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Historically, many connections from graph-theoretic 
algorithms to computational geometry...

1. Geometric analogues of classical graph algorithm problems

Typical issue: using geometric information
to speed up naive application of graph algorithms

E.g., Euclidean minimum spanning tree
= Spanning tree of complete graph with Euclidean distances
Solved in O(n log n) time by Delaunay triangulation [Shamos 1978]
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Historically, many connections from graph-theoretic 
algorithms to computational geometry...

2. Geometric approaches to graph-theoretic problems

How many different minimum spanning trees
can a graph with linearly varying edge weights form?
O(m n1/3) via crossing number inequality [Dey, DCG 1998]
Ω(m a(n)) via lower envelopes of line segments [E., DCG 1998]

1

1 1 1

2

2 2 2

3

3 3 34

4

4

5

5 5



Graph-theoretic solutions to computational geometry problems D. Eppstein, UC Irvine, 2009

Historically, many connections from graph-theoretic 
algorithms to computational geometry...

Today: 3. Graph-theoretic approaches to geometric problems

Geometry leads to auxiliary graph

Special properties of auxiliary graph lead to algorithm

Algorithm on auxiliary graph leads to solution

Minimum-diameter clustering via maximum independent sets in bipartite graphs (more detail later in talk)



Graph-theoretic solutions to computational geometry problems D. Eppstein, UC Irvine, 2009

Outline

Art gallery theorems

Partition into rectangles

Minimum diameter clustering

Bend minimization

Mesh stripification

Angle optimization of tilings

Metric embedding into stars



Graph-theoretic solutions to computational geometry problems D. Eppstein, UC Irvine, 2009

Outline

Art gallery theorems

Partition into rectangles

Minimum diameter clustering

Bend minimization

Mesh stripification

Angle optimization of tilings

Metric embedding into stars



Graph-theoretic solutions to computational geometry problems D. Eppstein, UC Irvine, 2009

The Art Gallery Problem

Input: a simple polygon
(no holes, no self-crossings),
the floor plan of an art gallery

Output: a small set of points
(places for guards to stand)
from which whole gallery visible

Exact optimization is NP-hard

Approximation algorithms known

Today: what is worst-case #guards
as a function of gallery complexity?

This art gallery can be guarded from four points

Claudio Rocchini, GFDL image on Wikimedia commons,
http://commons.wikimedia.org/wiki/File:Art_gallery_problem.svg
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Chvátal’s Art Gallery Theorem [Chvátal, JCTB 1975]

Every n-vertex simple polygon requires at most floor(n/3) guards

For every n ≥ 3, some simple polygons require exactly floor(n/3) guards

Each guard can see at most one tooth of the comb
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Fisk’s Proof of the Art Gallery Theorem [Fisk, JCTB 1978]

I. Triangulate the polygon
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Fisk’s Proof of the Art Gallery Theorem [Fisk, JCTB 1978]

II. 3-color the (maximal outerplanar) graph of the triangulation

Dual graph is a tree
Remove a leaf (degree-two vertex of triangulation), recurse
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Fisk’s Proof of the Art Gallery Theorem [Fisk, JCTB 1978]

III. Select the vertices with the least-frequently-used color

The points within any triangle can be seen from
the triangle vertex of the selected color
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Algorithmic implications

Graph coloring is hard in general, but...

Finding a set of floor(n/3) guards can be
performed in linear time

Linear time triangulation of simple
polygons [Chazelle, DCG 1991]

Linear time optimal coloring of
maximal outerplanar graphs

(easy using greedy coloring:
maximal outerplanar graphs are chordal,
chordal graphs are perfectly orderable)
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Orthogonal Art Galleries

At most floor(n/4) guards needed
[Kahn, Klawe, Kleitman, SIAM ADM 1983]

Partition into convex quadrilaterals
(non-trivial)

Squaregraph: planar graph,
all interior faces quadrilaterals,
all interior vertex degrees ≥ 4
(bipartite, median graph)

Kinggraph: add diagonals of quads
Guaranteed to be 4-chromatic

4-color, use smallest color class
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Rectangle partition

Input: orthogonal polygon
(sides parallel to axes,
possibly with holes)

Output: partition into
minimum # of rectangles

Applications include

Bitmap data compression

VLSI mask fabrication

DNA array design

Reconnaissance planning 17 rectangles 17 rectangles 16 rectangles
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Rectangle partition

Input is partitioned into rectangles

if and only if

Each concave vertex is adjacent
to an internal segment

# Rectangles ≥ # Segments + 1

(equality when no degree-4
internal vertices)

So # Rectangles =
 # Concave vertices + 1
regardless of the partition??? 17 rectangles 17 rectangles 16 rectangles
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Key observation

[Lipski et al., Fund. Inf. 1979;
 Ohtsuke, ISCAS 1982;
 Ferrari et al., CVGIP 1984]

Some segments can cover
two concave vertices at once

# Rectangles =
     # Concave vertices –
     # Two-vertex segments + 1

Problem becomes one of finding
maximum non-intersecting set
of two-vertex segments

(Shared endpoint counts as intersection)
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König’s theorem
[D. König, Mat. Fiz. Lapok 1931]

