

A Heuristic Approach to Program Inversion

David Eppstein

Computer Science Department
Columbia University

New York, N.Y. 10027

Abstract

A notation is given for describing the inverse of multiple functions
and of functions of multiple arguments. A technique based upon
this notation is presented for taking a program written in pure LISP
and automatically deriving a program which computes the inverse
function of the given program. This technique differs from previous
such methods in its use of heuristics to invert conditionals.

√
x)2 = x rather than

LISP

append
reverse as given in [2], unary

add1 and sub1, and sev-

1. Introduction

There are many applications in which it is useful to compute the in-
verse of some program, that is, to find another program such that
feeding the output of the original program as input to the new pro-
gram produces the original input. One such application is in program-
ming by specification: one would like to define a program to compute
the square root of a number by the equation (
supplying an actual iterative method of solving the equation. Another
application of program inversion is in debugging. Given a program
and an erroneous result, one would like to step backwards through
the program to trace the source of the error. Yet a third application
is in transforming the input domain of a program, such as the well
known technique of multiplying polynomials by first performing an
FFT; to get the result back into the original domain one needs to
find an inverse transformation.

Several methods have been suggested for performing such inver-
sion. Unfortunately they each suffer from several defects. McCarthy
[3] suggests a generate and test approach; this will correctly find
an inverse when it exists, but is computationally infeasible and can-
not determine whether the inverse is unique. Dijkstra [1] provides
a technique for inverting programs symbolically, but requires that
the programmer provide inductive assertions on conditional and loop
statements. Korf [2] suggests another method that automatically pro-
vides these assertions, but recursions derived using his method are
not guaranteed to be well founded. Several recent efforts [5,6] have
gone into inverting Prolog; this differs from inverting other program-
ming languages in that Prolog is less procedural and more declarative.
Methods for inverting procedural languages will thus also be useful
for Prolog, but the reverse is not necessarily true.

This paper suggests a method of providing these assertions au-
tomatically by heuristic methods. This method will not always find
an inverse for a program, but when one is found it will always cor-
rectly terminate when the output of the original program is given as
input. In addition, if an inverse is found it will be the case that the
original function was one-to-one—in principle the inverse could itself
be inverted to recover the original program.

The method described here has been implemented as a Mac
program. The program was able to derive the inverse of
(shown in detail below), a version of
integer negation defined recursively using
eral other such small programs. The example of unary negation is
especially interesting as a case where Korf’s method is unable to find
the inverse, because of the existence of two recursive clauses in its
definition.

2. Inversion of Multiple Functions of Multiple Arguments

The usual definition of the inverse of a function f :D → R is the
function f−1:R→ D such that f−1(f(x)) = x for all x in D. Unfor-
tunately this notation does not lend itself well to inversion of functions
of more than one argument. For instance, in the LISP programming
language it is true that (car (cons x y)) = x and (cdr (cons x y)) = y.
Thus one intuitively thinks of car and cdr together as being the in-
verses of cons, but there is no one function that we can call cons−1.

On the other hand, we can express a relation between f and f−1

that does extend to multiple arguments and also to multiple functions:
If we assume that y = f(x), then by the above definition f−1(y) = x,
and the converse similarly holds. Thus we have

y = f(x) if and only if f−1(y) = x.

Similarly,
z = (cons x y)

is true if and only if

(car z) = x

(cdr z) = yand

are both true. Taking this as our definition of inversion, we say that
cons inverts to car and cdr.

In general we will say that some list of n functions funi of m argu-
ments each inverts to another list of m functions invj of n arguments
each if, for all xj and yi, the set of equations

y1 = fun1(x1, x2, . . . , xm)
y2 = fun2(x1, x2, . . . , xm)

...
yn = funn(x1, x2, . . . , xm)

simultaneously hold if and only if the inverse set of equations

inv1(y1, y2, . . . , yn) = x1

inv2(y1, y2, . . . , yn) = x2

...
invm(y1, y2, . . . , yn) = xm

also simultaneously hold. Note that this relationship is symmetric:
inverting the inverses of a list of functions produces the original list.
The requirement that all functions have the same number of argu-
ments turns out not to be a problem; if necessary we can add dummy
arguments to those functions that need them.

Since we are attempting to invert programs, we will need to have
inverses for the primitive operations of the language we are inverting.
In LISP, we will use the fact that cons inverts to car and cdr, and
that add1 inverts to sub1. These can be used to define the other
arithmetic and list manipulation functions usually found in a LISP

implementation.

3. The Inversion Method

We perform inversion as a search through a state space of program
descriptions. Each state is a set of facts, each of which is composed
of a left side, a right side, and a set of preconditions. A fact can be
interpreted as meaning that, if the preconditions all hold, the left side
will be equal to the right side. We will use four operators to move
from state to state: conditional expansion, precondition replacement,
expression inversion, and conditional contraction.

