

Improved Algorithms for 3-Coloring,
3-Edge-Coloring, and Constraint Satisfaction

David Eppstein∗

Abstract

We consider worst case time bounds for NP-complete prob-
lems including 3-SAT, 3-coloring, 3-edge-coloring, and 3-
list-coloring. Our algorithms are based on a constraint satis-
faction (CSP) formulation of these problems; 3-SAT is equiv-
alent to (2, 3)-CSP while the other problems above are spe-
cial cases of (3, 2)-CSP. We give a fast algorithm for (3, 2)-
CSP and use it to improve the time bounds for solving the
other problems listed above. Our techniques involve a mix-
ture of Davis-Putnam-style backtracking with more sophisti-
cated matching and network flow based ideas.

1 Introduction

There has recently been growing interest in analysis of
superpolynomial-time algorithms, including algorithms for
NP-hard problems such as satisfiability or graph coloring.
This interest has multiple causes:

• Many important applications can be modeled with these
problems, and with the increased speed of modern com-
puters, solved effectively; for instance it is now routine
to solve hard 500-variable satisfiability instances, and
structured instances with up to 10000 variables can of-
ten be handled in practice [24].

• Improvements in exponential time bounds are espe-
cially critical in determining the size of problems that
can be solved: an improvement fromO(2c1n) toO(2c2n)
implies a factor of c1/c2 improvement in the solv-
able problem size while technological developments
can only improve the size by an additive constant.

• Approximation algorithms for many of these problems
are often either nonsensical (how does one approximate
SAT?) or inadequate.

• The large gap between the known theoretical worst case
bounds and results from empirical testing of implemen-
tations provides an interesting challenge to algorithm re-
searchers.

In this paper we continue our previous work on exact
algorithms for 3-coloring, 3-edge-coloring, and 3-SAT [2].

∗Dept. Inf. & Comp. Sci., Univ. of California, Irvine, CA 92697-3425.
Email: eppstein@ics.uci.edu.

Each of these problems can be expressed as a form of con-
straint satisfaction (CSP). We solve instances of CSP with
at most two variables per constraint by showing that such
an instance either contains a good local configuration allow-
ing us to split the problem into several smaller instances, or
can be solved directly by graph matching. We solve graph 3-
coloring by using techniques including network flow to find
a small set of vertices with many neighbors, choosing colors
for that set of vertices, and treating the remaining problem
using our constraint satisfaction algorithm. We solve graph
3-edge-coloring by a further level of case analysis: we use
graph matching to find a large set of good local configura-
tions, each of which can be applied independently yielding
a set of instances of a generalized edge coloring problems in
which certain pairs of edges are constrained to have distinct
colors. We then solve this generalized coloring problem with
our vertex coloring algorithm.

Beyond additional case analysis, the improvements in
the present work come from the following ideas:

• Extending our previous (3, 2)-CSP algorithm to (4, 2)-
CSP, and measuring the size of a (4, 2)-CSP instance in
terms of a parameter εwhich can be varied to achieve the
optimal tradeoff between different cases in the analysis.

• Stopping the search when a CSP instance can be solved
by a graph matching algorithm, rather than continuing
the case analysis of an instance until it can be deter-
mined directly to be solvable or unsolvable.

• Eliminating cycles of low-degree vertices from vertex
coloring instances, in order to show that a large fraction
of the graph can be covered by the neighborhoods of few
high degree vertices.

• Using network flow techniques to cover a vertex color-
ing instance with a forest that avoids certain bad kinds
of trees. Our previous paper instead performed a simi-
lar step using a complicated case analysis in place of net-
work flow, and achieved weaker limitations on the types
of trees occurring in the forest.

• Introducing a generalization of edge coloring, so that
we can perform reductions while staying in the same
problem class before treating the problem as an instance

1

2

d = 3 d = 4 d = 5 d = 6 d = 7 d = 8
Schöning [23] 1.5n 2n 2.5n 3n 3.5n 4n

Feder and Motwani [8] 1.8171n 2.2134n 2.6052n 2.9938n 3.3800n 3.7644n

New results 1.3645n 1.8072n 2.2590n 2.7108n 3.1626n 3.6144n

Table 1: Comparison of time bounds for (d, 2)-CSP.

of vertex coloring, and using graph matching to find
many independent good local configurations in an edge
coloring instance.

