
Faster Geometric

k-point MST Approximation

David Eppstein∗

Department of Information and Computer Science
University of California, Irvine, CA 92717

Tech. Report 95-13

March 17, 1995

Abstract

We give fast new approximation algorithms for the problem of
choosing k planar points out of n to minimize the length of their min-
imum spanning tree (equivalently, of their traveling salesman tour or
Steiner tree). For any x ≤ k, we can find an approximation achieving
approximation ratio O(log k/ log x) in time O(n log n+ 2xkn log k). In
particular, we get an approximation with ratio O(log k/ log logn) in
time O(kn1+ε).

∗Work supported in part by NSF grant CCR-9258355 and by matching funds from
Xerox Corp.

1 Introduction

In this paper we consider the k-minimum spanning tree problem: given n
points in the Euclidean plane, find the shortest tree spanning k of the points.

Up to constant factors in the approximation ratio, the k-MST problem
is be equivalent to asking for a path connecting k points (the k-TSP prob-
lem) or a Steiner tree connecting k points. The choice of Euclidean metric
is also not critical. However we will continue to use the k-MST formulation
for simplicity. The k-MST problem was introduced independently by Ze-
likovsky and Lozevanu [9], and by Ravi et al. [8]. Ravi et al. described an
approximation algorithm with approximation ratio O(k1/4); this was quickly
improved to O(log k) by Garg and Hochbaum [7], and to O(1) by Blum et
al. [3]. Many similar k-point selection problems with other optimization
criteria can be solved in polynomial time [5, 6] but the k-MST problem is
NP-complete [8, 9] (as are obviously the k-TSP and k-Steiner tree variants).
Zelikovsky and Lozevanu [9] also consider a dual problem in which, given a
length bound, one wishes to find the largest set of points with MST length
within the bound; this formulation has different approximation behavior
than the k-MST problem and may have a constant factor approximation
(Zelikovsky, personal communication). For related work on non-geometric
k-MST problems see [1, 4, 8, 9].

Although the O(log k) approximation ratio of the Garg-Hochbaum algo-
rithm is fairly good, that paper did not spend as much attention on run-
ning time; an analysis of their technique shows that it takes total time
O(n2k4 + n3). The very recent O(1) approximation of Blum et al. is based
on a complicated dynamic program which considers all possible axis-aligned
rectangles determined by four points; its running time seems to be kO(1)n5.

In this paper we show how to improve the running times of both of these
algorithms We first describe a modification of the Garg-Hochbaum planar
k-MST approximation algorithm which achieves the same O(log k) approxi-
mation ratio but which improves the running time from the O(n2k4) bound
of [7] to O(n log n+nk log k). For simplicity of exposition, we assume an in-
teger model of computation, so that the “quadtree framework” construction
of [2] is available.

We next describe a modification of this algorithm which can be used to
achieve a better approximation ratio, at the expense of slightly increased
runtime. For any x ≤ k, we can find an approximation achieving ap-
proximation ratio O(log k/ log x) in time O(n log n+ 2xkn log k). Choosing
x = (logn)ε results in a polynomial time approximation algorithm with ratio

1

O(log k/ log logn).
We then show how to achieve the same approximation ratio and time

bounds in the Real RAM model of computation more commonly used in
computational geometry, by rounding the input points to an appropriately
chosen integer grid.

Finally, we show how the general neighborhood searching techniques
of [6] and [5] can be used to implement a version of Blum et al.’s O(1)-
approximation algorithm in time kO(1)n+O(n log n). These techniques can
be used to speed up any exact or approximate algorithm for k-MST ap-
proximation; in particular we can also solve the problem exactly in time
2O(k log k)n+O(n log n).

2 Faster O(log k)-approximation

To achieve an approximation ratio of O(log k), Garg and Hochbaum ap-
proximate the length of a spanning tree using a potential function defined
in terms of a sequence of square grids. They then show that the subset of
k points minimizing this potential function can be found using a form of
dynamic programming. Their approximate k-MST is found as the MST of
this subset.

Let s be an axis-aligned square in the plane; define the size |s| to be
the length of a side of s. We define an infinite sequence of grids Gi(s) as
follows: G0(s) is just the single square s itself, and grid Gi(s) is formed
by subdividing each square in grid Gi−1(s) into four smaller squares. This
construction is essentially just an infinite quadtree.

