
Faster Construction of Planar Two-centers

David Eppstein∗

Department of Information and Computer Science
University of California, Irvine, CA 92717

http://www.ics.uci.edu/∼eppstein/

Tech. Report 96-12

July 5, 1996

Abstract

Improving on a recent breakthrough of Sharir, we show how to find
two circular disks of minimum radius covering a set of points in the
Euclidean plane, in randomized expected time O(n log2 n).

∗Work supported in part by NSF grant CCR-9258355 and by matching funds from
Xerox Corp.



Figure 1. Set covered by two disks of same radius, with points on outer boundaries.

1 Introduction

The k-center problem in a metric space consists of, given a set S of some
n points in the space, finding k points (called centers, usually not required
to be a subset of S) such that the maximum distance from any point in
S to the nearest center is minimized. A case of particular interest is the
planar two-center problem [7], which can be viewed less abstractly as one of
covering a set of points in the plane by two circular disks, in such a way as
to minimize the radius r∗ of the larger of the two disks.

By increasing the size of the smaller of the two disks, we can assume
without loss of generality that the solution to the planar two-center problem
consists of two disks D1 and D2 of equal radius r∗, situated in such a way
that each disk has an input point on the boundary of the convex hull of the
two disks, and such that D1 is the circumcircle of some set of two or three
points (such a configuration is shown in Figure 1).

For a long time the best algorithms for this problem have had time
bounds of the form O(n2 logc n). The basic idea behind many of these al-
gorithms was that one can find a line separating the points in D1 from the
points in D2 (if the disks overlap, this line can be chosen to connect the
points where the two disks’ boundaries cross). Agarwal and Sharir [1] use a
parametric search through the O(n2) combinatorially distinct partitions of
the points by a line to solve the two-center problem. The general idea of this
method is to use a data structure for a decision problem (does a given point
set have circumradius less than some threshhold) to test whether r∗ greater
or less than some given value r. By simulating this algorithm generically, on
the unknown value r = r∗, using the decision algorithm itself to determine
the answer to any test involving r∗, one gets a solution to the two-center

1



problem in time O(n2 log3 n). Katz and Sharir [13] achieved a similar result
by a method involving expander graphs.

In previous work [8], the author replaced this indirect parametric search
with a more direct idea: instead of a data structure for the decision problem,
use a data structure for the exact circumradius to determine the optimal two
disks corresponding to any partition of the input. Because it is solving a
harder problem, the exact circumradius data structure is somewhat slower
than the corresponding decision problem data structure, but this slowdown
is made up for by the fact that only one sweep through the possible partitions
is required, instead of the multiple sweeps performed in a parametric search.
Using this idea, the author achieved a time bound of O(n2 log2 n log logn).

Jaromczyk and Kowaluk [12] were the first to break away from the idea
of searching all linear partitions of the input points. Their method breaks
the problem into several cases, and performs a different type of search for
each case. Their result is an O(n2 log n) bound.

In a recent breakthrough, Sharir [15] used a similar sort of case analysis
to greatly improve all of these algorithms, giving a two-center algorithm with
running time O(n logc n). The basic idea is to search for different partitions
depending on the relative positions of the disks D1 and D2 defined above.
If the two are far apart, one can easily separate them by a line. If they are
nearly tangent to each other, Sharir separates the points into two sets, those
contained in D1 and all remaining points. And finally, if D1 and D2 are close
to concentric, so that they have a large area of overlap, Sharir finds some
point x in that overlap and partitions the points by two rays from x through
the two points where the circles cross. In each case Sharir finds the relevant
partition by a parametric search, like that of Agarwal and Sharir [1], based
on a data structure for the circumradius decision problem. The actual time
bound given in Sharir’s paper is O(n log9 n), but Sharir writes “We have not
made a serious attempt to improve the performance” and some improvement
is clearly possible. However it seems that, by following this approach, one
will still end up with an algorithm with several logarithmic factors in it, that
is quite complicated and impractical for all but the largest values of n.