We omit most of the case analysis and proofs in this
extended abstract. For details see the full paper [3], which
combines these new results with those from our previous
conference paper [2].

1.1 New Results

We show the following:

• A (3, 2)-CSP instance with n variables can be solved in
worst case timeO(1.3645n), independent of the number
of constraints.

• A (d, 2)-CSP instance with n variables and d > 3 can
be solved by a randomized algorithm in expected time
O((0.4518d)n).

• 3-coloring in a graph of n vertices can be solved in time
O(1.3289n), independent of the number of edges in the
graph.

• 3-list-coloring (graph coloring given a list at each vertex
of three possible colors chosen from some larger set)
can be solved in time O(1.3645n), independent of the
number of edges.

• 3-edge-coloring in an n-vertex graph can be solved
in time O(2n/2), again independent of the number of
edges.

• 3-satisfiability of a formula with t 3-clauses can be
solved in time O(nO(1) + 1.3645t), independent of the
number of variables or 2-clauses in the formula.

Except where otherwise specified, n denotes the number
of vertices in a graph or variables in a SAT or CSP instance,
while m denotes the number of edges in a graph, constraints
in an CSP instance, or clauses in a SAT problem.

1.2 Related Work

For three-coloring, we know of several relevant references.
Lawler [15] is primarily concerned with the general chro-
matic number, but also gives a simple O(1.4422n)-time al-
gorithm for 3-coloring: for each maximal independent set,

test whether the complement is bipartite. Schiermeyer [22]
improves this toO(1.415n), and our previous conference pa-
per [2] further reduced the time bound to O(1.3443n). Our
O(1.3289n) bound significantly improves all of these results.

There has also been some related work on approximate
or heuristic 3-coloring algorithms. Blum and Karger [4]
show that any 3-chromatic graph can be colored with
Õ(n3/14) colors in polynomial time. Alon and Kahale [1] de-
scribe a technique for coloring random 3-chromatic graphs
in expected polynomial time, and Petford and Welsh [19]
present a randomized algorithm for 3-coloring graphs which
also works well empirically on random graphs although they
prove no bounds on its running time. Finally, Vlasie [25] has
described a class of instances which are (unlike random 3-
chromatic graphs) difficult to color.

Several authors have described exact algorithms for
Boolean formula satisfiability [5–7, 9, 10, 12, 13, 16–18, 20,
21]. Very recently, Schöning [23] has described a simple
and powerful randomized algorithm for k-SAT and more gen-
eral constraint satisfaction problems, including the CSP in-
stances that we use in our solution of 3-coloring. For 3-SAT,
Schöning’s algorithm takes expected time O((4/3 + ε)n)
However, for (d, 2)-CSP, Schöning notes that his method is
not as good as a randomized approach based on an idea from
our previous conference paper [2]: simply choose a random
pair of values for each variable and solve the resulting 2-
SAT instance in polynomial time, giving an overall bound of
O((d/2)nnO(1)). Feder and Motwani [8] have an alternative
randomized algorithm which takes timeO((d!)n/dnO(1)), an
improvement over Schöning for d ≥ 6 (and over our results
for d ≥ 11). Table 1 compares these bounds with our new
results.

The only prior work we found for 3-edge coloring was
our ownO(1.5039n) bound [2]. Since any 3-edge-chromatic
graph has at most 3n/2 edges, one can transform the problem
to 3-vertex-coloring at the expense of increasing n by a fac-
tor of 3/2. If we applied our vertex coloring algorithm we
would then get time O(1.5319n). Both of these bounds are
significantly improved by the one we state.

It is interesting that, historically, until the work of
Schöning [23], the time bounds for 3-coloring have been
smaller than those for 3-satisfiability (measured in terms of
the number of vertices or variables respectively). Schöning’s
O((4/3 + ε)n) time bound for 3-SAT reversed this pattern
by being smaller than the previous O(1.3443n) bound for

3

��
��
yy
yy

��
��
��

��yy
���
���
���

��yy���
���

��
��
yy
yy��
��

��
��
yy
yy������

��
��
��

��yy
��
��
yy
yy

Figure 1: Example (3, 2)-CSP instance with five variables and twenty constraints (left), and a solution of the instance (right).