Given a set X of points, define the potential function Ps(X) to be∑∞
i=0 ni|s|/2i, where ni denotes the number of squares of Gi(s) containing

points in X. In other words, we sum |s′| over all grid squares s′ of different
sizes that contain points of X. As Garg and Hochbaum show, this potential
function is logarithmically related to the length of the minimum spanning
tree of X:

Lemma 1 Let T be a tree with total length `, let X be the set of n vertices
of T , and let s be a square containing T , with |s| = O(`). Then Ps(X) =
O(|T | log n).

Proof: The contribution to Ps(X) from Gi is at most n|s|/2i, so values
of i greater than logn contribute a total of 2|s| = O(`). The contribution
from Gi for which ni ≤ 8 also adds in a geometric series to O(|s|) = O(`).

2

For each of the remaining values of i, choose a set of Θ(ni) squares in
Gi, no two adjacent, containing points of X. Since ni > 8, there are at
least two chosen squares. Since T must connect each of the chosen squares,
there must be a path in T from any chosen square s′ to some other chosen
square, of length at least |s′| = |s|/2i. Since there are Θ(ni) chosen squares,
and each path can be counted at most twice, the total length of all these
paths and hence of T is Ω(ni|s|/2i). Summing this bound over the O(log n)
remaining values of i gives the result. 2

Lemma 2 Let X be a set of points contained in square s. Then there is a
tree T spanning s with length ` = O(Ps(X)).

Proof: We connect each point of X with the center of the largest grid
square containing only that point, and connect the center of each square
with the center of the square twice the size that contains it. The total
length involved in connections to squares in grid Gi is thus O(ni|s|/(2i)),
and adding over all values of i gives the result. 2

Our approximation algorithm works by finding a collection of squares
such that for any tree T , some square s contains T and satisfies |s| =
O(`(T)). We select the square s and k-element subset X ⊂ s minimizing
Ps(X), and output the minimum spanning tree of X.

The first step of the algorithm consists of selecting the collection of
squares in which to optimize Ps(X). We normalize our point set to lie
within the unit square. We then start with three squares s0, s1, and s2,
each having size three with square sj having point (−j,−j) as its lower left
corner. Our collection initially consists of all squares in each grid Gi(sj).

Lemma 3 Let T be any tree with length `, contained in the unit square.
Then for some i and j, some square s ∈ Gi(sj) contains T and has size
|s| = O(`).

Proof: Note that the initial squares sj form a triple of grids in which each
grid is horizontally and vertically offset by 1/3 of the grid size from each
other grid. If we subdivide such a triple of grids, the same property remains
true.

Choose i so that the squares in Gi have size between 3` and 6`. Then a
simple case analysis shows that each point in the plane is at distance at least
`/2 from the square boundaries in one of the three grids sj . In particular
this is true for the center of a bounding box of T , and T can extend for

3

distance at most `/2 from this center point, so T is contained in a square of
Gi(sj). 2

To achieve a polynomial algorithm, we need to reduce the number of
squares in our collection to a polynomial. We need only optimize Ps(X)
among such squares s for which no smaller square s′ in the same sequence
of grids contains the same set of points; for otherwise P ′s(X) < Ps(X) and
we would output a tree in s′ in preference to the one in s. As we now show,
there are only O(n) such squares.

The following lemma is proved in [2] (the results in that paper are
phrased in terms of quadtrees; note that each of the squares we want is
part of a finite quadtree defined by the input points). Note that for any pair
of squares taken from grids Gi(s), either one square contains the other, or
both are disjoint; therefore the containment relations among a collection of
squares from Gi(s) can be represented as a tree.

Lemma 4 In any sequence of grids Gi(s) there are at most n−1 grid squares
for which no smaller grid square contains the same set of points, and the set
of such squares together with a tree representing its containment relations
can be constructed in time O(n log n).

Proof: The result follows by sorting the points to the order they would
be examined in a traversal of their quadtree. Comparisons with respect
to this order can be performed by examining the binary representations
of the points’ coordinates, so this sorting step can be done in O(n log n).
The squares we are interested can be found as the minimal grid squares
containing pairs of points adjacent in the sorted order. For details see [2].
2

Define mi(s) to be the minimum potential Ps(X) among i-point subsets
X of the points in square s. We are interested in mk(s) but we will need to
compute mi(s) for other values i < k as well.