For example, suppose we want to invert the function append.
That is, we want to find two programs that, given the result of a call
to append, will return the first and second arguments. Unfortunately
there are many possible pairs of arguments that could have produced
the same result from append; thus we need to introduce an auxiliary
function to distinguish among them. One function we might use re-
turns the length of its first argument and ignores its second; we will
call it flength. We will call the arguments to it and append by the
names firstn and lastbutn for reasons that we shall see below. The
definitions of our two original functions give us our initial state:

append = (cond ((null firstn) lastbutn)
(t (cons (car firstn)

(append (cdr firstn)
lastbutn))))

flength = (cond ((null firstn) 0)
(t (add1 (flength (cdr firstn)

lastbutn))))

The atoms on the left sides correspond to a call to each of the
functions being defined, and those on the right side correspond to
the arguments to those calls; there are no unbound variables. All
initial facts have no preconditions, and their left sides are all atomic.
Similarly we will define a goal state as one in which all sets of precon-
ditions are empty and the right sides are all atomic. No new atoms
will be introduced by our transformations, and each atom will occur
only on one side of our facts; thus the original arguments will become
the names of the inverse programs, and the original program names
will become the inverse arguments.

Both facts in the current state have no preconditions, but the
right side of each is a conditional expression. Before we can perform
any other transformations on the facts, we first separate out the con-
ditional parts into preconditions. The conditional expansion operator
does this; it replaces a fact for which the right side is a conditional
expression with two facts, one corresponding to the case when the
predicate in the condition is true and one corresponding to the case
when it is false. Applying this to each of the facts in our initial state
produces a new state:

(null firstn)
→ append = lastbutn
→ flength = 0

(not (null firstn))
→ append = (cons (car firstn

(append
→ flength = (add1 (flength

Note that the above state consists of four facts, each of which
null firstn

bined in the
sake of brevity.

In our final inverse programs, we will need a conditional expres-
sion to determine which path the original programs took. Another
way to think of this is that the preconditions in the current state are
functions of the arguments to the original functions, and we would
like to replace them with new functions of the arguments to the in-
verse functions that are true exactly when the old ones were. This
replacement is the heuristic portion of the inversion; in general there
will be many possible preconditions but there seems to be no analytic
method of finding them.

The details of how we find the new precondition will be described
below; in this case we notice that flength will be zero if and only
if firstn is null. Once we have found our new precondition, we can
use the precondition replacement operator. Note that if we simply
replaced all occurrences of the old precondition with the new one we
would derive the useless fact

(zerop flength) → flength = 0

but we would not produce

(zerop flength) → nil = firstn,

without which we could not complete our derivation. Taking this into
account, we come up with a new transformed state:

(zerop flength)
→ append = lastbutn
→ nil = firstn

(not (zerop flength))
→ append = (cons (car firstn)

(append (cdr firstn) lastbutn))
→ flength = (add1 (flength (cdr firstn) lastbutn))

Now the derivation goes through a sequence of expression inver-
sions, pulling functions from the right side of facts over to the left.
This process is completely mechanical, but it is somewhat compli-
cated so we will go through it one step at a time. First we notice that
we have a call to add1 as the outer call of the right side of a fact.
When we invert this call to sub1, our state becomes

(zerop flength)
→ append = lastbutn
→ nil = firstn

(not (zerop flength))
→ append = (cons (car firstn)

(append (cdr firstn) lastbutn))
→ (sub1 flength) = (flength (cdr firstn) lastbutn)

In this case we inverted one function to one function, so the total
number of facts in our state didn’t change. When we invert cons to
car and cdr, however, we get two facts where before we had one:

(zerop flength)
→ append = lastbutn
→ nil = firstn

(not (zerop flength))
→ (car append) = (car firstn)
→ (cdr append) = (append (cdr firstn) lastbutn)
→ (sub1 flength) = (flength (cdr firstn) lastbutn)

The above inversions were done on functions for which already
knew the inverses. We must also invert recursive calls to the original
functions into recursive calls to our new inverses. Since in this case we
have two functions of two arguments each, we will replace two facts
with two new facts. This inversion cannot be split into two steps,
because each new fact has parts from both of the old facts. Note
also that the arguments in the calls have to match exactly; it would
not have changed the result of flength if the second argument in the
recursive call were different, but it would have made it impossible to
complete our inversion. Performing the inversion, we get to a new
state:

(zerop flength)
→ append = lastbutn
→ nil = firstn

(not (zerop flength))
→ (car append) = (car firstn)
→ (firstn (cdr append)

(sub1 flength)) = (cdr firstn)
→ (lastbutn (cdr append)

(sub1 flength)) = lastbutn

has a precondition of either (null firstn) or (not (null firstn)).
The preconditions are combined in the above display merely for the

Now all but two of the right sides are atomic; these two can be
made atomic by one more inversion, from car and cdr into cons.