�y��
��
��

�y��
��

�
�
y
y

��
��
��

�y��
��

Figure 2: Example 3-coloring instance (left) and translation into a (3, 2)-CSP instance (right).

3-coloring from our previous paper [2]. The present work re-
stores 3-coloring to a smaller time bound than 3-SAT.

2 Constraint Satisfaction Problems

We now describe a common generalization of satisfiabil-
ity and graph coloring as a constraint satisfaction problem
(CSP) [14,23]. We are given a collection of n variables, each
of which has a list of possible colors allowed. We are also
given a collection of m constraints, consisting of a tuple of
variables and a color for each variable. A constraint is sat-
isfied by a coloring if not every variable in the tuple is col-
ored in the way specified by the constraint. We would like to
choose one color from the allowed list of each variable, in a
way not conflicting with any constraints.

For instance, 3-satisfiability can easily be expressed in
this form. Each variable of the satisfiability problem may
be colored (assigned the value) either true (T) or false (F).
For each clause like (x1 ∨ x2 ∨ ¬x3), we make a constraint
((v1,F), (v2,F), (v3,T)). Such a constraint is satisfied if and
only if at least one of the corresponding clause’s terms is true.

In the (a, b)-CSP problem, we restrict our attention to
instances in which each variable has at most a possible colors
and each constraint involves at most b variables. The CSP
instance constructed above from a 3-SAT instance is then a

(2, 3)-CSP instance, and in fact 3-SAT is easily seen to be
equivalent to (2, 3)-CSP.

In this paper, we will concentrate our attention instead
on (3, 2)-CSP and (4, 2)-CSP. We can represent a (d, 2)-CSP
instance graphically, by interpreting each variable as a vertex
containing up to d possible colors, and by drawing edges
connecting incompatible pairs of vertex colors (Figure 1).
Note that this graphical structure is not actually a graph, as the
edges connect colors within a vertex rather than the vertices
themselves. However, graph 3-colorability and graph 3-list-
colorability can be translated directly to a form of (3, 2)-CSP:
we keep the original vertices of the graph and their possible
colors, and add up to three constraints for each edge of the
graph to enforce the condition that the edge’s endpoints have
different colors (Figure 2).

Of course, since these problems are all NP-complete,
the theory of NP-completeness provides translations from
one problem to the other, but the translations above are size-
preserving and very simple. Our graph coloring techniques
include more complicated translations in which the input
graph is partially colored before treating the remaining graph
as an CSP instance, leading to improved time bounds over
our pure CSP algorithm.

4

�
�
y
y��
��
��

�
�
y
y

�
�
y
y���

���
���

��
��
��

��
��

Figure 3: Isolated constraint between two three-color variables (left) is equivalent to a single four-color variable (right).

3 Constraint Satisfaction Algorithm

We now outline our (4, 2)-CSP algorithm. A (4, 2)-CSP in-
stance can be transformed into a (3, 2)-CSP instance by ex-
panding its four-color variables to two three-color variables
(Figure 3), so a natural definition of the “size” of a (4, 2)-
CSP instance is n = n3 + 2n4, where ni denotes the number
of i-color variables. However, we instead define the size as
n = n3 + (2 − ε)n4, where ε is a constant to be determined
later. The size of a (3, 2)-CSP instance remains equal to its
number of variables, so any bound on the running time of our
algorithm in terms of n applies directly to (3, 2)-CSP.

Our basic idea is to find a set of local configurations
that must occur within any (4, 2)-CSP instance I. For each
configuration we describe a set of smaller instances Ii of size
|I| − ri such that I is solvable if and only if at least one of
the instances Ii is solvable. If one particular configuration
occurred at each step of the algorithm, this would lead to a
recurrence of the form

T(n) =
∑

T(n− ri) + poly(n) = O(λ(r1, r2, . . .)n)

for the runtime of our algorithm, where λ(r1, r2, . . .) is the
largest zero of the function f (x) = 1 −

∑
x−ri . We call

this value λ(r1, r2, . . .) the work factor of the given local
configuration. The overall time bound will be λn where λ is
the largest work factor among the configurations we identify.