In this paper we apply the same idea to Sharir’s method that our earlier
paper did to Agarwal and Sharir’s: replace the decision problem data struc-
ture and parametric search by a direct search using an exact circumradius
data structure. With this idea, we show that the nearly concentric case can
be solved in randomized expected time O(n log n log log n), and the other
cases can be solved in time O(n log2 n). With this improvement, the total
time for our version of Sharir’s algorithm is O(n log2 n).

2



2 Overview

Our algorithm closely follows that of Sharir. We outline the method here,
and explain each of the steps in detail later. The overall structure is a three-
part case analysis: either the disks are far apart (the ratio of the distance
between centers to r∗ is significantly greater than 2), the disks are close to
tangent (the ratio is near 2), or the disks are close to concentric (the ratio is
significantly less than 2). Each of these cases is handled differently; the basic
ideas in each case are very similar to those of Sharir, but we handle them
more carefully and reduce as much as possible the portion of the algorithm
that must be handled with parametric search, to reduce the total time. As
we do not know a priori which case the input falls into, we perform the
algorithms for each of the following cases and return the best two-disk cover
returned by any of them.

If D1 and D2 are far apart, we find a set of O(1) lines such that one of
them separates D1 from D2. By computing the circumradii on each side of
each such partition, we find r∗ for this case in time O(n).

If D1 and D2 are nearly tangent, we can still find a set of O(1) lines
such that one of them nearly separates D1 from D2. We use these lines to
find a set S that is entirely contained in D1 and includes a point on the
boundary of D1. To test a given radius r, we then find the circular hull
of S, and swing a circle of radius r around this hull to find a sequence of
partitions of the point set, and apply an offline dynamic decision problem
data structure. Combining this decision algorithm with parametric search
yields an O(n log2 n) time bound.

If D1 and D2 are close to overlapping, we can find a set of O(1) points
such that one of them (call it x) is contained in both D1 and D2. We then
sort the input points radially around x, and consider partitions determined
by two rays through x. The angles of the rays can be considered as indices
into a two-dimensional array, and by using sorted array selection methods
of Frederickson and Johnson we can find the optimum pair of angles af-
ter a sequence of O(n) circumradius evaluations. Each evaluation can be
answered by a modified version of our previous paper’s exact circumradius
data structure, or one can perform many evaluations at once using an offline
decision problem data structure. By combining both methods of evaluation,
we get an algorithm for this case with running time O(n log n log log n).

3



3 Circumradius data structures

We now review what is known about computation of the circumradius of
a point set (i.e., the 1-center problem). This is well known to be solvable
using linear-programming type methods, in linear time [14]. However we
are interested in dynamic circumradius problems, in which as points are
inserted to our set or deleted from it, we must maintain the circumradius
of the changing set. In all our applications, the set we will be maintaining
is a subset of our original input, and in general the sequences of insertions
and deletions of the dynamic algorithm will be offline (that is, the entire
sequence is known in advance before any circumradius computation need be
performed). All the time bounds we cite will be measured in terms of the
total number of updates (insertions and deletion), since rather than starting
with some particular set of points one can imagine starting from the empty
set and inserting points one by one.

Hershberger and Suri [11] provide an offline dynamic algorithm (in the
sense described above) for a closely related problem: given a value r, main-
tain a dynamic point set and determine after each change whether its cir-
cumradius is less than or greater than r. We call this the circumradius
decision problem.

Lemma 1 (Hershberger and Suri). An offline sequence of n updates in
the circumradius decision problem can be solved in time O(n log n).

Sharir [15] gives a different algorithm for this same offline decision prob-
lem, with the somewhat worse running time O(n log2 n); however his method
is easier to parallelize, which makes it easier to use in parametric search
methods. We will not need a parallel version of the offline decision problem,
so we use the faster method of Hershberger and Suri.

We next consider maintaining not just the answer to a decision problem
about the circumradius, but the circumradius itself. In a previous paper,
the author [8] solved the offline version of the exact circumradius problem.
We will modify this algorithm later, so we describe it in a little more detail
here.

The basic idea (common to many offline algorithms) is to use a segment
tree on a set of intervals corresponding to the insertion and deletion times
of each point. This results in a recursive partition of the points into O(n)
subsets, each point belonging to O(log n) subsets, such that The set at each
time during the offline sequence is representable as the disjoint union of a
collection of O(log n) subsets, found by following a path to the root in the
segment tree.

