( min
p∈Li, j

d−1

∑
k=i+1

Xkpk− max
q∈Li, j−1

d−1

∑
k=i+1

Xkqk).

Theorem 2. The projection method described above satisfies the properties 1–5 listed
above. The method’s running time on a medium with n states andτ tokens is O(nτ2).
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Fig. 4.Left: lattice drawing of six-dimensional hypercube; right: a drawing with geometric thick-
ness two is possible, but the vertex placement is less regular and edges formed by actions of the
same token are not all drawn parallel.

Proof. Property 2 and property 4 follow immediately from the fact that we our drawing
is formed by projectingZd linearly ontoZ2, and from the fact that the formulas used to
calculateX andY assign different values to different coordinates of these vectors.

All vertices are assigned distinct coordinates (property 1): for, if verticesp andq
differ in the ith coordinates of their lattice embeddings, they belong to different slices
Li, j andLi, j ′ and are assignedX coordinates that differ by at leastXi (unlessi = Xi = 0
in which case theirY coordinates differ by at leastYi).

The separation between vertices and edges (property 3) is almost equally easy to
verify: consider the case of three verticesp, q, andr, with an edgepq to be separated
from r. Sincep andq are connected by an edge, their lattice embeddings must differ
in only a single coordinatei. If r differs from p andq only in the same coordinate, it
is separated from edgepqby a multiple of(Xi ,Yi). Otherwise, there is some coordinate
i′ 6= i in whichr differs from bothp andq. If i′ > i, the construction ensures that the slice
Li′, j containingpq is well separated in thex-coordinate from the sliceLi′, j ′ containing
r, and if i′ < i these slices are well separated in they coordinate.

Finally, we consider property 5. For Cartesian products of intervals, in the formula
for Xi , the value for the subexpression minp∈Li, j ∑i−1

k=0Xkpk is the same for allj consid-

ered in the outer maximization, and the value for the subexpression maxq∈Li, j−1 ∑i−1
k=0Xkqk

is also the same for allj considered in the outer maximization, because the slices are
all just translates of each other. Therefore, there is no gap inx-coordinates between
vertex placements of each successive slice of the medium. Since our drawings of these
media have vertices occupying contiguous integerx coordinates and (by a symmetric
argument)y coordinates, the total area is at mostn2.

The time for implementing this method is dominated by that for finding a minimum-
dimension lattice embedding of the input graph, which can be done in the stated time
bound [6]. ut

When applied to a hypercube, the coordinatesXi become powers of two, and this
vertex placement algorithm produces a uniform placement of vertices (Figure 4, left)
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Fig. 5. Left: a graph with a face-symmetric planar drawing; center: connecting opposite pairs of
edge midpoints produces a weak pseudoline arrangement; right: the arrangement.

closely related to the Hammersley point set commonly used in numerical computation
and computer graphics for its low discrepancy properties [16]. Other examples of draw-
ings produced by this method can be seen in Figures 6, 9, and 10(left).

4 Face-symmetric planar drawings

Our two-dimensional and projected three-dimensional lattice drawings are planar (no
two edges cross) and each internal face is symmetric (squares for two-dimensional lat-
tices, 60◦-120◦ rhombi and regular hexagons for projected three-dimensional lattices).
We now describe a different type of drawing of the state-transition graphs of media as
planar graphs, generalizing this symmetry property. Specifically, we seek straight-line
planar drawings in which each internal face is strictly convex and centrally symmetric;
we call such a drawing aface-symmetric planar drawing.

A weak arrangement of pseudolines[9] is a collection of curves in the plane, each
homeomorphic to a line, such that any pair of curves in the collection has at most one
point of intersection, and such that if any two curves intersect then they cross prop-
erly at their intersection point. Weak arrangements of pseudolines generalize pseudo-
line arrangements [10] and hyperbolic line arrangements, and are a special case of the
extendible pseudosegment arrangementsdefined by Chan [3]. Any weak pseudoline
arrangement withn pseudolines partitions the plane into at leastn+ 1 and at most
n(n+ 1)/2+ 1 cells, connected components of the set of points that do not belong
to any pseudoline. Any pseudoline in the arrangement can be partitioned intonodes
(crossing points) andarcs (connected components of the complement of the crossing
points); we use this terminology to avoid confusion with the vertices and edges of the
medium state-transition graphs we hope to draw. Each arc is adjacent to two cells and
two nodes. We define thedualof a weak pseudoline arrangement to be the graph having
a vertex for each cell of the arrangement and an edge connecting the vertices dual to
any two cells that share a common arc; this duality places the graph’s vertices in one-to-
one correspondence with the arrangement’s cells, and the graph’s edges in one-to-one
correspondence with the arrangement’s arcs.
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Fig. 6.Media with planar state-transition graphs but with no face-symmetric planar drawing.

