

Tree-Weighted Neighbors and

Geometric k Smallest Spanning Trees

David Eppstein

Department of Information and Computer Science
University of California, Irvine, CA 92717

Tech. Report 92-77

July 7, 1992

Abstract

We compute the k smallest spanning trees of a point set in the pla-
nar Euclidean metric in time O(n log n log k+kmin(k, n)1/2 log(k/n)),
and in the rectilinear metrics in time O(n log n + n log logn log k +
kmin(k, n)1/2 log(k/n)). In three or four dimensions our time bound
is O(n4/3+ε + kmin(k, n)1/2 log(k/n)), and in higher dimensions the
bound is O(n2−2/(dd/2e+1)+ε + kn1/2 log n).

1 Introduction

The k smallest spanning tree problem for graphs has been studied exten-
sively [5, 6, 7, 8, 9, 10, 11, 12], but it was only recently that the author
introduced the corresponding geometric problem [7]. In this problem, one
is given a point set as input, and one must construct k different spanning
trees that have the minimum total edge lengths among all possible spanning
trees of the set. The trees need not be edge-disjoint. This problem is to be
distinguished from the much harder one of finding the k smallest distinct
spanning tree weights [12].

Since the geometric problem is equivalent to a graph problem on the com-
plete graph of all the points, weighted by distance, the various known graph
algorithms can all be applied to the geometric problem. The best known
graph algorithm takes O(m log β(m,n) + kmin(k, n)1/2 log(min(k,m)/n))
time [8]. For the complete graph, m = Θ(n2) and this bound can be simpli-
fied to O(n2 + kn1/2 log n).

This bound holds for any metric space. In order to improve it, we need
to apply some geometry. From now on, we assume the Euclidean metric
in the plane, unless stated otherwise. In our earlier paper [7], we showed
that the k smallest spanning trees could be found in a graph with O(kn)
edges, constructed using the order k Voronoi diagram. The time for finding
the spanning trees is dominated by that for finding the diagram, which is
O(kn1+ε) [2] or O(k2n+ n log n) [4].

In the same paper, we gave a different approach, which is closer to the
ideas we apply here. We first used the order 3 Voronoi diagram to identify
O(k) edges of the minimum spanning tree which might be replaced in the
other k − 1 smallest trees. These edges split the MST into O(k) blocks,
and we found the nearest neighbor of each point in each block. We used
this information to identify O(k) points which might occur as endpoints of
edges in the smallest spanning trees, other than those edges already in the
MST. Then we solved the graph problem on the graph formed by adding
O(k2) possible edges to the n− 1 MST edges. The time for this procedure
is O(k2 + kn log(n/k)).1 This is always an improvement on the O(kn1+ε)
Voronoi-diagram-based algorithm.

Since our paper appeared, Frederickson [9] and Eppstein et al. [8] im-
proved the algorithm for general graphs, to the bounds stated above. How-
ever, their improvements only help the non-geometric algorithm for our

1We adopt the convention that log x = log2(2+x), so log x is always Ω(1) even if x < 1.

1

problem (valid for any metric space) giving the O(n2 + kn1/2 log n) bound
stated above. It seems natural to hope that their approach could also im-
prove the times for the geometric (Voronoi diagram based) algorithms of [7],
but this required new ideas, since those algorithms spend more time con-
structing graphs than they spend finding spanning trees.

In this paper, we provide such an improvement. As in the second al-
gorithm of our previous paper, we find O(k) endpoints of spanning tree
replacement edges; however we speed up this stage by computing the tree-
weighted nearest neighbor of each point; that is, we alter the standard Eu-
clidean metric by subtracting from each distance d(x, y) the length of the
longest edge on the MST path from x to y, and compute nearest neighbors
with these altered distances. We then thin down the O(k2) possible edges
to a set of O(k) edges, in time O(k1+ε), using a modification of the tree-
weighted neighbor idea. As a result, we find the k smallest spanning trees
in time O(n log n log k + kmin(k, n)1/2 log(k/n))

Our algorithm improves our previous geometric algorithms for values
of k in the range (log n log logn)1/2 < k < n, and it is the first to apply
geometry to improve the previous purely graph theoretic algorithms in the
range n < k < n2. Our algorithm is nearly optimal for k < n2/3, avoiding
optimality only by a factor of O(log k). For larger k, our algorithm’s time is
dominated by that for finding the k smallest spanning trees in graphs; thus
we are poised to take advantage of any further development in the graph
algorithms.