4



Our data structure then lifts each subset to a three-dimensional set using
the lifting transformation (x, y) 7→ (x, y, x2 + y2), finds the convex hull of
each lifted subset, and constructs a Dobkin-Kirkpatrick recursive decompo-
sition of each hull. Once we have constructed this data structure, it remains
to determine the circumradius of the points in the set after each update.
We do this by combining the appropriate subsets of points:

Lemma 2 (Eppstein). Given k sets of O(n) points, represented by the
Dobkin-Kirkpatrick hierarchies of their liftings, we can find the circumradius
of their union in time O(k3 log3 n).

This gives an algorithm with polylogarithmic time per update, but the
exponent in the polylog is large. By applying a randomized recursion of
Clarkson [5] this can be reduced to O(k log n + log k log3 n). In the appli-
cation of this to offline dynamic circumradius, k = O(log n) and the overall
time is polylogarithmic (with or without the randomized recursion). Our
previous paper further reduces the time per update to O(log2 n log logn) by
using the structure of the segment tree: Each collection of k sets of points
is formed by adding one subset to a collection of k− 1 sets of points. If the
minimal enclosing disk of those k − 1 sets also encloses the kth set (as can
be tested quickly using the Dobkin-Kirkpatrick hierarchy) there is nothing
more to optimize. Otherwise, one of the three points determining the mini-
mal enclosing disks must come from the kth set itself and this can be used
to improve the running time.

For our application of these ideas to the 2-center problem, we will not
have an offline sequence of updates. However we will again be able to form
a recursive partition of the points into subsets, such that any circumradius
query we are interested in can be answered by combining O(log n) subsets.
Similar speedups to the ones described above can be used to make these
queries fast; however for our purposes it will suffice that they are polyloga-
rithmic.

The same method applies in a more general semi-online setting, in which
only partial information about the future sequence of updates is known. For
completeness, we mention that the fully dynamic circumradius problem can
be solved in worst case time O(nε) per update [2], and in expected time
O(1) per update for a certain class of input distributions [9]; however we
will not use these results here.

5



Figure 2. Far apart disks can be separated by a line.

4 Well separated disks

We now start our discussion of our two-center algorithm with the case in
which the disks D1 and D2 are far apart. Strictly speaking this case is
unnecessary as it is subsumed in the next one, however it provides a simple
warm-up to the problem.

Lemma 3. Suppose that the distance between the centers of D1 and D2 is
at least (2 + ε)r∗, for some constant ε > 0. Then the set of lines separating
the circles forms a set of measure a constant fraction of the measure of the
set of all lines crossing the minimal enclosing disk of the points.

We briefly sketch the proof here: if the disk centers are at distance
d ≥ (2 + ε)r∗, then one can draw two line segments on parallel lines tangent
to the disks, of length d − 2r∗ = Ω(d) each, such that any line crossing
the two segments separates the disks (Figure 2). The measure of the set of
lines crossing the two segments is Ω(d) (since they have length Ω(d) and are
spaced at most O(d) units apart). But the points have circumradius at most
d+ 2r∗ = O(d) so the measure of the lines crossing their minimal enclosing
disk is O(1).

As a consequence of this result, one can find a set of O(1) lines (where
the constant here depends on ε) such that, if the disks D1 and D2 fall into
this case, one of the lines separates them. We can then simply compute the
circumradii of each pair of sets partitioned by one of these lines, in O(n)
time each. If the disks are well separated, one of these pairs of circumradii
gives the optimal value r∗.

6



Figure 3. If disks are nearly tangent, a line separates most of D1 from D2.

Lemma 4. Suppose that the distance between the centers of D1 and D2

is at least (2 + ε)r∗, for some constant ε > 0. Then we can find r∗ (and a
two-disk cover with radius r∗) in time O(n).

5 Nearly tangent disks

We next consider the case in which the centers of D1 and D2 are separated
by a distance close to 2r∗, so the disks are close to tangent. This case turns
out to be the bottleneck of the overall algorithm.