3.1 Case Analysis

We first consider local configurations in which some (vari-
able,color) pair (v,R) is involved in only a single constraint
((v,R), (w,R)). If this is also the only constraint involving
(w,R), and both v and w have three colors, they can be re-
placed by a single four-color variable (Figure 3); any other
singly-constrained color leads to a problem reduction with
work factor λ(2− ε,3−ε).

We next find colors with multiple constraints to differ-
ent colors of the same variable. We say that (v,R) implies
(w,R) if there are constraints from (v,R) to every other color
choice of w. If the target (w,R) of some implication has two
distinct neighbors, then using (w,R) eliminates w and at least
two other variables, while avoiding (w,R) forces us to also
avoid (v,R) (Figure 4). If instead the target of every impli-

cation is the source of another, we can find a cycle of impli-
cations, and safely use all colors in the cycle. Finally, if we
have a multiple adjacency without forming any implication,
then it must involve a variable with four color choices, and
we try using either the two constrained colors or the two un-
constrained colors. The maximum work factor arising from
these cases is λ(2− ε,3−2ε).

The next set of cases we consider involve colors con-
strained by four or more neighboring variables, or four-color
variables with a color constrained by three variables. In these
cases, choosing to use or not use the highly-constrained color
gives work factor λ(1− ε, 5− 4ε).

If none of the above cases applies to an instance, the in-
stance must have a special form: each (variable,color) pair
has exactly two or three constraints, which must involve dis-
tinct variables. Our next sequence of cases concerns adja-
cency between (variable,color) pairs with two constraints and
pairs with three constraints. We show that, if (v,R) has three
constraints, one of which connects it to a variable with four
color choices, then the instance can be replaced by smaller
instances with work factor at most λ(3−ε, 4 − ε, 4 − ε). If
this case does not apply, and a three-constraint pair (v,R) is
adjacent to a (variable,color) pair with two constraints, then
we have additional cases with work factor at most max{λ(1+
ε, 4), λ(3, 4 − ε, 4)}. If none of these cases applies to an in-
stance, then each color choice in the instance must have ei-
ther two or three constraints, and each neighbor of that choice
must have the same number of constraints.

We now consider the remaining (variable,color) pairs
that have three constraints each. Define a three-component
to be a subset of such pairs such that any pair in the sub-
set is connected to any other by a path of constraints. We
distinguish two such types of components: a small three-
component is one that involves only four distinct variables,
while a large three-component involves five or more vari-
ables. A small three-component is good if it involves only
four (variable,color) pairs. We show that an instance contain-
ing a small three-component that is not good can be replaced
by smaller instances with work factor at most λ(4, 4, 4),
and that an instance containing a large three-component can
be replaced by smaller instances with work factor at most

5

�y��
��
��

�y��
��
��

�y��
��
��

�y��
��
��

�y��
��
��

�y��
��
��

�y��
��
��

�y��
��
��

�y��
��
��

��
��
��

�y

Figure 4: Implication from (v,R) to (w,R), such that (w,R) has two distinct neighbors. Restricting w eliminates v and w
(top right) while assigning w color R eliminates three variables (bottom right).

λ(4, 4, 5, 5). As a consequence, we can assume all remain-
ing three-components are good.

Finally, we define a two-component to be a subset of
(variable,color) pairs such that each has two constraints, and
any pair in the subset is connected to any other by a path of
constraints. Our analysis of two-components is essentially
the same as in [2], and shows that unless a two-component
forms a triangle, the instance can be replaced by smaller in-
stances with work factor at most λ(3, 3, 5).

3.2 Good Components

Suppose we have a (4, 2)-CSP instance to which none of the
preceding reduction cases applies. Then, every constraint
must be part of a good three-component or a triangular two-
component. As we now show, this simple structure enables
us to solve the remaining problem quickly.

LEMMA 3.1. If we are given a (4, 2)-CSP instance in which
every constraint must be part of a good three-component or a
small two-component, then we can solve it or determine that
it is not solvable in polynomial time.