We also adapt our algorithm to the rectilinear (L1 or L∞) metric. In
this metric, the time is O(n log n+n log logn log k+kmin(k, n)1/2 log(k/n)),
which always improves the previous O(n log n + kn log log(n/k)) bound of
our previous paper.

Finally, we discuss generalizations of our algorithm to higher dimen-
sions. Our previous geometric algorithms found the spanning trees in sparse
graphs constructed using Voronoi diagrams, but in higher dimensions the
corresponding graphs may be dense, so those algorithms do not general-
ize. Our new algorithms rely primarily on the ability to search for several
nearest neighbors in a point set, for which data structures are known in
any dimension. Thus we find the first geometric algorithms for k small-
est spanning trees in any dimension. Our algorithm takes time O(n4/3+ε +
kmin(k, n)1/2 log(k/n)) in three and four dimensions. In any higher dimen-
sion d the bound is O(n2−2/(dd/2e+1)+ε + kn1/2 log n). For small k these
bounds match the best known times for computing a single minimum span-
ning tree [1]. For large k the time is dominated by that for finding k smallest

2

spanning trees in graphs, and is poised to take advantage of improvements
in the graph algorithms.

2 Tree-weighted neighbors

Suppose we are given a point set S, and an edge-weighted tree T spanning
the points. For example, the tree could be the minimum spanning tree of
the point set. Define the tree-weighted distance dT (x, y) as follows. Given
points x and y, there is some path in T connecting them. Let e be the edge
of maximum weight on that path. Then dT (x, y) = d(x, y) − |e|. The tree-
weighted distance “normalizes” the Euclidean distance by effectively pushing
closer together pairs of points connected by a long edge in T . However note
that after this weighting, the distance need no longer satisfy the triangle
inequality, so it will not necessarily be a metric. If T is the MST, the tree-
weighted distance d(x, y) measures how much the length of the spanning
tree would increase if we forced xy to be an edge in the tree.

The nearest tree-weighted neighbor of a point x is then simply that other
point y minimizing the tree-weighted distance dT (x, y). Again, if T is the
MST, this would seem to be the same as the best way of adding an edge
with x as endpoint to the MST, to get another tree with as small a weight
as possible. However, in this case the points connected by MST edges to
x will have tree-weighted distance 0, and other points will in general have
positive distance, so if x and y are nearest neighbors xy will already be an
MST edge. We will see how to avoid this difficulty, and use tree-weighted
neighbors for computing the k smallest spanning trees, later. For now we
will simply compute the neighbors.

Given any tree T , if we remove any point x the remaining edges form a
graph with several connected components; let L(x) be the number of points
in the largest such component. If L(x) > n/2, let y be the neighbor of x
in the single component with size L(x); then L(y) ≤ L(x) − 1. Therefore
we can always find a centerpoint c(T) such that L(c(T)) ≤ n/2. We can
compute L(x) for each point x, and hence find a centerpoint, in linear time.

Our algorithm uses centerpoints to perform a divide and conquer recur-
sion on the tree T . We first find a centerpoint c(T) for the entire tree. This
partitions the tree into components of size at most n/2. We merge pairs of
small components until we have at most three components, still of size at
most n/2. Then for each point x we find the nearest tree-weighted neighbor
y, only among those points for which path xy crosses the centerpoint. After

3

this is done we recursively examine each component of T−c(T), and compute
nearest neighbors in the corresponding point sets. The nearest neighbor to
x overall will either be y or it will be the neighbor to x in the component of
T − c(T) that contains x. At each stage of the recursion the size of the tree
decreases by half. Therefore after O(log n) stages of recursion we will have
computed the nearest neighbor for each point.