Lemma 5. Suppose that the distance d between the centers of D1 and D2

is at least εr∗, for some constant ε > 0. Then the set of lines containing the
portion of the convex hull boundary of D1 and D2 belonging to D1, and not
containing any point of D2−D1, forms a set of measure a constant fraction
of the measure of the set of all lines crossing the minimal enclosing disk of
the points.

The proof is similar to that for Lemma 3. We draw two line segments, on
the parallel lines tangent to D1 and D2, passing from the points of tangency
on D1 to the perpendicular bisector of the two disk centers (Figure 3); all
lines crossing both segments have the properties described in the lemma,
and (since the line segments have length Ω(d) and are within distance O(d)
of each other, and the point set as a whole has circumradius O(d)) this set
of lines has a constant fraction of the total measure of the lines passing
through the minimal enclosing disk of the points.

7



Corollary 1. Suppose that the distance d between the centers of D1 and
D2 is at least εr∗, for some constant ε > 0. We can find a family of O(1)
subsets of the points, such that for some member S of the family, S is entirely
contained in D1 and has at least one point on the boundary of D1.

As before, we do not know which of the sets in the family is the one
S described above, but we can perform the following algorithm for all the
members of this family, and return the best two-disk cover found by these
separate runs.

Suppose we know the set S, and we want to test whether r < r∗ for
some given radius r. We can test this as follows: Compute the circular hull
of S with radius r (that is, the intersection of all radius-r disks containing
S); this is a convex figure with radius-r circular-arc sides. We consider a
process in which a circle tangent to this hull and containing it swings around
with different angles of tangency, in the process passing through all points
of the hull. As the circle passes around the hull, its boundary may cross
over some of the other points of our input (but not of course over any points
of S); we form an offline sequence of insertions and deletions corresponding
to these crossings, to keep track of the set inside the circle. Then r ≥ r∗ if
and only if one can expand D1 and D2 to form disks D′1 and D′2 of radius
r, with D′1 containing all of S and having a point of S on its boundary, and
D′2 containing all those points not in D′1; but then our moving circle must
coincide at some point with D′1, and we can test for the existence of an
appropriate D′2 using Hershberger and Suri’s offline decision problem data
structure.

We summarize the results on this case so far:

Lemma 6. Suppose that the distance d between the centers of D1 and D2

is at least εr∗, for some constant ε > 0. Then in O(n log n) time we can test
whether r ≥ r∗ for any given value r.

Sharir [15] describes a decision algorithm essentially identical to the one
above, but gives a slower O(n log2 n) bound for the same problem, only
because he uses his slower offline decision problem data structure in place
of that of Hershberger and Suri.

To use this result to actually find r∗, we apply parametric search. This
method has been applied described many times in computational geometry,
so we only briefly summarize it here. It involves simulating the decision
algorithm, performing each step the way it would be performed if r = r∗. At
each conditional branch of the decision algorithm, the step to be performed

8



next can typically be determined not from r itself but from the sign of some
low-degree polynomial in r. To compute this sign for the unknown value
r = r∗ we find the roots of the polynomial and use the decision algorithm
itself to determine which of them are above and below r∗. Since the decision
algorithm’s behavior changes for r above and below r∗, the simulation of it
must end up testing r = r∗ to determine the correct behavior. Therefore
we can determine r∗ by looking at all values tested in this simulation, and
choosing the smallest of those for which the result of the test was that it
was at least r∗.

This method as described above would roughly square the running time
of the decision algorithm, leaving us no better than known results on the
two-center problem. However the algorithm being simulated can be sped up
in several ways. First, it may be a parallel algorithm rather than a sequential
one; then at each time step many roots of polynomials can be simultaneously
compared to r∗ via binary search, giving an overall time equal to the work of
the parallel algorithm plus O(T log n) calls to the decision algorithm, where
T is the parallel time. Second, only the parts of the algorithm that depend
on r∗ need to be parallelized or simulated; the rest can be done once and
for all outside the parametric search. Third, a technique of Cole [6] allows
us in many cases (particularly those involving sorting) to call the decision
algorithm only once per parallel time step of the simulated algorithm, rather
than logarithmically many times. And fourth, the simulated algorithm need
not actually solve the decision problem; it need merely be any algorithm the
behavior of which undergoes a discrete change at r = r∗. We apply all of
these speedup techniques to this problem.

