
Isometric Diamond Subgraphs

David Eppstein
Computer Science Dept.
Univ. of California, Irvine

Diamond photo by Sergio Fleuri, on Wikimedia commons as http://commons.wikimedia.org/wiki/Image:Ags1.jpg, licenced under CC-BY-AS



x ^= 1

x ^= 1

x ^= 1

x ^= 1

x ^= 1

x ^= 3

x ^= 3

x ^= 3

x ^= 3

x ^= 6

x ^= 12

x ^= 24

x ^= 12

x ^= 6

x ^= 6

Starting point: graph drawing on an integer grid

Vertex placement: points of two-dimensional integer lattice
Edges connect only adjacent lattice points

Lamp flowchart by Wapcaplet and Booyabazooka, on Wikimedia commons as http://commons.wikimedia.org/wiki/Image:LampFlowchart.svg, licenced under CC-BY-AS



Integer grid drawings are high quality graph drawings

Uniform vertex spacing

Low area

High angular resolution

No crossings
Few edge slopes
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Other regular placements have similar quality guarantees

Three-dimensional grid drawing
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Other regular placements have similar quality guarantees

Drawing in the hexagonal and triangular tilings of the plane

Molecular structure of lignane drawn using ChemDraw by Calvero, on Wikimedia commons as http://commons.wikimedia.org/wiki/Image:Lignane_acsv.svg, licensed PD



Other regular placements have similar quality guarantees

Drawing in the three-dimensional diamond lattice



What is the diamond lattice?

Mathematically, not a lattice
(discrete subgroup of a vector space)

The molecular structure of
the diamond crystal

Repeating pattern of points in space
congruent to
(0,0,0) (0,2,2) (2,0,2) (2,2,0)
(1,1,1) (1,3,3) (3,1,3) (3,3,1)
modulo 4

For a simpler description, we need to go up one dimension:
Diamond comes from a 4d structure analogous to 3d structure of hexagonal tiling

Diamond lattice image by Pieter Kuiper, on Wikimedia commons as http://commons.wikimedia.org/wiki/Image:Diamond_structure.gif, licenced under GFDL



Three-dimensional structure of hexagonal tiling

Integer points (x,y,z)
such that x+y+z=0 or x+y+z=1
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Projected onto a plane
perpendicular to the vector (1,1,1)



(0,0,0,0)

Four-dimensional structure of diamond lattice

Integer points (x,y,z,w) such that x+y+z+w=0 or x+y+z+w=1
Projected onto a 3d hyperplane perpendicular to the vector (1,1,1,1)

Diamond lattice images by RosarioVanTulpe, on Wikimedia commons as http://commons.wikimedia.org/wiki/Image:Diamant[07,13].png, licenced under GFDL
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(0,0,0,0)

Four-dimensional structure of diamond lattice

Integer points (x,y,z,w) such that x+y+z+w=0 or x+y+z+w=1
Projected onto a 3d hyperplane perpendicular to the vector (1,1,1,1)
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(0,1,–1,1) Projection details:
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maps to
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z(-1,-1,1) +
w(-1,1,-1)

=

(x+y-z-w, x-y-z+w, x-y+z-w)



Graph drawing properties of the diamond lattice

Uniform vertex spacing

All edges have unit length

Optimal angular resolution
for degree-four graph in space

Symmetric:
every vertex, every edge,
and every vertex-edge incidence
looks like any other



So what’s the problem?

Not every graph can be embedded in a grid,
hexagonal tiling, or diamond tiling

Recognizing subgraphs of grids, or induced
subgraphs of grids, is NP-complete

Grid subgraphs: Bhatt & Cosmodakis 1987
motivated by wirelength minimization in VLSI

Generalized to related problems using
“Logic Engine” of Eades & Whitesides 1996

Same Logic Engine proof technique works just as well
for hexagonal tiling and diamond tiling



A solution for grids: isometric embedding

For an isometric subgraph H of a graph G,
distance in H = distance of the same nodes in G

More restrictive notion than induced subgraphs

Isometric subgraphs of integer lattices = partial cubes
important class of graphs

[e.g. see E., Falmagne, & Ovchinnikov, Media Theory]

For any (fixed or variable) dimension d
can test whether a given graph is an isometric subgraph
of the d-dimensional integer lattice in polynomial time

[E., GD 2004 and Eur. J. Comb. 2005]



New results

Define a class of d-dimensional (d+1)-regular graphs
generalizing hexagonal tiling and diamond lattice

Example: The Desargues graph, a 3-regular
20-vertex graph used in chemistry to model
variant physical structures of 5-ligand compounds,
is an isometric subgraph of the 4d diamond graph
(points with five integer coords summing to 0 or 1)

For any (fixed or variable) dimension d
can test whether a given graph is an isometric subgraph
of the d-dimensional diamond graph in polynomial time

In particular can find isometric graph drawings
in the hexagonal tiling and diamond lattice



Main ideas of graph drawing algorithm (I)

Djokovic–Winkler relation, a binary relation on graph edges

(u,v) ~ (x,y)  iff  d(u,x) + d(v,y) ≠ d(u,y) + d(v,x)

A graph is a partial cube iff it is bipartite
and the Djokovic-Winkler relation is an equivalence relation

In this case, each equivalence class forms a cut that
splits the vertices of the graph in two connected subsets

D

D

D

D + 2

related edges unrelated edges



Main ideas of graph drawing algorithm (II)

In a diamond graph of any dimension,
Djokovic–Winkler equivalence classes form cuts that are coherent:

Endpoints of cut edges on one side of the cut
all have the same color in a bipartition of the graph



Main ideas of graph drawing algorithm (III)

Coherence allows us to distinguish red and blue sides of each cut

Form partial order

cut X ≤ cut Y
iff

red side of cut X is a subset of red side of cut Y
iff

blue side of cut X is a superset of blue side of cut Y

Families of cuts that can be embedded as parallel to each other
in a diamond graph

= chains (totally ordered subsets) of the partial order



Main ideas of graph drawing algorithm (IV)

Minimum number of parallel edge classes of diamond embedding

=

Minimum number of chains needed to cover partial order

=
[Dilworth’s theorem]

Maximum size of antichain (set of incomparable elements)
in the partial order

=

“Width” of the partial order



Algorithm outline

Test whether the graph is a partial cube
and compute its Djokovic equivalence classes

[E., SODA 2008]

Verify that all cuts are coherent

Construct partial order on cuts

Use bipartite graph matching techniques
to find the width of the partial order
and compute an optimal chain decomposition

width = 2  iff  isometric hex tile subgraph
width = 3  iff  isometric diamond subgraph

Construct embedding from chain decomposition



Conclusions

Efficient algorithms for nontrivial lattice embedding problems

Resulting graph drawings have high quality by many standard measures

Restricting attention to isometric embedding avoids NP-hardness difficulty

Interesting new subclass of partial cubes
worth further graph-theoretic investigation

4d structural description of diamond lattice
may be useful for other graph drawing problems in the same lattice