At each stage, we must find the nearest neighbor y to x on paths xy
that cross c. There are two cases. In the first case, the longest edge on
path xy is also on path xc, that is, on the portion of xy between x and c.
Let e be that longest edge. Then for all points y not in the component of
x, dT (x, y) ≤ d(x, y) − |e|, with equality exactly when e is longer than any
edge on path cy. If we let y be the nearest neighbor to x in the unweighted
Euclidean metric, then d(x, y)− |e| is at least as large as the distance from
x to its nearest tree-weighted neighbor, with equality exactly when y is that
neighbor. Each such neighbor can be found in time O(n log n) using point
location in a Voronoi diagram.

In the second case, the longest edge on path xy is also on path cy. For
each possible point y, let ey be the longest edge on path cy. Then for all
points y not in the component of x, dT (x, y) ≤ d(x, y)− |ey|, with equality
exactly when ey is longer than any edge on path xc. If we let y be the nearest
neighbor to x in the weighted Euclidean metric d′(x, y) = d(x, y)−|ey|, then
d(x, y) − |ey| is at least as large as the distance from x to its nearest tree-
weighted neighbor, with equality exactly when y is that neighbor. Each
such neighbor can be found in time O(n log n) using point location in an
additively weighted Voronoi diagram.

Thus after constructing two Voronoi diagrams and performing point lo-
cation in each one, in time O(n log n) we have two candidates for the nearest
neighbor to x, among those points across c from x. We can compare the
two and choose the true nearest neighbor in constant time per point. Af-
ter at most three repetitions of this algorithm (for the three components of
T − c), we have computed all neighbors at this level of the recursion. This
completes the proof of the following result.

Lemma 1. Given a set of n points, and an edge-weighted tree on the
points, we can compute the nearest tree-weighted neighbor of each point in
time O(n log2 n). 2

In certain circumstances we can save a further factor in our time bound.
Suppose that of the weights on the edges in T , most are −∞, while the

4

remaining k edges have positive weight. Then the nearest neighbor of any
point will be across some positively weighted edge. We can find a modified
center c′(T) such that each component of T−c′ contains at most k/2 positive
edges. If we use this modified center to perform a divide and conquer as
above, we only perform O(log k) stages. Each stage takes O(n log n) time as
above. Therefore we get the following result.

Lemma 2. Given a set of n points, and an edge-weighted tree T on the
points, such that k of the edges in T have positive weight and the remaining
n− k have weight −∞, we can compute the nearest tree-weighted neighbor
of each point in time O(n log n log k). 2

Finally, we state a version of our results for the rectilinear (L1 or L∞)
metric. In our previous paper [7], we showed how to perform point location
in a Voronoi diagram for this metric in time O(n log logn), if we know the
sorted orders of the points by their x coordinates, and by their y coordinates.
The same algorithm applies without modification to the additively weighted
Voronoi diagram. The sorted orders can be computed once at the start of
the algorithm, and then maintained in linear time as we split the point sets
at each level of the recursion. This gives us the following result.

Lemma 3. Given a set of n points with the planar rectilinear metric, and
given an edge-weighted tree T on the points, such that k of the edges in
T have positive weight and the remaining n − k have weight −∞, we can
compute the nearest tree-weighted neighbor of each point in time O(n log n+
n log log n log k). 2

3 Finding replacable edges

As hinted above, all but k edges of the MST are forced to remain in all of
the k smallest spanning trees. We now discuss how to find such a set of k
edges efficiently. The results of this section are repeated from our previous
paper [7], and so are stated without proof here.

