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An experiment, |

Fold a piece of paper arbitrarily so that it lies flat again (without
crumpling)




An experiment, Il

Unfold it again and look at the creases from its folded state

——— = mountain fold

......... = valley fold




An experiment, IlI

It looks like a graph!




An experiment, IlI

It looks like a graph!

So, what graphs can you get in this way?



Local constraints at each vertex

Maekawa's theorem: at interior vertices,

|# mountain folds — # valley folds| = 2

——— = mountain fold

,,,,,,,,, = valley fold

So all vertex degrees must be even and > 4



More local constraints at each vertex

Kawasaki's theorem: at interior vertices,
total angle facing up = total angle facing down

(alternating sum of angles must be zero)

Unclear what effect this has on combinatorial structure



Local constraints are not enough

This pattern cannot be folded

Central diagonal cross forces
two opposite creases to nest
tightly inside each other

Additional folds on the outer
nested crease bump into the
inner nested crease




Theorem 1

Tree T is realizable with internal vertices interior to paper and
leaves on boundary <= all internal degrees are even and > 4




Simplify by avoiding boundary conditions

Draw our tree on an infinite flat surface

Cropped from File:2007-04-27 15-01-24 Germany Baden-Wiirttemberg Lausheim.jpg
by Hansueli Krapf on Wikimedia commons

Leaves on boundary <= diverging infinite rays

(Much like Voronoi realizations of trees;
cf. Liotta & Meijer, CGTA 2003)



Main idea of proof

Construct tree top-down from root

Maintain buffer zones to prevent creases from nearing each other

3T | 3T




Alternative graph model for infinite paper

Instead of interpreting infinite rays as leaves,
add a special vertex at infinity as their shared endpoint

Cropped from File:Vanishing Point of Railway.jpg by Vespertunes on Wikimedia commons

...s0 trees of Theorem 1 become series-parallel multigraphs



Theorem 2

The graphs of flat folding
patterns with a vertex at
infinity are:

> 2-vertex-connected

> 4-edge-connected

> not separable by removal
of any 3 finite vertices

Proof ideas:
convexity of subdivision
rigidity of triangles

(00) (00)

An unrealizable graph



Return to finite paper sizes

A different simplifying assumption:
All vertices are on the boundary of the paper

This triangle cannot be folded flat
(the three corners get in each others’ way)



Theorem 3

Every outerplanar graph can be realized as a flat-foldable crease
pattern on circular paper, all vertices on the boundary of the paper




Theorem 3 (stronger variant)

If a crease pattern has all vertices on the boundary of a piece of
circular paper, then it can always be folded flat

Region bounded by > 2 creases If all regions are bounded by
has a crease whose flap cannot < 2 creases, we can
cross the other creases accordion-fold the pattern

Flap cannot
escape its lens




Theorem 4

Tree T realizable, all vertices on the boundary of square paper <=
the subtree formed by removing all leaves from T has < 4 leaves

root

A9

Mapping 4-leaf subtree to square, leaving room for removed leaves



The geometric part of Theorem 4

If a crease pattern has all vertices on the boundary of a piece of
square paper, then it can always be folded flat

Proof involves finding semi-safe flaps that can interfere with only
one of their neighboring creases

Put interfering pairs of flaps on opposite sides of paper



Conclusions

Several partial characterizations of the graphs of flat foldings in
several different simplified models
e Trees with all internal vertices interior to the paper
e Connectivity of graphs with a vertex at infinity
e Graphs with all vertices on the boundary of circular paper
e Trees with all vertices on the boundary of square paper

Complete characterization still remains open