Lemma 7. The sequence of offline updates produced by the decision algo-
rithm outlined above undergoes a discrete change at r = r∗.

Proof: By assumption, D1 is the circumcenter of some two or three points,
one of which is on the circular hull of S. If it is the diameter circle of two
points, or if it passes through two points of S, then at r = r∗ the sequence
changes from including the remaining point to not including it. If D1 is the
circumcenter of a triangle with two vertices outside S, the order in which
those two vertices are crossed by the moving circle changes at r = r∗. 2

Lemma 8. The sequence of vertices on the circular hull of S with respect
to radius r can be found by performing O(n log n) steps not depending on r
together with one parallel step involving O(n) independent computations.

9



Proof: Each boundary segment of the circular hull corresponds to a circle
of radius r tangent to two vertices and entirely containing the rest of S.
Such a circle has its center on an edge of the farthest point Voronoi diagram
of S. We compute this diagram in time O(n log n), and compute for each
edge of the diagram the interval of radii for which some circle with its center
on that edge contains S and is tangent to two points. The parallel step then
involves simply comparing the O(n) interval endpoints with r itself. This
gives us the identities of the endpoints of boundary segments of the circular
hull, from which the hull itself is easily constructed. 2

Lemma 9. The offline sequence of insertions and deletions described above
can be found by performing O(n) parallel binary search operations in the
circular hull, together with one sorting algorithm.

Proof: The binary searches determine which vertex of S the moving circle
is pivoting around when it crosses the given point. From this information,
the time the crossing occurs can be computed in constant time by a low-
degree polynomial in r, and we need merely sort these times. 2

The steps described above constitute a parallel algorithm for computing
the offline sequence of updates of the decision problem; this sequence changes
discretely at r = r∗, and the parallel algorithm (consisting of one completely
parallel step, a collection of binary searches, and a sorting algorithm) is
suitable for Cole’s parametric search speedup. Thus we have the following
result:

Lemma 10. Suppose that the distance d between the centers of D1 and
D2 is at least εr∗, for some constant ε > 0. Then we can find r∗ (and a
two-disk cover with radius r∗) in time O(n log2 n).

6 Nearly concentric disks

We now describe a solution in the case when the disks are nearly concentric.
Like Sharir [15], we reduce the problem to one of searching a certain n× n
matrix. However at this point we differ: Sharir applies a search technique
similar to methods of Aggarwal et al. [3] for finding row minima in matrices
satisfying a certain monotonicity condition, where the method we use is more
closely related to methods of Frederickson and Johnson [10] for selection in
sorted matrices.

10



Figure 4. If disks are nearly concentric, input can be partitioned by rays from a
point in their intersection.

Lemma 11. Suppose that the distance d between the centers of D1 and
D2 is at least (2 − ε)r∗, for some constant ε > 0. Then the set of points
contained in D1 ∩D2, and forming an angle bounded away from zero with
the two crossing points of D1 and D2, forms a set of measure a constant
fraction of the measure of the set of points in the minimal enclosing disk of
the points.

Corollary 2. Suppose that the distance d between the centers of D1 and
D2 is at least (2 − ε)r∗, for some constant ε > 0. Then we can find a set
of O(1) points such that at least one of them is contained in D1 ∩D2 and
forms an angle bounded away from zero with the two crossing points of D1

and D2.

Obviously we don’t know which of these points is the one in D1 ∩D2, so
we try them all as before. From now on let x be a known point assumed to
be in D1 ∩D2. (It is not necessary for x to be one of the input points). We
consider partitions of the input points into two sets, bounded by a pair of
rays from x. Clearly, if those rays pass through the crossings of D1 with D2,
they bound regions in which all points contained in either circle are entirely
contained in one of the two circles (Figure 4). Because the angle from x to
the two crossing points is by assumption bounded from zero, we can find
O(1) lines through x, one of which separates the two rays from each other;
again we do not know which so we try all possibilities. From now on we
assume one of these lines is fixed, and without loss of generality assume that
it is horizontal.