In a bipartite graph,
independence number = n - |M|
where M is a maximum matching

Upper bound:
For arbitrary graphs,
# MIS ≤ # vertices – # match
(MIS can only use one vertex
from every matched pair)

Lower bound:
Even levels of alternating path 
decomposition starting from 
unmatched vertices form a large 
independent set

S0

S1

S2

S3

S4
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Rectangle partition algorithm

Find line segments that could cover two concave polygon vertices

Form their (bipartite) intersection graph

Use matching algorithms to find a maximum independent set

Add additional line segments to cover the remaining concave vertices

Time (using geometric data structures to speed up matching steps):

O(n3/2 log n)

[Lipski, Networks 1983 & IPL 1984; Imai & Asano, SICOMP 1986]
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Minimum diameter
clustering problems
[Aggarwal et al, J. Algorithms 1991; E. & Erickson, DCG 1994]

Diameter = max distance among points

Given n points ...

Find k of them with minimum diameter

Find as many as possible with diameter D

Test whether there exists a subset of
k points with diameter D

Since there are O(n2) possible diameters,
these are all equivalent to each other
(up to log factors) via binary search
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Easy (but unhelpful) reduction to a graph problem

Maximizing #points in a diameter-D cluster
= finding a maximum clique in a two-dimensional unit disk intersection graph

Can be solved in polynomial time
[Clark, Colbourne, & Johnson, Disc. Math. 1990]

but translation into a graph is too direct to provide insight into solution
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More insightful reduction
[Clark et al, Aggarwal et al]

For each pair of points p,q that
might be a diameter (purple):

The points within dist(p,q) of both 
p and q form a lune
(intersection of two circles)

Any incompatible pair of points
(too far apart to be in cluster)
belong to opposite half-lunes

Max # points having pq as
their diameter =
max ind. set of bipartite graph
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Dynamic graph algorithm for multiple bipartite MIS’s
[E. & Erickson 1994]

To find max cluster size for given diameter D:

For each input point p:
Let q be a point at distance D from p (not necessarily in input),
generate the lune from p and q, and
find maximum independent set in the bipartite graph of lune.

Rotate q continuously around p;
whenever the rotation changes the set of points within the lune:

Do a single alternating path search to update MIS

Time O(n3 log n)

To find min D given cluster size k:
Use binary search for D among input distances
Limit subproblem size via k-nearest-neighbor graph
Time O(n log n + k2n log2 k)
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Rectilinear cartograms

Transform map into stylized diagram
in which areas represent non-geographic data about regions

NL

BE LU

FR

DE

Raisz, Geog. Rev. 1934:
“It should be emphasized that the statistical cartogram is not a map.”

Diagram modifed from CC-BY-SA image by Brianski, Canuckguy, Zaparojdik, Madman2001, Roke, & Ssolbergj,
online at http://commons.wikimedia.org/wiki/File:Blank_Map_of_Europe_-w_boundaries.svg
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Algorithmic issues in
cartogram construction

Fitting given numerical quantities
to areas of regions
[E. et al, SoCG 2009]

Making region adjacencies match
their geographic orientations
[E. & Mumford, WADS 2009]

Today:
Minimizing # bends

Originally studied as a technique for graph drawing
[Tamassia, SICOMP 1987; Tamassia et al., Trans. Sys. Man. Cyb. 1988;
Tamassia et al., SPDP 1991; Fößmeier & Kauffman, GD 1995]
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Modeling bends by flow

Create a vertex in a graph
for every junction and region

One unit of flow = 90 degrees

Send four units of flow from
junctions to adjacent regions

Send flow across any bend
between two regions

Junction has four outgoing units

Region with k junctions has 4 – 2k outgoing units or 2k – 4 incoming units
(2k + 4 incoming units for the exterior region)

2
1

1

1
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Bend minimization as min-cost flow

Vertex per junction and region
Additional circulation vertex (not shown)

Junction-region edge:
min capacity 1, cost 0

Region-region edge:
min capacity 0, cost 1

Circulation-junction edge:
min&max capacity 4

Region-circulation edge:
min&max capacity 2k – 4
(or 2k + 4 for exterior region)

Minimum cost integer circulation gives
minimum bend layout
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Problem: sort triangles of a geometric model
into a single contiguous triangle strip

Communicate only vertex per triangle to graphics hardware instead of three

Part of schemes for data compression of mesh topology & geometry

Space-filling curve from strip useful for dithering, mesh simplification, etc.