Lemma 4. Let G be any graph, with minimum spanning tree T , and let xy
be an edge in T . Then the minimum spanning tree of G−xy can be found by
removing xy from T , and adding the shortest edge in G−T that reconnects
the two components left when xy was removed. All such replacement edges
can be found in time O(m+ n log n). 2

5

Lemma 5. Let S be a planar point set, and let uv be the replacement
edge for MST edge xy. Then if the circle with uv as diameter contains any
other input point, that point is one of x and y, and either u or v is the other
of x and y. Therefore all possible replacement edges can be found in time
O(n log n), using the order 3 Voronoi diagram. 2

Lemma 6. Let S be a planar point set, with MST T , and for every edge e
in T let r(e) be its replacement computed as in Lemma 4. Each edge gives
rise to a different tree T − e+ r(e), and we can calculate in linear time the
trees in this set having the k smallest weights. If T − e+ r(e) is not among
the k−1 smallest trees of this form, then e must be an edge in each of the k
smallest spanning trees of the point set. Therefore we can compute in time
O(n log n) a set of n− k MST edges that must be in all k smallest spanning
trees. The remaining k − 1 edges may or may not be replaced in some of
the k smallest spanning trees. 2

4 Finding endpoints of replacement edges

Continuing to follow our previous algorithm, we now find a set P of O(k)
points such that any edge in one of the k smallest spanning trees, other than
MST edges, has both endpoints in P . In our previous algorithm, we did this
in O(kn log(n/k)) time using O(k) nearest neighbor searches per point, one
for each replacable edge in the MST. We now show how to speed this up
using the idea of tree-weighted nearest neighbors.

The idea is simple: We find the MST of the point set, and a set of k− 1
MST edges that may be replaced, as above. We include all endpoints of
these k − 1 edges in P . We weight the MST edges by their length, if the
edge is in the set of k− 1 edges, or by −∞, if the edge is not in this set. We
then find the tree-weighted nearest neighbor of each point. Among those
points not already in P , we choose the 2k with the smallest tree-weighted
distances to their nearest neighbors.

In this way we find a set of at most 4k points, in time O(n log n log k).
We now show that this set has the property we wish, that every non-MST
edge in one of the k smallest spanning trees has both endpoints in P .

Lemma 7. Let xy be an edge in one of the k smallest spanning trees, that
is not an edge in the MST. Then x is in P .

6

Proof: Let u be one of the 2k points in P that is not one of the endpoints of
the k−1 replacable MST edges. Let v be the tree-weighted nearest neighbor
of u. Since u is not an endpoint of a replacable edge, all MST edges adjacent
to u have weight −∞, and so v is not adjacent to u in the tree. If we add
uv to the MST, and remove the longest edge on the MST path from u to v,
we find another spanning tree with weight differing from that of the MST
by the tree-weighted distance dT (u, v). The 2k points each give such a tree,
and each such tree can be found in at most two ways, one for each endpoint
of the new edge, so we have a set of at least k trees.

If one of the k smallest spanning trees contains xy, then the smallest
weight spanning tree containing xy must be one of the k smallest spanning
trees. That tree is found by adding xy to the MST, and removing the
longest edge on the MST path from x to y. If this is to be one of the k
smallest spanning trees, the removed edge must be a removable edge, and
so the weight of the tree differs from that of the MST by dT (x, y). Since
this is one of the k smallest spanning trees, this weight must be within the
weights of the k trees described above. Therefore, if x is not an endpoint of
a removable edge (which is automatically in P), dT (x, y) must be at most
the 2k smallest value dT (u, v), among pairs (u, v) for which v is the nearest
neighbor of u. If z is the nearest neighbor to x, then dT (x, z) ≤ dT (x, y) and
z is also at most the 2k smallest value dT (u, v). Therefore x will be selected
as one of the points in P . 2

5 Finding replacement edges

At this point we could simply find the k smallest spanning trees in the graph
consisting of the MST, together with all O(k2) edges between points in the
set P constructed above. This would give a total time of O(n log n log k+k2),
which would be an improvement on previously known algorithms. However
if we wish to apply the O(kmin(k, n)1/2 log(k/n) time graph algorithm, the
time will be dominated by that for simply enumerating allO(k2) replacement
edges. To further speed this up, we must prune this set of replacement edges
to a smaller set which still contains all the replacements that actually occur
in the k smallest spanning trees.