11



Thus to find r∗ we need merely find the partition of the points by two
rays, one going upwards from x and one downwards from x, that minimizes
the circumradii of the two sets.

We sort the input points above and below x radially around x, and
number the rays upwards of x and downwards of x by the position at which
they partition this sorted sequence. Thus the two-ray partitions we are
interested in are made to correspond to pairs of integers, which can be
interpreted as positions in a matrixM with the numbers of rows and columns
totaling n. Each entry of the matrix can be thought of as giving a pair of
numbers, the circumradii of the point sets on either side of the corresponding
partition. We are interested in finding the entry minimizing the larger of
the two numbers. For simplicity, we pad the matrix so that it is square with
side length equal to 2k + 1 for some k = log2 n+O(1).

6.1 Search with offline exact circumradius

We first describe a method for evaluating any specific entry in M .

Lemma 12. We can evaluate any entry in M in time O(logc n) for some
constant c.

Proof: Form a recursive partition of the points above and below x, in
which each subset is partitioned in two equal subsets according to the radial
sorted order around x. Each point is in O(log n) sets, and any contiguous
subsequence of the sorted order can then be formed as the disjoint union
of O(log n) sets. We can then lift the points in each set, form the convex
hull and recursive decomposition, and combine sets exactly as in our offline
exact circumradius algorithm, to achieve the claimed result. 2

The exact value of c will depend on the details of the implementa-
tion (whether we allow randomization, and whether we take advantage
of the order in which we evaluate entries of M); with some care it is
possible in this case to evaluate matrix entries in randomized expected
time O(log2 n log logn) each. However for our results it only matters that
c = O(1).

We now describe how to use matrix evaluations to find the optimal entry
in M .

Lemma 13. After we evaluate a single entry ofM , we can determine either
that the quadrant of M above and right of the entry does not contain the
optimal entry, or that the quadrant below and left does not contain the
optimal entry.

12



Figure 5. 9× 9 matrix with a path of 3× 3 squares.

Proof: One of the two circumradii at the evaluated entry is at least as
large as the other, and the points in one of those two quadrants correspond
to adding more points to that large circle, which can never make it smaller.
2

Lemma 14. Once we have found x and computed the radial sorted order
around x, we can find the optimum circumradius pair in O(n) matrix entry
evaluations and O(n) additional time.

Proof: Recall that the side length of M is assumed to be 2k + 1 where
k = log n + O(1). We perform a sequence of k = O(log n) stages. In each
stage the remaining parts of the matrix in which the optimal entry may lie
form a path ofO(2i) squares, each of size O(2k−i+1), running from the upper
left corner of the matrix to the lower right corner. Two successive squares
in the path overlap either by one row or one column, and each successive
square is either right of or below its predecessor. Figure 5 depicts such a
path schematically, with k = 3 and i = 2; the matrix entries are represented
symbolically by pairs of circles. (Initially, we have a path consisting of one
single square, namely the whole matrix itself).

In each stage, we then subdivide these squares into four times as many
squares, of half the size each. (More precisely the smaller squares have side
length 2k−1−1 + 1, and overlap in the centers of the larger squares.) This
collection of smaller squares no longer forms a path, as some square corners
are interior to the collection (all four small squares around them are present
in the collection). We then simply evaluate each of these interior points and

13



eliminate one of the four neighboring squares. The remaining squares again
form a path, and we are ready to repeat the process.

After O(log n) iterations, involving probes at O(n) matrix entries, our
path consists of O(n) squares of size O(1) and we can simply evaluate all
remaining entries. 2

As a consequence we can solve this case in time O(n logc n). We next
see how to use the offline decision problem algorithm (in place of the exact
circumradius data structure used here) to speed this up.

6.2 Search with offline decision problem

We can use the same basic matrix search technique, combined with an offline
decision problem, to achieve a somewhat better result. This portion of our
algorithm is quite similar to the method used by Sharir [15].