If only one of the four grid squares composing s contains any input
points, let s′ be the smallest grid square containing all these points; mi(s)
can be computed in constant time using the formula

mi(s) = mi(s′) + 2|s| − 2|s′|.

If two of the four squares contain input points, let a and b be those two
squares. Then mi(s) can be computed in time O(k) using the formula

mi(s) = |s|+ min
0≤j≤i

mj(a) +mi−j(b).

4

And if more than two of the four squares contain input points, their values
of mj can be merged in pairs with a similar formula, again taking time
O(k2). Thus all values mi(s), 0 ≤ i ≤ k, for all the O(n) squares selected in
Lemma 4 can be computed in total time O(nk2).

We next analyze this computation more carefully to improve the running
time. In many of the squares, one or more of the smaller squares s′ compos-
ing it has fewer than k input points; in that case we know that mj(s′) = 0
for large values of j, and we only need examine the smaller values when
computing mi(s). In general, the time to compute a value of mi(s) is at
most proportional to the second largest value among the numbers of points
in each of the four smaller squares.

Because of the tree structure of the grid squares, for any x, there are
O(n/x) grid squares in which this second largest value is x or more, so the
total time to compute all values of mi(s) in all grid squares is O(nk log k).

Putting these ideas together, we have the following approximation result:

Theorem 1 The k-MST problem can be approximated within a factor of
O(log k) in time O(n log n+ nk log k).

Proof: We find the sets of O(n) grid squares as above, in time O(n log n).
We then calculate mk(s) in each square, using also the other values of mi(s)
in the grid squares, in total time O(nk log k). We choose our approximation
to be the MST of the set X of points giving the minimum value of mk(s)
over all the squares. If we let T be the true optimum, and s′ be the smallest
grid square containing T , then by Lemma 1 mk(s) ≤ mk(s′) = O(`(T) log k).
Then by Lemma 2, `(MST (X)) = O(mk(s)) = O(`(T) log k). 2

3 Better Approximation Factors

We now show how to achieve better approximation ratios than those of
Theorem 1. The main idea is the following. The previous logarithmic ap-
proximation ratio came from the fact that in the definition of the potential
function Ps(X), we use a sequence of square grids with the square size in
each grid half that of the previous one, so that O(log k) grids are required
before the squares are small enough that their contribution to the poten-
tial is negligable. Instead, we use a sequence of grids with the square size
in each grid only 1/r that of the previous one, for some r > 2; therefore
O(logr k) grids will contribute to the potential function and we will achieve

5

an approximation factor of O(logr k). However, the definition of the poten-
tial function is more complicated and we will need time exponential in r to
find the point set with minimum potential. We now make this idea more
explicit.

As before, let s be an axis-aligned square in the plane; let r be a positive
integer. We define an infinite sequence of grids Gi,r(s) as follows: G0,r(s) is
just the single square s itself, and grid Gi,r(s) is formed by subdividing each
square in grid Gi−1,r(s) into r2 smaller squares of size |s|/ri.

Given a set X of points, and a grid square s′, define a point set C as
follows: find the r2 squares into which s′ is divided, select the subset of
squares containing points of X, and let C be the centers of the squares in
that subset. Define τ(s′, X) to be the length of the minimum spanning tree
of C.

Now define the potential function Ps,r(X) to be
∑
s′ |s′|+τ(s′, X), where

the sum is taken over all squares in grids Gi(s) that contain points in X.

Lemma 5 Let T be a tree with total length `, let X be the set of n vertices
of T , and let s be a square containing T , with |s| = O(`). Then Ps,r(X) =
O(|T | logr n).

Proof: Define ni to be the number of nonempty squares at level i. The
contribution to Ps(X) from Gi is at most n|s|/ri, so values of i greater than
logr n contribute a total of 2|s| = O(`). The contribution from Gi for which
ni ≤ 8 also adds in a geometric series to O(|s|) = O(`).

