
TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

The Traveling Salesman Problem for Cubic Graphs

David Eppstein

Univ. of California, Irvine
School of Information and Computer Science

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

What to do when a problem is NP-complete?

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

What to do when a problem is NP-complete?

Give up

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

What to do when a problem is NP-complete?

Give up

Use heuristics

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

What to do when a problem is NP-complete?

Give up

Use heuristics

Approximate the correct solution

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

What to do when a problem is NP-complete?

Give up

Use heuristics

Approximate the correct solution

Find easier special cases

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

What to do when a problem is NP-complete?

Give up

Use heuristics

Approximate the correct solution

Find easier special cases

Do worst-case analysis with exponential time bounds

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

What to do when a problem is NP-complete?

Give up

Use heuristics

Approximate the correct solution

Find easier special cases

Do worst-case analysis with exponential time bounds

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

Why study worst case time bounds for exponential algorithms?

Worst case time analysis is most important
for slower compute-bound processes

Better time bounds improve solvable instance size
by constant factor; Moore’s law much less effective

Less well-studied, so more interesting problems

Interesting gap between theory (exponential times)
and practice (much smaller exponentials)

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

Problems studied in this paper

Hamiltonian cycle

Traveling salesman problem (TSP)

Cycle counting

Weighted cycle counting

Input: undirected, unweighted graph
Output: simple cycle containing all vertices, if one exists
Decision version is NP-complete

Input: undirected graph with edge weights
Output: shortest Hamiltonian cycle, if one exists
Decision version is NP-complete

Input: undirected, unweighted graph
Output: number of simple cycles containing all vertices
#P-complete

Input: undirected graph with edge weights
Output: Sum, over all Hamiltonian cycles,
of product of weights of edges in cycle

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

Best previously-known TSP algorithm: dynamic programming

Choose arbitrary starting vertex v

For each pair (S,w), where S is any set of vertices
that contains both v and w,
let A(S,w) be min weight of a path from v to w via S

Compute A(S,w) = min { A(S\{w},x) + d(x,w) | x in S\{v} }

Global TSP length = A(V(G),v)

Total time: O(2n n2)
Total space: O(2n n1/2)
[order subproblems by set size, only store problems with similar size]

Same approach works also for counting
and weighted counting

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

New results

TSP and related problems for graphs
with maximum degree at most three

Hamiltonian cycle and TSP

time: O(2n/3)
space: linear

Cycle counting and weighted cycle counting

 time: O(23n/8 nO(1))
space: polynomial

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

Main ideas of the new algorithms

Generalize the problem
(allow graphs with forced edges)

Branch and simplify
(complicated case analysis)

Improve analysis via polynomial-time special case
(reduction from TSP to minimum spanning tree)

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

Forced edges

Input = graph + set of “forced edges” (shown thick)
Output cycle(s) must include all forced edges

Example: K4 with no forced edges has three Hamiltonian cycles

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

Forced edges

Input = graph + set of “forced edges” (shown thick)
Output cycle(s) must include all forced edges

Example: K4 with one forced edge has only two Hamiltonian cycles

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

Forced edges

Equivalent in effect to inserting a vertex inside the edge

�

But, unlike new vertex, doesn’t count against total size of graph

More forced edges = fewer possible cycles = easier problem instance

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

Problem simplifications

Certain configurations force no Hamiltonian cycle to exist

Vertex with degree one Three mutually incident forced edges

If encountered, immediately stop this branch of the search algorithm

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

Problem simplifications

Certain configurations allow additional edges to be forced or removed

Vertex with degree two
both edges can be forced

Two mutually incident forced edges
remove third edge (if it exists)

and contract to a single forced edge

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

Problem simplifications

Triangles in the input graph can be contracted (Delta-Y transformation)

Can be made to preserve weights of each Hamiltonian cycle
and respect forced edges within the triangle

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

Branch and simplify

Standard general technique for exponential algorithms

Choose a variable (unforced edge)

 Force the edge
 Perform all possible simplifications
 Recurse on smaller instance
 finds all Hamiltonian cycles containing the edge

 Restore original graph
 Try removing the edge
 Perform all possible simplifications
 Recurse on smaller instance
 finds all Hamiltonian cycles not containing the edge

Choose variable to maximize simplification
(complex case analysis)

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

Analysis

Let U = # unforced edges in instance, T(U) = # subproblems in algorithm

Worst case:
Cycle of four unforced edges with all neighbors forced
Each subproblem removes or forces all edges in cycle

T(U) = 2T(U – 4)

Not-quite-as-bad case:
Cycle of four unforced edges with two neighbors forced

Removing side between forced neighbors forces two adjacent sides
Forcing side removes adjacent sides, forces three other edges

T(U) = T(U – 3) + T(U – 6)

Overall T(U) = O(2U/4) = O(23n/8)

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

Polynomial special case

If all components of unforced edges form 4-cycles,
TSP can be transformed to minimum spanning tree

In general, perform branch and simplify
until reaching polynomial special case

Removes worst case from previous algorithm

New analysis (using different variable for subproblem size):
Total time = total # subproblems = O(2n/3)

TSP for cubic graphs D. Eppstein, UC Irvine, WADS 2003

Conclusions

Significantly more efficient algorithms
for interesting special case of TSP, related problems

Open problems

Extend TSP-MST reduction to cycle counting?

Any hope of o(2n) for general case of TSP?

Generalize low degree to low total number of edges?

Other important NP-hard special cases not yet considered?