Fig. 7. Converting a weak pseudoline arrangement into a face-symmetric planar drawing. Left:
arrangement drawn inside a circleO such that crossings withO are equally spaced around the
circle. Right: edges dual to arcs of`i are drawn as unit length and perpendicular to the chord
through the points wherèi crossesO.

Lemma 1. If G has a face-symmetric planar drawing, then G is the dual of a weak
pseudoline arrangement.

Lemma 2. If G is the dual of a weak pseudoline arrangement, then G is the state tran-
sition graph of a medium.

By these lemmas (the proofs of which we omit due to lack of space), every face-
symmetric planar drawing represents the state transition graph of a medium. However,
not every medium, and not even every medium with a planar state transition graph,
has such a drawing; see for instance Figure 6, the medium in Figure 9(right), and the
permutahedron in Figure 10(left) for media that have planar state transition graphs but
no face-symmetric planar drawing.

Lemma 3. If G is the dual of a weak pseudoline arrangement, then G has a face-
symmetric planar drawing.

Proof. Let G be dual to a weak pseudoline arrangementA ; the duality fixes a choice of
planar embedding ofG as well as determining which faces of that embedding are inter-
nal and external. Denote by|A | the number of pseudolines inA . Let O be a circle (the
size and placement of the circle within the plane being irrelevant to our construction),
and deformA as necessary so that each pseudoline crossesO, with all nodes interior to
O, and so that the 2|A | points where pseudolines crossO are spaced at equal distances
around the perimeter ofO (Figure 7, left). Then, for each pseudoline`i of A , let ci be
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the chord ofO connecting the two points wherèi crossesO. We will draw G in such
a way that the edges ofG that are dual to arcs of̀i are drawn as unit length segments
perpendicular toci (Figure 7, right). To do so, choose an arbitrary starting vertexv0 of
G, and place it arbitrarily within the plane. Then, the placement of any other vertexvi

of G can be found by following a path fromv0 to vi in G, and for each edge of the path
moving unit distance (starting from the location ofv0) in the direction determined for
that edge as described above, placingvi at the point reached by this motion when the
end of the path is reached. It is straightforward to show from Lemma 2 and the axioms
defining a medium that this vertex placement does not depend on the choice of the path
from v0 to vi , and that if all vertices are placed in this way then all edges ofG will be
unit length and perpendicular to their corresponding chordsci . Thus, we have a drawing
of G, in which we can identify sets of edges corresponding to the faces ofG. We omit
the proof that this drawing is face-symmetric planar due to lack of space. ut

Lemma 4. If G is biconnected, at most one planar embedding of G is dual to a weak
pseudoline arrangement. This embedding (if it exists) can be found in time O(n).

Proof. We use a standard technique in graph drawing and planar embedding problems,
the SPQR tree [4, 13]. Each nodev in the SPQR tree ofG has associated with it a
multigraphGv consisting of some subset of vertices ofG, edges ofG, andvirtual edges
representing contracted parts of the remaining graph that can be separated from the
edges ofGv by a split pair of vertices (the endpoints of the virtual edge). The non-
virtual edges ofG are partitioned among the nodes of the SPQR tree. If two nodes are
connected by an edge in the SPQR tree, each has a virtual edge connecting two vertices
shared by both nodes. We root the SPQR tree arbitrarily; let(sv, tv) denote the split
pair connecting a non-root nodev to its parent, and letHv denote the graph represented
by the SPQR subtree rooted atv. We work bottom up in the rooted tree, showing by
induction on tree size that the following properties hold for each node of the tree:

1. Each graphHv has at most one planar embedding that can be part of an embedding
of G dual to a weak pseudoline arrangement.

2. If v is a non-root node, andG is dual to a weak pseudoline arrangement, then edge
svtv belongs to the outer face of the embedding ofHv.

3. If v is a non-root node, form the pathpv by removing virtual edgesvtv from the
outer face ofHv. Thenpv must lie along the outer face of any embedding ofG dual
to a weak pseudoline arrangement.

SPQR trees are divided into four different cases (represented by the initials S, P, Q,
and R) and our proof follows the same case analysis, in each case showing that the
properties at each node follow from the same properties at the descendant nodes. We
omit the details of each case due to lack of space. ut

Theorem 3. Given an input graph G, we can determine whether G is the dual of a
weak pseudoline arrangement, and if so construct a face-symmetric planar drawing of
G, in linear time.