The first observation is that any path through matrix M corresponds
to an offline sequence of insertions and deletions in a dynamic circumradius
problem (this is obvious, since each horizontal or vertical step corresponds to
moving a point from one partition to the other either above or below x). In
particular, the sequence of entries evaluated at each stage of the algorithm
above can be connected to form a path of length O(n), so we can use evaluate
the same entries using Hershberger and Suri’s offline decision algorithm and
achieve a total time of O(n log2 n) to determine whether r ≥ r∗. (This
differs from Sharir’s O(n log3 n) for this subproblem only because Sharir
uses a slower offline decision algorithm.)

How do we make this into a search algorithm? The key idea is to relax
the requirement that the collection of squares we have at any stage forms
a path. Instead, we assume that at stage i we have c2i squares for some
constant c > 1. As before, we subdivide each square into four, so now we
have 2c(2i+1) squares; to continue the process we wish to reduce this number
of squares back to c. If we could evaluate all interior corners of the collection
of squares, this would be easy, but we can only use a decision algorithm.

Lemma 15. Suppose we have a collection of (1+b)2i squares of size 2k−i+1
remaining in M , where b is some positive constant. Then in expected time
O((n+ b2i) logn) we can eliminate Ω(b2i) squares from the collection.

Proof: In this situation, there most be Ω(b2i) interior corners of squares.
We choose a random entry among these interior corners, and compute its
value (either using the data structure described earlier, or using a linear time
circumradius algorithm). Call this value r We then use the offline decision

14



algorithm of Hershberger and Suri to test, for each interior square corner
entry, whether one or both of the corresponding circles has radius at least r.
If so, we can eliminate one or both of the neighboring squares. The expected
number of eliminated squares is a constant fraction of the number of interior
corners, so after a constant expected number of rounds of this procedure we
will have eliminated Ω(b2i) squares. 2

Lemma 16. Suppose that the distance d between the centers of D1 and
D2 is at most (2− ε)r∗, for some constant ε > 0. Then we can find r∗ (and
a two-disk cover with radius r∗) in randomized expected time O(n log2 n).

Proof: We go through a similar sequence of stages to those in Lemma 14,
maintaining the invariant that at stage i there are O(2i) squares of size
2k−i + 1. After O(log n) stages, each taking time O(n log n), we will have
reduced the problem to one of evaluating O(n) remaining entries of M . A
similar strategy of selecting one entry, evaluating it, and performing the
decision algorithm to test its value against the remaining entries, leads from
this point to the optimal value in an expected O(log n) stages. 2

6.3 Hybrid search

Although the O(n log2 n) time above matches that for the previous case of
the two-center problem, we now sketch an improvement. This shows that
this nearly concentric case is not the bottleneck of the overall algorithm,
which may be important if the other slower parts of the algorithm can be
improved. Further, if one is interested in practical implementation, it pays
to speed up every part of a program.

The idea is simple: the method using the exact circumradius data struc-
ture is slow because it evaluates many matrix entries, but the bound on its
time does not really involve the number of stages in the matrix searching
procedure. The method using the decision algorithm is slow because it per-
forms many stages, but the bound on its time does not really involve the
number of entries evaluated. By switching between the two algorithms we
can combine the advantages of both.

Specifically, suppose we have a data structure as described in Lemma 12
for evaluating any matrix entry in time O(logc). We then use the first
method, involving this matrix evaluation data structure, only for the first
log n − O(log logn) stages, for which the total number of entries evalu-
ated is O(n log−c n). The time for this portion of the algorithm is O(n).
We next switch to the other method, using an offline decision algorithm,

15



for the remaining O(log logn) stages of the matrix search procedure. This
takes expected time O(n log n log logn), after which there remain O(n) ma-
trix entries to evaluate. We continue with the offline decision algorithm
procedure for O(log logn) more stages, in each of which we test a ran-
domly chosen entry from the remaining set; again this takes expected time
O(n log n log log n), and results in a set of only O(n log−c n) matrix entries to
evaluate. Finally, we evaluate these with our data structure, in time O(n).

Lemma 17. Suppose that the distance d between the centers of D1 and D2

is at most (2−ε)r∗, for some constant ε > 0. Then we can find r∗ (and a two-
disk cover with radius r∗) in randomized expected time O(n log n log logn).