Our basic strategy is to follow our previous algorithm for tree-weighted
neighbors, to find several neighbors for each point. After including the
corresponding edges in our set of replacements, we will then be able to
reduce the size of our set of endpoints, and repeat the process finding even

7

more neighbors per point.
There are two main differences between our algorithm here and our al-

gorithm for finding single tree-weighted nearest neighbors. First, since we
have already eliminated all but O(k) points as candidates for replacement
edge endpoints, we can perform the nearest neighbor search on a set of O(k)
points instead of our original n point set.

Second, our tree-weighted nearest neighbor algorithm performed two
kinds of searches, one in a normal Voronoi diagram and one in an addi-
tively weighted Voronoi diagram. Each potential edge replacement would
be considered twice, once per each endpoint, using each of the two types
of search. Normal Voronoi diagrams can be generalized to higher order
Voronoi diagrams in order to find several nearest neighbors. However we
know of no similar results for additively weighted Voronoi diagrams. Since
our original algorithm considers each edge once each way, we can ignore the
portion of the algorithm that searches additively weighted diagrams, and
only use normal Voronoi diagrams. However this will cause our algorithm,
as it progresses in stages and reduces the potential number of replacement
edge endpoints, to perform searches at this smaller number of endpoints,
but still search in a diagram formed by the original set of O(k) potential
endpoints. As the number of neighbors we wish to find goes up, the time to
construct this diagram would also increase. To avoid this increase, we use
a data structure of Agarwal and Matoušek [3], which can be constructed in
time O(k1+ε) and which allows efficient searches for any number of nearest
neighbors.

Consider a potential replacement edge xy. In the divide-and-conquer
structure of the tree-weighted nearest neighbor algorithm, x and y will re-
main in the same set for several levels of the recursion, until they are sepa-
rated by some point c that is used to split the tree. Let exy be the longest
replacable edge on path xc, and eyx symmetrically be the longest replacable
edge on path cy. The longer of these two edges gives us the true tree-
weighted distance dT (x, y) and the smallest tree including edge xy. Instead
of comparing these two and finding the single best replacement for edge xy,
we will treat these two cases as two distinct possible replacements, and find
O(k) ordered pairs (x, y) minimizing the replacement weight.

We define a directed tree-weighted distance d′T (x, y) = d(x, y) − |exy|.
Each ordered pair (x, y) gives rise to a tree Txy formed by adding xy to the
MST and removing exy; d′T (x, y) measures the weight difference between this
tree and the MST. If xy is one of the O(k) replacable MST edges, Txy will be
the MST itself; otherwise each tree Txy will be different from all other such

8

trees. It follows that if xy is an edge in one of the k smallest spanning trees,
d′T (x, y) must be one of the k smallest values among edges other than the
replacable MST edges, and therefore must be one of the 2k smallest values
over all.

As mentioned above, our algorithm proceeds in stages. At each stage i,
we find the 2k smallest values of d′T (x, y), among those y that are among
the 2i nearest neighbors to x. This gives us a set of 2k edges which are
passed as input to the next stage. At each stage, some x will have all their
2i nearest neighbors in this set of 2k edges, and some will be the endpoint
of fewer edges. We call points in the latter class eliminated. If the 2i nearest
neighbors of x are not all in the smallest 2k among the edges examined so
far, no further away neighbors can be in the smallest 2k overall, so once a
point is eliminated we need no longer generate any further edges from that
endpoint.

Each uneliminated point contributes 2i towards a total of 2k edges, so
there can be at most k21−i uneliminated points. For each such point, we
compute the 2i+1 nearest neighbors, measuring distance by d′T , among the
O(k) points of set P . This gives us a set of O(k) potential replacement
edges, among which we again compute the 2k smallest values. This set is
passed as input to stage (i+ 1), and we continue until stage log k at which
point we will have found 2k replacement edges among all possible directed
edge replacements involving the 4k points in P .