Proof. We form a bipartite graph, in which the vertices cor-
respond to the variables and components of the instance. We
connect a variable to a component by an edge if there is
a (variable,color) pair using that variable and belonging to
that component. The instance is solvable iff this graph has
a matching covering all variables. 2

This completes the analysis needed for our result.

3.3 The CSP Algorithm

THEOREM 3.1. We can solve any (3, 2)-CSP instance in
time O(λ(4, 4, 5, 5)n) ≈ O(1.36443n).

Proof. We employ a backtracking (depth first) search in a
state space consisting of (3, 2)-CSP instances. At each step
we examine the current state, match it to one of the cases
above, and recursively search each smaller instance. If we
reach an instance in which Lemma 3.1 applies, we perform a
matching algorithm and either stop with a solution or back-
track to the most recent branching point of the search and
continue with the next alternative.

A bound of λn on the number of recursive calls in this
search algorithm, where λ is the maximum work factor oc-
curring in our reduction lemmas, can be proven by induction
on the size of an instance. To determine the maximum work
factor, we need to set the parameter ε. We used Mathematica
to optimize ε numerically, and found that for ε ≈ 0.095543
the work factor is ≈ 1.36443 ≈ λ(4, 4, 5, 5). For ε near
this value, the largest work factors involving ε are λ(3−ε, 4−
ε, 4−ε), andλ(1+ε, 4); the remaining work factors are below
1.36. The true optimum value of ε is thus the one for which
λ(3−ε, 4− ε, 4− ε) = λ(1 + ε, 4).

As we now show, for this optimum ε, λ(3−ε, 4− ε, 4−
ε) = λ(1 + ε, 4) = λ(4, 4, 5, 5), which also arises as a work
factor in another case. Consider subdividing an instance of
size n into one of size n−(1+ε) and another of size n−4, and
then further subdividing the first instance into subinstances
of size n − (1 + ε) − (3−ε), n − (1 + ε) − (4 − ε),
and n − (1 + ε) − (4 − ε). This four-way subdivision has
work factor λ(4, 4, 5, 5), and combines subdivisions of type

6

λ(1+ε, 4) and λ(3−ε, 4−ε, 4−ε), so these three work factors
must be equal. 2

We use the quantity λ(4, 4, 5, 5) frequently in the re-
mainder of the paper, so we use Λ to denote this value.

3.4 CSP Applications

Theorem 3.1 immediately gives algorithms for some more
well known problems, some of which we improve later. Of
these, the least familiar is likely to be list k-coloring: given
at each vertex of a graph a list of k colors chosen from some
larger set, find a coloring of the whole graph in which each
vertex color is chosen from the corresponding list [11].

COROLLARY 3.1. We can solve the 3-coloring and 3-list
coloring problems in time O(Λn), the 3-edge-coloring prob-
lem in time O(Λm), and the 3-SAT problem in time O(Λt),

COROLLARY 3.2. There is a randomized algorithm which
finds the solution to any solvable (d, 2)-CSP instance (with
d > 3) in expected time O((0.4518d)n).

Proof. Randomly choose a subset of four values for each
variable and apply our algorithm to the resulting (4, 2)-CSP
problem. Repeat with a new random choice until finding
a solvable (4, 2)-CSP instance. The random restriction of
a variable has probability 4/d of preserving solvability so
the expected number of trials is (d/4)n. Each trial takes
time O(Λ(2−ε)n) ≈ O(1.8072n). The total expected time is
therefore O((d/4)n1.8072n). 2

4 Vertex Coloring

Simply by translating a 3-coloring problem into a (3, 2)-
CSP instance, as described above, we can test 3-colorability
in timeO(Λn). We reduce this further (as in [2]) by finding a
small set of vertices S ⊂ V(G) with a large set N of neighbors,
and choosing one of the 3|S| colorings for all vertices in S.
For each such coloring, we translate the remaining problem
to a (3, 2)-CSP instance. The vertices in S are already colored
and need not be included in the (3, 2)-CSP instance, and the
vertices in N can also be eliminated, so the overall time is
O(3|S|Λ|V(G)−S−N|). By choosing S appropriately we can
make this quantity smaller than O(Λn).