For each of the remaining values of i. choose a set of Θ(ni) squares in
Gi, no two adjacent, containing points of X. Since ni > 8, there are at
least two chosen squares. Since T must connect each of the chosen squares,
there must be a path in T from any chosen square s′ to some other chosen
square, of length at least |s′| = |s|/2i. Since there are Θ(ni) chosen squares,
and each path can be counted at most twice, the total length of all these
paths and hence of T is Ω(ni|s|/2i). Summing this bound over the O(logr n)
remaining values of i accounts for the |s′| terms in Ps,r(X).

Within each square s′, T must form paths in X connecting the small
squares having centerpoints in C with themselves and with the boundary
of s′. These paths, together with the boundary of s′ and some additional
short segments within the small squares, form a Steiner tree of C which
therefore has length Ω(τ(s′, X)). Thus the portion of T within s′ has length
Ω(τ(s′, X))−O(|s′|+∑ |s′′|) where the sum is taken over the smaller squares
in s′. Summing this bound over the O(logr n) sizes of squares accounts for
the τ(s′, X) terms in Ps,r(X). 2

6

Lemma 6 Let X be a set of points contained in square s. Then there is a
tree T with length ` = O(Ps,r(X)).

Proof: We connect each point of X with the center of the largest grid
square containing only that point. Within each square s′ containing multiple
points, we form the set C described above and connect the points of C and
the center of s′ itself in a single minimum spanning tree. The total length
involved in connections in square s′ is thus O(|s′| + τ(s′, X)), and adding
over all values of s′ gives the result. 2

Define mi,r(s) to be the minimum potential Ps,r(X) among i-point sub-
sets X of the points in square s. We are interested in mk,r(s) but we will
need to compute mi,r(s) for other values i < k as well.

Lemma 7 Suppose we know all values mi,r(s′) for the r2 small squares into
which s is subdivided, and there are x input points in the square s′ with the
second most points in it. Then we can compute all values mi,r(s) in time
O(2r

2
r2kx).

Proof: We try separately each of the 2r
2

ways of choosing a subset of the
small squares, and find the optimal set X for each subset. For each choice,
the minimum spanning tree of the set C can be found in time O(r2) (or
faster if we use a dynamic minimum spanning tree algorithm) after which
we can combine the values mi,r(s′) in O(r2) pairwise merges, each taking
time O(kx). 2

As a consequence, for r a power of two we can compute all values mi,r(s)
in all quadtree squares in time O(2r

2
r2(log r)kn log k). The factor of log r

arises since the quadtree is effectively partitioned into O(log r) bushy trees
by grouping levels according to their values modulo log2 r.

Theorem 2 For any x, the k-MST problem can be approximated within a
factor of O(logx k) in time O(n log n+ 2xnk log k).

Proof: As before we form three grids Gi(sj) in which each square is
subdivided into four half-size squares. We then choose r to be the largest
power of two satisfying 2r

2
r2 log r ≤ 2x. Each of the r2 squares into which

a square of Gi(sj) is subdivided will itself be a grid square in Gi+log2 r(sj).
We find a collection of O(n) grid squares, one of which covers T , as in the
previous section in time O(n log n). We then calculate mi,r(s) in each grid

7

square, using also the other values of mi,r(s) in r2 smaller grid squares, in
total time O(2xnk log k).

We choose our overall approximation to be the MST of the set X of
points giving the minimum value of mk(s) over all the grid squares. If we
let T be the true optimum, and s′ be the smallest grid square containing
T , then by Lemma 5 mk,r(s) ≤ mk,r(s′) = O(`(T) logr k) = O(`(T) logx k).
Then by Lemma 6, `(MST (X)) = O(mk,r(s)) = O(`(T) logx k). 2

Corollary 1 For any ε > 0, the k-MST problem can be approximated within
a factor of O(log k/ log logn) in polynomial time O(n log n+2(logn)εnk log k).

4 Handling Real-number Input Coordinates

The algorithms above, based as they are on the quadtree framework of [2],
require the input points to be represented with integer coordinates in which
bitwise operations such as exclusive or may be performed in constant time.

In the Real RAM model more commonly used in computational geom-
etry, input points have real-valued coordinates. The operations allowed
consist of basic arithmetic such as addition and multiplication (often to-
gether with the extraction of roots of bounded-degree polynomials), but the
floor and ceiling operations needed to convert coordinates to integers are
forbidden. However, in order to permit array indexing, integer operations
are allowed on integers of O(log n) bits or fewer.