Thus the computation of replacement edges reduces to finding nearest
neighbors with distance function d′T . Let m denote the number of neighbors
we are searching for. As in our original tree-weighted neighbor algorithm,
we proceed in a divide and conquer fashion down the tree (the same divide
and conquer that produces the centerpoints used to define edges exy and eyx,
and thus defines d′T itself). At each level of the tree, we find for each point
x the m nearest neighbors among those points across c from x. This gives
us O(m log k) neighbors, among which we can use a linear time selection
algorithm to find the m nearest.

To find the m nearest neighbors among a set of p points, we use a data
structure of Agarwal and Matoušek [3], which can be constructed in time
O(p1+ε), and which finds m nearest neighbors to any query point in time
O(log3 p + m log2 p). This data structure can be constructed once for each
level of the divide and conquer tree, and need not be reconstructed for each
stage of the algorithm outlined above. The total time for constructing the
data structure is then O(k1+ε), and the total time per stage querying the
data structure is O(log4 k + m log3 k) per point for each of the O(k21−i)

9

query points. Adding the time for all stages gives O(k log4 k) for all queries.
This dominates the time spent comparing edge replacement weights,

which is O(k) per stage for O(k log k) overall, and the time spent selecting m
nearest neighbors out of O(m log k) potential neighbors, which is O(k log k)
per stage for O(k log2 k) overall. Thus we have the following result.

Lemma 8. Given a set P of O(k) candidate replacement edge endpoints
constructed as in the previous section, we can find in time O(k1+ε) a set of
O(k) edges such that any non-MST edge in one of the k smallest spanning
trees must belong to this set. 2

This technique still applies even when k > n, in which case P consists
of the whole input set. In this case the time bound can be tightened to
O(min(n, k)1+ε + k log4 k), and with some further care (finding candidate
edges in weighted order using a priority queue) to O(min(n, k)1+ε+k log2 k).
However such an improvement would not be useful until faster algorithms
are developed for the graph k smallest spanning trees problem.

At this point we can apply the graph algorithm of Eppstein et al. [8]
on the graph consisting of the n − 1 MST edges and the O(k) candidate
replacement edges. Combining the bounds in the various lemmas above
gives our main results:

Theorem 1. We can find the k smallest spanning trees of a planar point
set in time O(n log n log k+kmin(k, n)1/2 log(k/n)) for the Euclidean metric,
or O(n log n + n log log n log k + kmin(k, n)1/2 log(k/n)) for the rectilinear
metric.

6 Higher dimensions

We now discuss generalizations of our algorithms to higher dimensions. This
was not possible for our previous geometric k smallest spanning trees algo-
rithms, because they were based on the use of Voronoi diagrams, which
may give rise to dense graphs in dimensions as low as three. Therefore any
Voronoi-diagram-based algorithm could be no better in the worst case than
the pure graph algorithm on the complete graph of the input points.

For similar reasons, Lemma 6 is not useful to us, so we will not easily be
able to reduce the number of replacable edges from n to O(k).

The next part of our algorithm, reducing the number of potential end-
points of replacement edges from n to a set P of O(k) points, is again not

10

available to us. In higher dimensions, we lack an efficient data structure for
performing nearest neighbor searches in the additively weighted Euclidean
metric, so Lemma 2 is no longer available to us.

The remaining step in our algorithm is reducing the set of replacement
edges to a set of O(k) such edges, and this is the step we generalize. The
algorithm here depends only on the existence of a data structure for find-
ing several nearest neighbors of points in the Euclidean metric. Agarwal
and Matoušek [3] provide such a generalization of their data structure. In
three or four dimensions, if one is searching for sets of m nearest neighbors
among a set of p points, their data structure (with the appropriate choice
of parameters) takes time O(p4/3+ε) to initialize, and answers queries in
time O(p1/3+ε +m log2 p). In higher dimensions d, the preprocessing time is
O(p2−2/(dd/2e+1)+ε) and the query time is O(p1−2/(dd/2e+1)+ε +m log2 p).