We begin by showing a cycle of degree-three vertices al-
lows us to reduce a 3-coloring instance to smaller instances
with work factor λ(5, 6, 7, 8) ≈ 1.2433, and that a tree of
eight or more such vertices leads to work factor λ(2, 5, 6) ≈
1.3247. Therefore, we can assume that the degree-three ver-
tices induce subgraphs that are trees of at most seven vertices,
and that the graph contains many higher degree vertices.

We define a bushy forest to be an unrooted forest within a
given instance graph, such that each internal node has degree
four or more. Because each tree of k degree-three vertices
must have at least 9k/7 outgoing edges, we can show that the

number of vertices excluded from a maximal bushy forest is
at most 20r/3, where r is its number of leaves.

All internal nodes of the maximal bushy forest F will be
included in S, but we also wish to include some of the remain-
ing graph vertices. To do this, we form these vertices into
trees of height two, with at most five grandchildren. Further,
in a tree with four or more grandchildren, at least one node
must have degree four or more in G. This forest of height-
two trees can be found by the following flow-based tech-
nique (Figure 5): first, find a set of disjoint K1,3 subgraphs in
G \ F, maximal under operations that remove one such sub-
graph and form two or more from the remaining vertices. As-
sign grandchildren to these height-one trees, from the remain-
ing vertices nonadjacent to F, with fractional weights spread
evenly among the trees each child can be assigned to. This
fractional assignment can be shown to have the bounds we
want on the total assigned weight of grandchildren per tree,
but does not form a disjoint set of trees. However, we can
represent the possible assignments of grandchildren to trees
using a flow graph, and use the fact that every flow problem
has an optimal integer solution, to find a non-fractional as-
signment of grandchildren to trees with the same bounds. We
will add to S certain tree roots or their children, depending on
the shape of each height-two tree.

THEOREM 4.1. We can solve the 3-coloring problem in time
O((23/4934/49Λ24/49)n) ≈ 1.3289n.

Proof. As described, we find a maximal bushy forest F, then
cover the remaining vertices by height-two trees. We choose
colors for each internal vertex in F, and for certain vertices in
the height-two trees. Vertices adjacent to these colored ver-
tices are restricted to two colors, while the remaining vertices
form a (3, 2)-CSP instance and can be colored using our gen-
eral (3, 2)-CSP algorithm.

Let p denote the number of vertices that are roots in F;
q denote the number of non-root internal vertices; r denote
the number of leaves of F; s denote the number of vertices
adjacent to leaves of F; and t denote the number of remain-
ing vertices, which must all be degree-three vertices in the
height-two forest. We show that, if we assign cost Λ to each
vertex adjacent to a leaf of F, then the cost of coloring each
height-two tree, averaged over its remaining vertices, is at
most (3Λ3)1/7 per vertex. Therefore, the total time for the
algorithm is at most 3p2qΛs(3Λ3)t/7.

This bound is subject to the constraints p, q, r, s, t ≥ 0,
p+q+ r+ s+ t = n, 4p+2q ≤ r, 2r ≥ s, and 20r/3 ≥ s+ t.
The worst case occurs when s+t = 20r/3, s = 2r, t = 14r/3,
4p + 2q = r, p = 0, and r = 2q, giving the stated bound. 2

7

1

1/2
1/2

1/2

1/2
1/3

4 1/3 2 5/6 2 5/6

1/3
1/3

1/2
1/2 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1

0
1

0

1
0

4 2 3

0
1

0
1 1 1 1

1 1 1 1 1 1 1 1 1

Figure 5: Use of maximum flow to find a good height-two forest. Top: forest of K1,3 subgraphs and adjacent vertices. The
left subgraph is adjacent to the maximal bushy forest; the other two subgraphs are not. Top middle: flow graph and fractional
flow formed by spreading flow equally from each of the bottom vertices. The edge capacities are all one, except for the top
three which are respectively 5, 3, and 3. Bottom middle: maximum integer flow for the same flow graph. Bottom: height-two
forest corresponding to the given integer flow.

8

Figure 6: Replacement of five edges (left) by two constrained edges (right).

