The Parametric Closure Problem

David Eppstein

14th Algorithms and Data Structures Symp. (WADS 2015) Victoria, BC, August 2015

The closure problem

Find max-weight downward-closed subset of a partial order Classical example: open-pit gold mining

Sunrise Dam Gold Mine, Australia.
CC-BY-SA image "Sunrise Dam open pit" by Calistemon on Wikimedia commons.

Elements = blocks of ore
Partial order $=$ must remove higher block to access lower one
Weight $=$ value of extracted gold - extraction cost

Bicriterion closure problem

CC-BY-SA image
"13-02-27-spielbank-wiesbaden-by-RalfR-066"
by Ralf Roletschek from Wikimedia commons

Optimize a nonlinear combination of two different sums of element values
E.g. return on investment:

Find downward-closed subset of partial order achieving max profit/cost, where

- Profit is sum of extracted values of chosen ore blocks
- Cost is sum of extraction costs of chosen ore blocks

Parametric closure problem

Element value is a linear function of an unknown parameter:

$$
\begin{gathered}
\text { value }=\text { amount of gold extracted } \times \text { price of gold } \\
\\
- \text { extraction cost }
\end{gathered}
$$

Goal: construct the (convex piecewise linear) function mapping each parameter value to its optimum closure

Converting bicriterion to parametric problems

Whenever a bicriterion problem maximizes a quasiconvex function of its two arguments x and y, its optimum can be found as one of the parametric optima for $\lambda x+y$
Quasiconvex: all lower sets $\{(x, y) \mid f(x, y) \leq \theta\}$ are convex

Example: return on investment $f(x, y)=x / y$, with $x, y>0$

Classical results

- Closure problem has a polynomial time solution (reduction to min cut)
- Parametric and bicriterion solutions for other problems (especially minimum spanning trees and shortest paths)
- Several isolated problems that in retrospect fit into this framework

Detail of Raphael's School of Athens, with Plato and Aristotle

New contributions

- Formulation of parametric and bicriterion closure problems
- Equivalence to natural problems in combinatorial geometry (complexity of polytopes constructed by combinations of Minkowski sums and convex hulls of unions)
- Efficient solutions for several important classes of partial orders, but not for the general problem

Ukiyo-e image of blind
monks examining an elephant, by Itcho
Hanabusa

A geometric point of view

Replace parametric weight $f(p)=a p+b$ by geometric point (a, b)

Given a partial order (left), the candidate solutions (center) map to points in the plane (right)

Then parametric optima form the upper part of the convex hull (the value of p determines the slope of a tangent to the hull)

Series-parallel partial orders

Series composition of orders: all elements of one order are below all elements of the other

Parallel composition: no relation between the elements of the two orders

Corresponding operations on convex hulls: convex hull of union, Minkowski sum

Neither operation increases \#vertices \Leftrightarrow parametric problem has $O(n)$ solutions

Series-parallel parametric closure algorithm

Geometric problem: evaluate expression tree of polygons in which each operation is either hull of union or Minkowski sum Hull of union: merge sorted sequences of vertex x-coords, local fixup for nonconvexities

Minkowski sum: merge sequences of edge slopes

Using dynamic finger trees, logs
 telescope $\Rightarrow O(n \log n)$ time

Semiorders: preferences with uncertainty

Each element has a numeric utility value Partial order $=$ numeric order, unless values are too close

We use a quadtree to form series-parallel subproblems, showing:
Parametric closure problem has $O(n \log n)$ solutions
They can be found in time $O\left(n \log ^{2} n\right)$

More partial orders with good solutions

Bounded width (no large antichains)

- typical version control edit histories

Transitive reduction has bounded treewidth

- fence poset reduction is a path

Incidence posets of graphs

- elements are vertices and edges
- each edge \geq its endpoints
- used to model depot location as closure

A Fibonacci cube, the family of closures of a fence poset

Conclusions

Some answers, but more questions:

- Do general posets have polynomially many parametric closures?
- Is there any family of posets with more than linearly many parametric closures?
- What is the complexity of higher-dimensional expression trees of union-hulls and Minkowski sums?