Since we no longer know a set of O(k) replacable edges, we must assume
that all edges are replacable. Therefore at each stage of the algorithm, we
retain the n+ k ordered pairs giving the best swaps, instead of the 2k such
pairs. At most n of these pairs will involve swapping an edge for itself, so
the remaining k swaps will give distinct spanning trees.

At each stage of the algorithm, and each level of the divide and conquer
recursion on the minimum spanning tree, we perform queries from at most
n points, asking for their nearest neighbors among sets of at most n points.
The total number of neighbors asked for never exceeds 2(n + k). Thus
the time per level is O(n2−2/(dd/2e+1)+ε + k log2 n). The total time for the
algorithm is O(n2−2/(dd/2e+1)+ε+k log4 n) (as before, this could be reduced to
O(k log2 n) if required). After we have performed this stage of the algorithm,
we have a set of n+ k possible replacement edges which, together with the
n−1 edges in the original MST, give a graph with O(n+k) edges. Applying
the graph k smallest spanning trees algorithm of Eppstein et al. [8] to this
graph leads to the following result.

Theorem 2. We can find the k smallest spanning trees of a 3- or 4-
dimensional point set in time O(n4/3+ε + kmin(k, n)1/2 log(k/n)), and of
a d-dimensional set in time O(n2−2/(dd/2e+1)+ε + kn1/2 log n).

References

[1] P.K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Eu-
clidean minimum spanning trees and bichromatic closest pairs. 6th
ACM Symp. Comput. Geom. (1990) 203–210.

11

[2] P.K. Agarwal, D. Eppstein, and J. Matoušek. Dynamic algorithms
for half-space reporting, proximity problems, and geometric minimum
spanning trees. 33rd IEEE Symp. Foundations of Computer Science
(1992) to appear.

[3] P.K. Agarwal and J. Matoušek. Ray shooting and parametric search.
24th ACM Symp. Theory of Computing (1992) 517–526.

[4] A. Aggarwal, L.J. Guibas, J. Saxe, and P.W. Shor, A linear time al-
gorithm for computing the Voronoi diagram of a convex polygon, 19th
ACM Symp. Theory of Computing (1987) 39–47.

[5] R.N. Burns and C.E. Haff. A ranking problem in graphs. 5th Southeast
Conf. Combinatorics, Graph Theory and Computing 19 (1974) 461–470.

[6] P.M. Camerini, L. Fratta, and F. Maffioli. The k shortest spanning
trees of a graph. Int. Rep. 73-10, IEEE-LCE Politechnico di Milano,
Italy (1974).

[7] D. Eppstein. Finding the k smallest spanning trees. 2nd Scand. Worksh.
Algorithm Theory, Bergen, Norway, 1990. Springer LNCS 447 (1990)
38–47, and BIT 32 (1992) 237–248.

[8] D. Eppstein, Z. Galil, G.F. Italiano, and A. Nissenzweig. Sparsifica-
tion—A technique for speeding up dynamic graph algorithms. 33rd
IEEE Symp. Foundations of Computer Science (1992) to appear.

[9] G.N. Frederickson. Ambivalent data structures for dynamic 2-edge-
connectivity and k smallest spanning trees. 32nd IEEE Symp. Foun-
dations of Computer Science (1991) 632–641.

[10] H.N. Gabow. Two algorithms for generating weighted spanning trees in
order. SIAM J. Comput. 6 (1977) 139–150.

[11] N. Katoh, T. Ibaraki, and H. Mine. An algorithm for finding k minimum
spanning trees. SIAM J. Comput. 10 (1981) 247–255.

[12] E.W. Mayr and C.G. Plaxton. On the spanning trees of weighted
graphs. Manuscript, 1990.

12