7 Conclusions

Combining Lemmas 4, 10, and 17 gives the following result:

Theorem 1. We can find r∗ (and a two-disk cover with radius r∗) in ran-
domized expected time O(n log2 n).

It may be interesting to consider how this can be improved. Bounds for
the two-center problem have come a long way but it is not clear that we
have reached the end of possible improvement. We are not aware of any
nontrivial lower bounds for the problem, so conceivably O(n) may be possi-
ble. There is only one bottleneck in our current time bound: the parametric
search technique used in the case of nearly tangent disks. We achieved faster
time bounds in other parts of the algorithm by avoiding parametric search;
perhaps it can be avoided here as well. Alternately, one may wish to find
a deterministic two-center algorithm with performance matching our ran-
domized algorithm. Again, there is only one bottleneck: the randomized
selection used in the offline decision procedure version of our algorithm for
the case of nearly concentric disks. If we could improve our deterministic
matrix entry evaluation procedure to O(log2 n), we could avoid this por-
tion of the algorithm; alternately perhaps the selection procedure could be
derandomized. It remains interesting as well to consider improvements for
k-center problems with k > 2.

References

[1] P. K. Agarwal and M. Sharir. Planar geometric location problems and
maintaining the width of a planar set. 2nd ACM-SIAM Symp. Discrete
Algorithms, 1991, pp. 449–458.

16



[2] P. K. Agarwal, D. Eppstein, and J. Matoušek. Dynamic algorithms
for half-space reporting, proximity problems, and geometric minimum
spanning trees. 33rd IEEE Symp. Foundations of Comp. Sci., 1992, pp.
80–89.

[3] A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber. Geo-
metric applications of a matrix searching algorithm. Algorithmica, vol.
2, 1987, pp. 209–233.

[4] B. Chazelle. An optimal algorithm for intersecting three-dimensional
convex polyhedra. 30th IEEE Symp. Found. Comput. Sci., 1989, pp.
586–591; SIAM J. Comput., to appear.

[5] K. L. Clarkson. A Las Vegas algorithm for linear programming when
the dimension is small. 29th IEEE Symp. Found. Comput. Sci., 1988,
452–456.

[6] R. Cole. Slowing down sorting networks to obtain faster sorting algo-
rithms. J. Assoc. Comput. Mach., vol. 34, 1987, pp. 200–208.

[7] Z. Drezner. The planar two-center and two-median problems. Trans-
portation Science 18 (1984) 351–361.

[8] D. Eppstein. Dynamic three-dimensional linear programming. 32nd
IEEE Symp. Foundations of Comp. Sci., 1991, pp. 488–494; ORSA J.
Computing, vol. 4, 1992, pp. 360–368 (special issue on computational
geometry).

[9] D. Eppstein. Average case analysis of dynamic geometric optimization.
5th ACM-SIAM Symp. Discrete Algorithms, 1994, 77–86. Comp. Geom.
Theory & Applications, to appear.

[10] G. N. Frederickson and D. B. Johnson. The complexity of selection and
ranking in X + Y and matrices with sorted columns. J. Comput. Sys.
Sci., vol. 24, 1982, pp. 197–208.

[11] J. Hershberger and S. Suri. Offline maintenance of planar configura-
tions. 2nd ACM-SIAM Symp. Discrete Algorithms, 1991, 32–41.

[12] J. Jaromczyk and M. Kowaluk. An efficient algorithm for the Euclidean
two-center problem. 10th ACM Symp. Computational Geometry, 1994,
pp. 303–311.

17



[13] M. Katz and M. Sharir. An expander-based approach to geometric opti-
mization. 9th ACM Symp. Computational Geometry, 1993, pp. 198–207.

[14] N. Megiddo. Linear-time algorithms for linear programming in R3 and
related problems. SIAM J. Comput., vol. 12, 1983, pp. 759–776.

[15] M. Sharir. A near-linear algorithm for the planar 2-center problem. 12th
ACM Symp. Computational Geometry, 1996, to appear.

18