(zerop flength)
→ append = lastbutn
→ nil = firstn

(not (zerop flength))
→ (cons (car append)

(firstn (cdr append)
(sub1 flength))) = firstn

→ (lastbutn (cdr append)
(sub1 flength)) = lastbutn

We are almost at a goal state; the only remaining task is to
remove the preconditions. This can be achieved by the conditional
contraction operator, which acts inversely to conditional expansion: it
takes two facts with opposite preconditions and identical right sides,
and combines them into one fact having as a left side a conditional
expression evaluating to either of the two previous left sides depend-
ing on which precondition is true. We must be careful here only to
accept preconditions that are in terms of the inverse arguments, or we
would not come up with a well-defined program; this is the reason for
our precondition replacement above. Two applications of conditional
contraction produce a goal state:

(cond ((zerop flength) nil)
(t (cons (car append)

(firstn (cdr append)
(sub1 flength))))) = firstn

(cond ((zerop flength) append)
(t (lastbutn (cdr append)

(sub1 flength)))) = lastbutn

4. Precondition Replacement

The above method provides a framework for inversion; we also need
heuristics to be used in that framework for finding replacement pre-
conditions. One such heuristic that is effective for many simple recur-
sions uses a sort of data type system. All objects are members of type
top, which is divided up into integers, conses, and nil. Unlike most
data type systems we have types corresponding to major subsets of
the integers: the negative numbers, the positive numbers, zero, and
the unions of pairs of these sets. The main requirement on our type
system is that it form a lattice; thus we also need a type bottom to
which no object belongs.

Functions are assigned types that contain all their possible return
values. Thus cons always returns a cons, and add1 always returns
a number, but car and cdr can return anything and so their type is
top. The type of a function should itself be a function mapping from
the function’s input types to its output type, but for simplicity this is
only actually done for add1 and sub1 (e.g. add1 will return positive
numbers if its argument is non-negative).

Given a list of new functions to be inverted, or a list of inverse
functions to be used in further inversions, we can calculate their types
by a simple relaxation process: we start by assuming that the return
type of each of them is bottom. Then we use that in evaluating the
types of the expressions defining them (making no assumptions about
the types of their arguments) to arrive at a new assignment of types,
and iterate until no function’s type is changed by the iteration. With
our definition of flength, for example, the first iteration would result
in a type of zero from the base clause, and bottom from the recursive
clause, which combine to a type of zero. Then the second iteration
gives the same base clause type but the recursive clause is now known
to return positive numbers, and so the new type becomes that of the
non-negative numbers. Adding one to a non-negative number as with
adding one to zero returns a positive number, so in the third iteration
the overall type doesn’t change. Thus the final type of flength is

that of the non-negative numbers. In a more complicated recursion
the preliminary types of the recursive clauses might cause their new
types to change, and so there could be up to as many iterations as
the depth of the type lattice.

Now we can use our type system to provide replacement precon-
ditions. This is done by looking for two facts with identical left sides,
and identical preconditions except for the particular precondition we
wish to replace, which should be true for one fact and false for the
other. Then we calculate the types of the right sides of the facts, and
if the intersection of the two types is bottom then we can replace our
precondition with a test for membership on the common left side in
one of the two types. Thus in the append example,
for the fact with precondition firstn true, and it is positive (and
therefore not zero) with firstn false.

5. Future Work

The main obstacle to inversions with the current implementation is
the inability of the heuristic described above to find replacement pre-
conditions that are functions of more than one argument. More effort
could be put into methods of finding complex predicates; it might
prove fruitful for heuristics to notice whether the function being in-
verted is arithmetic or list processing and tailor the search accord-
ingly.

In the inversion of append we needed to introduce an auxiliary
function. Because append recurs linearly we could simply count the
number of recursive calls, but this will not always be sufficient. Work
could be done in automatic detection of the need for such an auxiliary
function, and in automatic generation of the function when its need
is detected.

Some thought in the program transformation world has gone into
the idea of a MACSYMA-like system for computer programs. The
representations and operators used in this paper appear useful in
other domains than inversion; one might study how applicable they
would be in a more general program transformation system, and how
they could be incorporated into such a system.

Acknowledgements

I would like to thank my advisor, Rich Korf, for many helpful dis-
cussions and suggestions. This research was sponsored in part by a
National Science Foundation student fellowship and by the Defense
Advanced Research Projects Agency under contract N00039–84–C–
0165.

References

[1] Dijkstra, E. W., “Program inversion.” In Program Construction.
Springer-Verlag, Berlin, 1979.

[2] Korf, Richard E., “Inversion of applicative programs.” In Proc.
IJCAI-81. Vancouver, B.C., 1981.

[3] McCarthy, John, “The inversion of functions defined by Tur-
ing Machines.” In Shannon, C.E., and J. McCarthy (editors),
Automata Studies. Princeton University Press, Princeton, N.J.,
1956.

[4] Scherlis, W. L., “Expression procedures and program derivation.”
Ph.D. thesis, Department of Computer Science, Stanford Univer-
sity, 1980.

[5] Shoham, Yoav, “Knowledge inversion.” In Proc. AAAI-84.
Austin, Texas, 1984.

[6] Sickel, Sharon, “Invertibility of Logic Programs.” In Proc.
Fourth Workshop on Automatic Deduction. Austin, Texas, 1979.