5 Edge Coloring

We now describe an algorithm for finding edge colorings of
undirected graphs, using at most three colors, if such color-
ings exist. We can assume without loss of generality that the
graph has vertex degree at most three. Then m ≤ 3n/2, so by
applying our vertex coloring algorithm to the line graph of G
we could achieve time bound 1.32893n/2 ≈ 1.5319n. Just
as we improved our vertex coloring algorithm by performing
some reductions in the vertex coloring model before treating
the problem as a (3, 2)-CSP instance, we improve this edge
coloring bound by performing some reductions in the edge
coloring model before treating the problem as a vertex color-
ing instance.

The main idea is to solve a problem intermediate in gen-
erality between 3-edge-coloring and 3-vertex-coloring: 3-
edge-coloring with some added constraints that certain pairs
of edges should not be the same color.

LEMMA 5.1. Suppose a constrained 3-edge-coloring
instance contains an unconstrained edge connecting two
degree-three vertices. Then the instance can be replaced by
two smaller instances with three fewer edges and two fewer
vertices each.

Proof. Let the given edge be (w, x), and let its four neighbors
be (u,w), (v,w), (x, y), and (x, z). Then (w, x) can be colored
only if its neighbors use only two colors, in which case we
can match each neighbor incident at w with a similarly col-
ored neighbor incident at x. We can collapse these matched
pairs into a single edge without changing the coloring of the
remaining graph. Thus, we can replace the instance by two
smaller instances: one in which we replace the five edges by
the two edges (u, y) and (v, z), and one in which we replace
the five edges by the two edges (u, z) and (v, y); in each case
we add a constraint between the two new edges. 2

This reduction operation is depicted in Figure 6.

We let m3 denote the number of edges with three neigh-
bors in an unconstrained 3-edge-coloring instance, and m4

denote the number of edges with four neighbors. Edges with
fewer neighbors can be removed at no cost, so we can assume
without loss of generality that m = m3+m4. By using a max-
imum matching algorithm, we can find a set of m4/3 edges
such that Lemma 5.1 can be applied independently to each
edge.

THEOREM 5.1. We can 3-edge-color any 3-edge-colorable
graph, in time O(2n/2).

Proof. We apply Lemma 5.1 m4/3 times, forming a set
of 2m4/3 constrained 3-edge-coloring problems each having
only m3 edges. We then treat these remaining problems as 3-
vertex-coloring problems on the corresponding line graphs,
augmented by additional edges representing the constraints
added by Lemma 5.1. The time for this algorithm is thus
at most O(1.3289m32m4/3). This is maximized when m4 =
3n/2 and m3 = 0. 2

References
[1] N. Alon and N. Kahale. A spectral technique for coloring ran-

dom 3-colorable graphs. SIAM J. Comput. 26(6):1733–1748,
1997, http://www.research.att.com/∼kahale/papers/jour.ps.

[2] R. Beigel and D. Eppstein. 3-coloring in time O(1.3446n):
a no-MIS algorithm. Proc. 36th Symp. Foundations of Com-
puter Science, pp. 444–453. Inst. of Electrical & Electronics
Engineers, October 1995, ftp://ftp.eccc.uni-trier.de/pub/eccc/
reports/1995/TR95-033/index.html.

[3] R. Beigel and D. Eppstein. 3-coloring in time O(1.3289n).
ACM Computing Research Repository, June 2000.
cs.DS/0006046.

[4] A. Blum and D. Karger. An Õ(n3/14)-coloring algorithm for
3-colorable graphs. Inf. Proc. Lett. 61(1):49–53, 1997, http:
//www.cs.cmu.edu/∼avrim/Papers/color new.ps.gz.

[5] E. Dantsin. Two systems for proving tautologies, based on the
split method. J. Sov. Math. 22:1293–1305, 1983. Original
Russian article appeared in 1981.

9

[6] E. Dantsin and E. A. Hirsch. Algorithms for k-SAT based
on covering codes. Preprint 1/2000, Steklov Inst. of Mathe-
matics, 2000, ftp://ftp.pdmi.ras.ru/pub/publicat/preprint/2000/
01-00.ps.gz.