Proof. If G is biconnected, we choose a planar embedding ofG by Lemma 4. Oth-
erwise, each articulation point ofG must be on the outer face of any embedding. We
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Fig. 8.Face-symmetric planar drawings of three irregular media.

find biconnected components ofG, embed each component by Lemma 4, and verify
that these embeddings place the articulation points on the outer faces of each compo-
nent. We then connect the embeddings together into a single embedding having as its
outer face the edges that are outer in each biconnected component; the choice of this
embedding may not be unique but does not affect the correctness of our algorithm.

Once we have an embedding ofG, we must verify that we have the dual of a weak
pseudoline arrangement and construct a face-symmetric planar drawing. We first make
sure all faces ofG are even, and apply Lemma 1 to construct an arrangement of curvesA
dual toG. We test thatA has no closed curves, then apply the construction of Lemma 3
to produce vertex placements for a drawing ofG, test for each edge ofG that the end-
points of that edge are placed at unit distance apart with the expected slope, and test that
each internal face ofG is drawn as a correctly oriented strictly convex polygon. If our
input passes all these tests we have determined that it is the dual of a weak pseudoline
arrangement and found a face-symmetric planar drawing. ut

Our actual implementation is based on a simpler but less efficient algorithm that
uses the known medium structure of the input to construct the dual weak pseudoline ar-
rangement one curve at a time, before applying the construction of Lemma 3 to produce
a face-symmetric planar drawing from the weak pseudoline arrangement. Examples of
drawings produced by our face-symmetric planar drawing code are shown in Figure 8.

5 Implementation and examples

We implemented our algorithms in Python, with drawings output in SVG format. Our
code allows various standard combinatorial media (such as the collection of permuta-
tions onn items) to be specified on the command line; irregular media may be loaded
from a file containing hypercube or lattice coordinates of each state. We have seen al-
ready examples of our implementation’s output in Figures 4, 6, 8, and 9. Figure 10
provides additional examples. All figures identified as output of our code have been left
unretouched, with the exception that we have decolorized them for better printing.
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Fig. 9. Lattice drawings of four irregular media with three-dimensional lattice embeddings,
from [6]. The bottom left drawing is of a medium isomorphic to the weak ordering medium
shown in Figure 10(right).

Fig. 10.Media defined by orderings ofn-item sets. Left: Lattice drawing of total orderings (per-
mutations) on four items. Center: Projected three-dimensional lattice drawing of partial orderings
on three items. Right: Face-symmetric planar drawing of weak orderings on three items.

6 Conclusions and open problems

We have shown several methods for drawing the state transition graphs of media. There
are several interesting directions future research in this area could take.

– If a three-dimensional lattice embedding can be projected perpendicularly to the
vector (1,1,1) (or more generally(±1,±1,±1)) without placing two vertices in
the same point, the projection produces a planar drawing with all edges having
equal lengths and angles that are multiples of 60◦ (e.g., Figure 10, center). Our
lattice dimension algorithm can find a three-dimensional embedding, if one exists,
and it is trivial to test the projection property. However, a medium may have more
than one three-dimensional embedding, some of which have the projection property
and some of which don’t. For instance, the medium in the lower right of Figure 9 is
the same weak ordering medium as the one in Figure 10(right), however the former
drawing is from a lattice embedding without the projection property. Is it possible to
efficiently find a projectable three-dimensional lattice embedding, when one exists?
More generally, given an arbitrary dimension lattice embedding of a medium, can
we find a planar projection when one exists?

10



– Hypercubes have projected lattice drawings withO(n2) area and unit separation
between vertices and nonadjacent edges. Can similar area and separation bounds
be achieved for projected lattice drawings of more general classes of media?

– Our lattice and face-symmetric planar drawings have several desirable qualities;
for instance, all edges corresponding to a single token are drawn as line segments
with the same slope and length, and our lattice drawings have good vertex-vertex
and vertex-edge separation. However, we have not seriously examined the extent
to which other important graph drawing properties may be achieved. For instance,
d-dimensional hypercubes (and therefore also media with up to 2d tokens) may be
drawn with geometric thickness [5] at mostdd/3e (Figure 4, right) however our
lattice projection methods achieve geometric thickness onlydd/2e while the only
way we know how to achieve the betterdd/3e bound is to use a more irregular
drawing in which edges coming from the same token are no longer parallel.
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