Isometric Diamond Subgraphs

David Eppstein
Computer Science Dept. Univ. of California, Irvine

Starting point: graph drawing on an integer grid

Vertex placement: points of two-dimensional integer lattice Edges connect only adjacent lattice points

Integer grid drawings are high quality graph drawings

Uniform vertex spacing
High angular resolution
Few edge slopes
Low area

No crossings

Other regular placements have similar quality guarantees

Three-dimensional grid drawing

Other regular placements have similar quality guarantees

Drawing in the hexagonal and triangular tilings of the plane

Other regular placements have similar quality guarantees

Drawing in the three-dimensional diamond lattice

What is the diamond lattice?

Mathematically, not a lattice (discrete subgroup of a vector space)

The molecular structure of the diamond crystal

Repeating pattern of points in space congruent to $(0,0,0)(0,2,2)(2,0,2)(2,2,0)$ $(1,1,1)(1,3,3)(3,1,3)(3,3,1)$ modulo 4

For a simpler description, we need to go up one dimension: Diamond comes from a 4d structure analogous to 3d structure of hexagonal tiling

Three-dimensional structure of hexagonal tiling

Integer points ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) such that $x+y+z=0$ or $x+y+z=1$

Projected onto a plane perpendicular to the vector $(1,1,1)$

Four-dimensional structure of diamond lattice

Integer points (x, y, z, w) such that $x+y+z+w=0$ or $x+y+z+w=1$ Projected onto a 3d hyperplane perpendicular to the vector (1,1,1,1)

Orientation of 3d edge determines which 4d coordinate differs between neighbors

Four-dimensional structure of diamond lattice

Integer points (x, y, z, w) such that $x+y+z+w=0$ or $x+y+z+w=1$ Projected onto a 3d hyperplane perpendicular to the vector (1,1,1,1)

Graph drawing properties of the diamond lattice

Uniform vertex spacing
All edges have unit length
Optimal angular resolution for degree-four graph in space

Symmetric: every vertex, every edge, and every vertex-edge incidence looks like any other

So what's the problem?

Not every graph can be embedded in a grid, hexagonal tiling, or diamond tiling

Recognizing subgraphs of grids, or induced subgraphs of grids, is NP-complete

> Grid subgraphs: Bhatt \& Cosmodakis 1987 motivated by wirelength minimization in VLSI

Generalized to related problems using "Logic Engine" of Eades \& Whitesides 1996

Same Logic Engine proof technique works just as well for hexagonal tiling and diamond tiling

A solution for grids: isometric embedding

For an isometric subgraph H of a graph G , distance in $\mathrm{H}=$ distance of the same nodes in G

More restrictive notion than induced subgraphs
Isometric subgraphs of integer lattices = partial cubes important class of graphs
[e.g. see E., Falmagne, \& Ovchinnikov, Media Theory]
For any (fixed or variable) dimension d can test whether a given graph is an isometric subgraph of the d-dimensional integer lattice in polynomial time

$$
\text { [E., GD } 2004 \text { and Eur. J. Comb. 2005] }
$$

New results

Define a class of d-dimensional (d+1)-regular graphs

 generalizing hexagonal tiling and diamond latticeFor any (fixed or variable) dimension d can test whether a given graph is an isometric subgraph of the d-dimensional diamond graph in polynomial time

In particular can find isometric graph drawings in the hexagonal tiling and diamond lattice

Main ideas of graph drawing algorithm (I)

Djokovic-Winkler relation, a binary relation on graph edges

$$
(u, v) \sim(x, y) \text { iff } d(u, x)+d(v, y) \neq d(u, y)+d(v, x)
$$

related edges

unrelated edges

A graph is a partial cube iff it is bipartite and the Djokovic-Winkler relation is an equivalence relation

In this case, each equivalence class forms a cut that splits the vertices of the graph in two connected subsets

Main ideas of graph drawing algorithm (II)

In a diamond graph of any dimension, Djokovic-Winkler equivalence classes form cuts that are coherent:

Endpoints of cut edges on one side of the cut all have the same color in a bipartition of the graph

Main ideas of graph drawing algorithm (III)

Coherence allows us to distinguish red and blue sides of each cut

Form partial order

$$
\text { cut } X \leq \operatorname{cut} Y
$$

iff
red side of cut X is a subset of red side of cut Y iff blue side of cut X is a superset of blue side of cut Y

Families of cuts that can be embedded as parallel to each other in a diamond graph
= chains (totally ordered subsets) of the partial order

Main ideas of graph drawing algorithm (IV)

Minimum number of parallel edge classes of diamond embedding
$=$
Minimum number of chains needed to cover partial order
$=$
[Dilworth's theorem]
Maximum size of antichain (set of incomparable elements) in the partial order
"Width" of the partial order

Algorithm outline

Test whether the graph is a partial cube and compute its Djokovic equivalence classes
[E., SODA 2008]
Verify that all cuts are coherent
Construct partial order on cuts
Use bipartite graph matching techniques to find the width of the partial order and compute an optimal chain decomposition

$$
\begin{aligned}
& \text { width }=2 \text { iff isometric hex tile subgraph } \\
& \text { width }=3 \text { iff isometric diamond subgraph }
\end{aligned}
$$

Construct embedding from chain decomposition

Conclusions

Efficient algorithms for nontrivial lattice embedding problems

Resulting graph drawings have high quality by many standard measures

Restricting attention to isometric embedding avoids NP-hardness difficulty

Interesting new subclass of partial cubes worth further graph-theoretic investigation

4d structural description of diamond lattice may be useful for other graph drawing problems in the same lattice

