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Cryptarithm puzzles, also known as alphametics, appear widely in recreational mathematics publications,
and have also been used as an example of the efficiency of constraint propagation search techniques [5]. Here
we show that solving such puzzles is an NP-complete problem.

Many cryptarithms are given by Madachy [4], including the following well-known example:

SEND

+MORE

MONEY

The puzzle is to find a one-to-one correspondence between letters in the puzzle and decimal digits (not
all of which must appear) that will make the sum correct. There is usually also a rule that numbers are
expressed without leading zeros. The above example has a unique solution:

9567
+1085
10652

If we only consider problems with decimal numbers as above there is no possibility of any hardness result,
because there are only 10! different assignments of digits and letters to try. Therefore we will generalize the
problem slightly: the base of representation for our numbers will be given as part of the problem (expressed in
unary or binary) rather than always being decimal, and we will allow the puzzle to contain arbitrarily many
different letters (up to the base of representation). The decision problem for a puzzle will be to determine
whether that puzzle has any solutions.

Constructing the Puzzle

Given a cryptarithm puzzle under the assumptions above, it is not too hard to see that a solution to the
puzzle need only be as long as the length of the base multiplied by the number of letters in the puzzle, and
that such a solution can be verified quickly. Thus cryptarithms are in NP, and it remains to show that they
are complete for NP. We will do this with a reduction from 3-SAT [2]: given a 3-CNF Boolean formula, we
will construct a puzzle which is solvable if and only if the formula is satisfiable.

To produce enough symbols for the letters of the resulting cryptarithm, we will use subscripted letters.
Each variable and term of the Boolean formula will correspond to some contiguous set of columns of the
puzzle; it won’t matter in what order these sets occur, except that we reserve the rightmost three columns
for the following letters:

0 p 0
0 p 0
1 q 0

Here 0 and 1 should not be read as the digits 0 and 1 themselves, but as letters in the puzzle which are
forced by the above sequence of columns to stand for the digits 0 and 1. That is, in any possible solution to



any puzzle that has these rightmost columns, the letter 0 above must correspond to the actual digit 0, and
the letter 1 must correspond to the actual digit 1.

For each variable vi of the formula we set aside the following columns, in which the letters vi and vi
represent the variable and its complement:

di 0 1 yi 0 ci yi 0 bi yi 0 ai 0
ei 0 di yi 0 ci yi 0 bi yi 0 ai 0
vi 0 ei zi 0 di zi 0 vi zi 0 bi 0

The leftmost column (di + ei = vi) will not be able to carry out because of what will be to its left; the
rightmost column enforces a similar restriction on whatever is to its right. The only letters in these columns
that will appear anywhere else in the puzzle are vi and vi. Because bi = 2ai, and vi = 2bi+ 0 or 1 depending
on whether yi + yi carries, we see that vi must be 0 or 1 mod 4 in any possible solution to the puzzle.
Similarly vi will be 1 or 0 mod 4. We will say that a letter vi represents a true boolean value if it is 1 mod 4,
and false if it is 0; we see from the modulus relations above that vi in fact represents the complement of the
value that vi represents.

There will also be a set of columns for each term (va ∨ vb ∨ vc) in our 3-CNF formula (where the vj are
either variables or their complements):

uab 0 va 0 1 ri 0 gi wi 0 fi 0
vc 0 vb 0 hi ri 0 gi wi 0 fi 0
ti 0 uab 0 ti si 0 hi xi 0 gi 0

If the same va and vb appear in more than one term, we must use the same letter uab for all of those
terms. The rightmost columns (those with fi, gi, wi, hi, ri, and si) force ti to be one of 1, 2, or 3 mod 4 in
a manner similar to the way vi was forced to be either 0 or 1 mod 4. Then the leftmost columns force ti to
equal va + vb + vc, and since each of these is 0 or 1 mod 4, the fact that the sum is non-zero mod 4 forces
at least one of the letters vj to be 1 mod 4.

The above shows that, given a solution to the cryptarithm, we can turn it into an assignment to
the variables of the formula in the manner discussed above, and by the restrictions forced in the columns
corresponding to the terms it will be the case that each term in the formula will have at least one of its
variables set to true. Thus a solution to the puzzle gives us a satisfying assignment to the formula. This will
be true no matter what base we choose for our arithmetic, but to complete the NP-completeness proof we
must find a base that will give us the converse, so that from a satifying assignment to the formula we can
find a solution to the puzzle. It will turn out that with the base equal to 3072n3, where n is the number
of variables in the formula, we can in fact find a solution if a satisfying assignment exists. This number is
small enough to be represented in unary, and so all that remains to be proved is that the constructed puzzle
is as claimed solvable.

Solving the Puzzle

First we will restrict our attention to solutions in which the letters of the puzzle have the following values
taken modulo 128:

Letter: a b c d e f g h v, v u t p, r, w, y q, s, x, z

Value: 2, 34, 4, 68 1, 2, 33, 34, 3, 4, 5, 69 6, 38, 12, 76 24, 25 8, 9 16, 17, 25, 26, 7, 71 14
66, 98 65, 66, 97, 98 67, 68 70, 102 18 27



We will also assume that our base is divisible by 128. Define the class of x for any letter x to be bx/128c.
From the column bi + bi + carry = vi in the terms for that variable, we can deduce that bi = bvi/2c, so that
if vi is fixed to have a given class, the value of bi is determined. Similarly all letters except those in the last
two columns above will be fixed by the choice of vi and vi. We will be unable to solve the problem if two
letters take the same value, but the modulus relations make sure that this is only possible if there are two
triples of variables or their complements such that the sums of the classes in each triple are the same (the
only possible collisions occur when two vi or vi, two uab, or two ti have the same class, and the above covers
all three cases).

We also need to assign values to the letters in the last two columns, but that is easy since each pair
doesn’t interfere with any other pair (by the modulus relations) and any setting of q, s, x or z will allow
the corresponding sum to either carry or not carry as desired. So we need as many classes as there are such
letters in the puzzle, but this turns out to be less than we will need for the variables. The only other obstacle
to a solution of the puzzle is that some digits might need to be larger than the base of arithmetic. We will
resolve this by setting the base to be at least three times the value assigned to the largest variable.

Thus our problem reduces to finding an assignment for the classes of the vi and vi letters such that all
sums in triples are distinct. If we can do that, and given the modulus relations above, it will be an easy
task to assign vi to be 8 or 9 mod 128 depending on whether or not the variable is true in our hypothetical
satisfying assignment, and this will induce an assignment for all the other letters.

As a first try at generating a non-colliding assignment, we will set the classes of vi to be powers of 2.
Any sum of distinct powers of two is distinct, so this satisfies our distinct triple requirement. However, such
an assignment will cause the base to be O(4n), which is too large to be written in unary (but can be written
in binary). So this doesn’t give us as strong a result as we would like.

To find a solution with a smaller base, we must turn to a 1959 result of Bose and Chowla. They proved
that for any k there is a set of k numbers, all between 1 and k3, such that their sums in triples are distinct
[1,3]. Thus we only need our classes to run from 1 to (2n)3. If we multiply this by 128 · 3 for the values
within each class and for room for the terms as described above, we see that from a satisfying assignment to
the 3-CNF formula we can find a solution to the derived puzzle with a base of only 3072n3. Thus with this
as our base the puzzle can be solved if and only if the formula is satisfiable, and so as claimed cryptarithms
are NP-complete even when the base must be written in unary.
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