We now describe how to implement our approximation algorithms in
the same time bounds as above, on the Real RAM model. Our approach
is to translate the input coordinates into O(log n)-bit integers, such that
the optimal k-MST length does not change by more than a constant, using
operations permitted in the Real RAM model. After this translation, we
run our integer algorithm as before.

We first compute a rough estimate of the k-MST length, so that we can
know how much we can distort our input configuration while preserving the
optimum k-MST. To do this we use the following result.

Lemma 8 (Eppstein and Erickson [6]) In O(n log n + kn) we can find
for each input point the smallest square centered on that point and containing
exactly k input points.

We let δ denote the side length of the smallest such square; then there is
a set of k points with a tree of length O(kδ), and conversely any k-MST has

8

length Ω(δ). Therefore δ approximates the k-MST within an O(k) factor.
If we distort the input by moving every point by a distance of ε = cδ/k, we
increase or decrease the length of any edge in the k-MST by at most 2cδ/k,
so the total length change is O(cδ). By choosing c sufficiently small, such a
distortion will change the k-MST length by a factor arbitrarily close to one.
On the other hand, if any two points are at distance Ω(kδ) = f from each
other, they can not both be part of the optimal k-MST, and we can distort
the distance between them arbitrarily as long as we keep them at distance
at least f .

We use a construction similar to the “degraded grid” of Datta et al. [5].
We treat the x- and y− coordinates independently; in each case we convert
the coordinates to integers that are O(nk2) = O(n3), so that O(log n) bits
are required to represent them. A distance of one in the integer coordinates
will correspond to a distance of ε in the original point set, where ε is chosen
as above.

To convert the coordinates to integers, we first sort them. We partition
the sorted list into groups, where each group is separated by a coordinate
difference of f or more; we process the groups in order from smaller coordi-
nates to larger ones. The leader of a group is the smallest coordinate of any
point in the group. To begin the processing, the leader of the first group
is assigned the integer zero. Suppose this leader corresponded to an input
point with coordinate value a. Then any point in the group with coordinate
value b is assigned the integer value closest to (b− a)/ε. After each group is
assigned integers in a range [i, j], we begin the next group by assigning its
leader the next integer larger than j + f/ε, where f = Ω(kδ) is defined as
above.

Lemma 9 If we perform the integer assignment process described above,
and scale the resulting integer grid by a factor of ε, we get a point set in
which each distance less than f is distorted by a total amount of O(ε), and
each distance greater than f + Ω(ε) is distorted to a new distance greater
than f .

Proof: If two points are at distance O(f) from each other, their x- and
y-coordinates must both belong to the same groups. If we form a point by
combining the x- and y-coordinate group leaders, and translate the scaled
integer grid so that this point coincides with the corresponding integer grid
point, then by construction the two given points are at distances of O(ε)
from their corresponding integer points; therefore their distance is distorted
by O(ε).

9

Conversely, if two points belong to different groups, they are separated
by an empty strip of width f or more and are therefore at distance at least f .
The assignment of leader values causes this distance bound to be preserved.
2

Theorem 3 In time O(n log n+kn) in the Real RAM model, we can trans-
late the input points to points on an O(nk2)-value integer grid, such that
the k-MST of the integer grid points provides an approximation with ratio
arbitrarily close to one of the original k-MST.

Proof: As described above, we find δ in time O(n log n + kn), and use
this value to assign integer values to the coordinates; the remaining time
bottleneck is sorting the coordinates, which takes time O(n log n). In the
resulting sequences of x- and y-coordinates, successive points are at most
O(k2) integer places apart, so the largest integer produced is O(nk2).

Since the optimal k-MST has no points at distances larger than f , we
know that all distances within the k-MST are closely approximated by dis-
tances in its integer translation. The same is true for any other k-point
spanning trees for which all points are within the same groups of x- and
y-coordinates. A tree spanning two or more groups must contain an edge
larger than f , and therefore be larger than the optimal k-MST. Therefore
the optimal k-MST in the integer point set is a close approximation of the
original k-MST. 2

Corollary 2 For any ε > 0, the k-MST problem can be approximated on
the Real RAM model of computation within a factor of O(log k/ log log n) in
polynomial time O(n log n+ 2(logn)εnk log k).