[7] M. Davis and H. Putnam. A computing procedure for quan-
tification theory. J. ACM 7(3):201–215, 1960.

[8] T. Feder and R. Motwani. Worst-case time bounds for coloring
and satisfiability problems. Manuscript, September 1998.

[9] J. Gramm, E. A. Hirsch, R. Niedermeier, and P. Rossmanith.
Better worst-case upper bounds for MAX-2-SAT. 3rd Worksh.
on the Satisfiability Problem, 2000, http://ssor.twi.tudelft.nl/
∼warners/SAT2000abstr/hirsch.html.

[10] E. A. Hirsch. Two new upper bounds for SAT. Proc. 9th
ACM-SIAM Symp. Discrete Algorithms, pp. 521–530, 1998,
http://logic.pdmi.ras.ru/∼hirsch/abstracts/soda98.html.

[11] T. R. Jensen and B. Toft. Graph Coloring Problems. Ser.
Discrete Mathematics and Optimization. John Wiley & Sons,
Inc., New York, 1995.

[12] O. Kullmann. New methods for 3-SAT decision and worst-
case analysis. Theor. Comp. Sci. 223(1–2):1–72, July 1999,
http://www.cs.toronto.edu/∼kullmann/3neu.ps.

[13] O. Kullmann and H. Luckhardt. Various upper bounds on the
complexity of algorithms for deciding propositional tautolo-
gies. Manuscript available from kullmann@mi.informatik.
uni-frankfurt.de, 1994.

[14] V. Kumar. Algorithms for constraint satisfaction problems: a
survey. AI Magazine 13(1):32–44, 1992, http://citeseer.nj.nec.
com/kumar92algorithms.html.

[15] E. L. Lawler. A note on the complexity of the chromatic
number problem. Inf. Proc. Lett. 5(3):66–67, August 1976.

[16] H. Luckhardt. Obere Komplexitätsschranken für TAUT-
Entscheidungen. Proc. Frege Conf., Schwerin, pp. 331–337.
Akademie-Verlag, 1984.

[17] B. Monien and E. Speckenmeyer. Solving satisfiability in less
than 2n steps. Discrete Appl. Math. 10(3):287–295, March
1985.

[18] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved
exponential-time algorithm for k-SAT. Proc. 39th Symp.
Foundations of Computer Science, pp. 628–637. IEEE, 1998,
http://www.math.cas.cz/∼pudlak/ppsz.ps.

[19] A. D. Petford and D. J. A. Welsh. A randomised 3-colouring
algorithm. Discrete Math. 74(1–2):253–261, 1989.

[20] R. Rodošek. A new approach on solving 3-satisfiability.
Proc. 3rd Int. Conf. Artificial Intelligence and Sym-
bolic Mathematical Computation, pp. 197–212.
Springer-Verlag, Lecture Notes in Computer Science
1138, 1996, http://www-icparc.doc.ic.ac.uk/papers/
a new approach on solving 3-satisfiabili.ps.

[21] I. Schiermeyer. Solving 3-satisfiability in less than 1.579n

steps. Proc. 6th Worksh. Computer Science Logic, pp. 379–
394. Springer-Verlag, Lecture Notes in Comp. Sci. 702, 1993.

[22] I. Schiermeyer. Deciding 3-colourability in less than
O(1.415n) steps. Proc. 19th Int. Worksh. Graph-Theoretic
Concepts in Computer Science, pp. 177–182. Springer-Verlag,
Lecture Notes in Comp. Sci. 790, 1994.

[23] U. Schöning. A probabilistic algorithm for k-SAT and con-
straint satisfaction problems. Proc. 40th IEEE Symp. Founda-
tions of Computer Science, pp. 410–414, October 1999.

[24] B. Selman. Satisfiability testing: theory and practice. DI-
MACS Worksh. Faster Exact Solutions for NP-Hard Problems,
February 2000.

[25] R. D. Vlasie. Systematic generation of very hard cases for
graph 3-colorability . Proc. 7th IEEE Int. Conf. Tools with
Artificial Intelligence, pp. 114–119, 1995, http://www.essi.fr/
∼vlasier/PS/3paths.ps.