5 Faster constant-ratio approximation

We now show how to speed up any exact or approximate algorithm for
geometric k-MST approximation, using ideas from [6] and [5]. Our results
are based on the following fact.

Lemma 10 Let T be the optimal k-MST in a set S of points, and let x be
any vertex in T . Then the vertices of T are a subset of the O(k2) points in
S nearest to x.

10

Proof: Let ` denote the length of the k-MST. For some value c to be
chosen, suppose there are at least ck2 points in a disk of radius ` centered
around x. Cover this area by ck squares, each of side length 2`/

√
ck. Then

some square s contains at least k points. Any minimum spanning tree of
any k points within this square has length O(`/c), and by choosing c to be
an appropriate constant we can make this bound smaller than `. 2

The basic idea is to find the O(k2) nearest neighbors to each input point,
and find a k-MST approximation within each such set of neighbors. By the
lemma above, the true k-MST is in one of these nearest neighbor sets, so
this subdivision of the problem preserves approximation quality. Eppstein
and Erickson [6] use a more complicated method to collect these sets of
neighbors into O(n/k2) sets of O(k2) neighbors each.

Datta et al. [5] further modify this procedure to use a degraded grid
instead of explicitly computing nearest neighbors, again for any problem in
which a result like Lemma 10 holds. For any x they show how to find a
collection of O(n/x) sets Si, each having |Si| = O(x), and such that if ` is
the minimum radius of a set of x points then all sets of radius ` are contained
in some Si. As a result, we can speed up any k-MST algorithm as follows.

Lemma 11 If we have any time bound T (n, k) for an exact or approxi-
mate geometric k-MST problem, we can solve the same problem in time
O(n log n+ nT (k2, k)/k2).

Proof: We use the method of Datta et al. with x = ck2, for the constant
c used in the proof of Lemma 10. This gives a collection of O(n/k2) sets Si,
each with O(k2) points, and such that the exact k-MST is contained in one
of the Si. We then apply the given exact or approximate algorithm within
each Si. 2

We apply this idea to Blum’s constant factor approximation, and to the
trivial O(nkk log k) exhaustive search algorithm for exactly solving the k-
MST problem. The algorithms we previously described in this paper are
already fast enough that this idea does not give a further improvement.

Corollary 3 The k-MST problem can be approximated within a factor of
O(1) in time kO(1)n + O(n log n). The exact k-MST can be constructed in
time 2O(k log k)n+O(n log n).

11

References

[1] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approxima-
tion guarantees for minimum-weight k-trees and prize-collecting sales-
men. In Proc. 27th ACM Symp. Theory of Computing, pages 277–283,
1995.

[2] M. Bern, D. Eppstein, and S.-H. Teng. Parallel construction of quadtrees
and quality triangulations. In Proc. 3rd Workshop on Algorithms and
Data Structures, pages 188–199. Springer-Verlag, LNCS 709, 1993.

[3] A. Blum, P. Chalasani, and S. Vempala. A constant-factor approxima-
tion for the k-MST problem in the plane. In Proc. 27th ACM Symp.
Theory of Computing, pages 294–302, 1995.

[4] S. Y. Cheung and A. Kumar. Efficient quorumcast routing algorithms. In
Proc. IEEE INFOCOM ’94 Conference on Computer Communications,
volume 2, pages 840–847, 1994.

[5] A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid. Static and dynamic
algorithms for k-point clustering problems. In Proc. 3rd Worksh. Algo-
rithms and Data Structures, pages 265–276. Springer-Verlag, LNCS 709,
1993.

[6] D. Eppstein and J. Erickson. Iterated nearest neighbors and finding
minimal polytopes. Discrete & Comput. Geom., 11:321–350, 1994.

[7] N. Garg and D. S. Hochbaum. An O(log k) approximation for the k
minimum spanning tree problem in the plane. In Proc. 26th ACM Symp.
Theory of Computing, pages 432–438, 1994.

[8] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S.
Ravi. Spanning trees short and small. In Proc. 5th ACM-SIAM Symp.
Discrete Algorithms, pages 546–555, 1994.

[9] A. A. Zelikovsky and D. D. Lozevanu. Minimal and bounded trees. In
Tezele Cong. XVIII Acad. Romano-Americane, Kishinev, pages 25–26,
1993.

12