[E. & Gopi, Eurographics 2004]
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As with min-diameter clustering,
a direct reduction to a graph is unhelpful

Form dual graph
One vertex for every triangle
Edge connecting two adjacent triangles

Single-loop triangle strip
= Hamiltonian cycle in dual graph

But even in dual graphs of planar triangular meshes,
Hamiltonian cycle is NP-complete
and may not even exist



Graph-theoretic solutions to computational geometry problems D. Eppstein, UC Irvine, 2009

Less-direct matching-based approach

Dual graph is 3-regular and bridgeless; therefore, it has a perfect matching
[Peterson 1891; efficient algorithms due to Biedl et al., J. Algorithms 2001]

Complementary edges to matching form set of cyclic strips
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Less-direct matching-based approach (II)

In many cases, local moves allow number of cycles to be reduced
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Less-direct matching-based approach (III)

In remaining cases, subdividing two triangles allows local move to merge cycles

Result: single strip with same geometry as original model
at most 3/2 as many triangles as original

In practice, increase only 1-2%; some models require 39/37 factor increase
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For each vertex of a line arrangement,
form convex centrally-symmetric tile

— Unit length sides
— Edges perpendicular to lines

These tiles fit together into a
tiling of a convex polygon
(or, for infinite arrangements,
a tiling of the Euclidean plane)

This idea was used by De Bruijn [Indag. Math. 1981]
to form a Penrose rhomb tiling from five sets of parallel lines
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Same method also works for
hyperbolic arrangements

(tiles a non-convex
subset of the
Euclidean plane)

[E., GD 2004]

This arrangement
has no triangles
and requires five
colors if crossing lines
must be different colors
(the max for triangle-free
hyperbolic arrangements)

[Ageev, Disc. Math. 1996]
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The tiling formed from
Ageev’s arrangement

Result is a squaregraph
(planar, all faces quadrilaterals,
all interior vertices
have degree ≥ 4)
that cannot be
embedded into the
product of fewer than
five trees
[Bandelt, Chepoi, E., 2009]

Can we make the drawing
more legible
by adjusting slopes of
sides of tiles?
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Optimization of angular resolution [E. & Wortman, 2009]

Angular resolution = sharpest angle of drawing [Malitz & Papakostas, STOC 1992]

Given tiling by symmetric polygons
find combinatorially equivalent tiling with optimal angular resolution



Graph-theoretic solutions to computational geometry problems D. Eppstein, UC Irvine, 2009

Transformation to parametric shortest path problem

Graph in which edges have as weights linear functions of l

Concept in tiling:

“Zone” zi of parallel line segments

Angular resolution a

a is a feasible resolution

Amount to adjust angle of zi

Angle zizj is at least a

Interior angles are convex

Corresponding concept in graph:

Vertex vi

Parameter value l

Graph has no negative cycles for l

Distance from start vertex s to vi

Edge vivj with weight qi – qj – l

Edge vivj with weight p + qi – qj
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The optimized drawing:

An algorithm of Karp & Orlin
[Disc. Appl. Math. 1981]
can solve parametric negative
cycle detection for edge
weights const, const + l
in time O(n3)

(Implementation
used binary search +
Bellman–Ford)

Translation to and
from graph problem
can be done within
the same time bound
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Metric space

Set X of points, and function d from pairs of points to real numbers
satisfying

Symmetry: for all x and y, d(x,y) = d(y,x)

Positivity: for all x and y, d(x,y) ≥ 0, with equality iff x = y

Triangle inequality: for all x, y, and z, d(x,y) + d(y,z) ≥ d(x,z)
(if equal, then y is “between” x and z)

Examples:

Shortest path lengths in weighted undirected graphs

Euclidean distance between points in Rd
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Embeddings and distortion

Embedding: 1-1 function from the points of one metric space to another

dilation of a single distance:

distortion of embedding = worst ratio of dilations

if embedding scaled so all distances nondecreasing, distortion = max dilation

max
x y

d f x f y
d x y

max
x y

d f x f y
d x y

min
u v

d f u f v
d u v

d f x f y
d x y
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Structured vs unstructured metrics

Unstructured: any metric possible
O(n2) degrees of freedom in specifying distances

Distance matrix

Graph shortest path distances

n-dimensional Linfinity metric 

Structured: constrained subset of metrics
O(n) degrees of freedom

Low-dimensional Euclidean or Lp metric

Tree shortest path distances
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Metric embedding problem

Given an unstructured metric space
find a low-distortion embedding into a structured space

or, sometimes (not today)
find a random family of embeddings in which

any individual distance has low expected distortion

Many applications in which
approximation algorithm designed for structured space

can be extended to arbitrary metric spaces
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Minimum dilation star problem [E. & Wortman, WADS 2009]

Find minimum distortion embedding

Target structured space is a star:
There exists a point (not necessarily in the image of the embedding)

that is between every other pair of points

Equivalently, graph shortest path metric on a tree with one new non-leaf node
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1.6 1.6
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Solution idea

Form a graph, with two vertices per
point of the input metric space

Downward edge weight
= negative distance

Upward edge weight =
param times distance

Optimal distortion =
minimum parameter value s.t. graph has no negative cycles
(no longer Karp–Orlin, but still polynomial)

Distance from star hub to leaf point in embedding =
1/2 (difference between distances from s to two vertices for that point)
always non-negative because of upwards length-0 edge
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Conclusions

Graph-theoretic point of view is useful in many non-graph problems

The graph algorithms used for these problems are often classical...
maximum independent set and maximum clique

maximum or perfect matching
maximum or minimum-cost flow

graph shortest paths

...but sometimes with a twist
parametric negative cycle detection

Special classes of graphs and their structure is often important
maximal outerplanar graphs
squaregraphs and kinggraphs

bipartite graphs
intersection graphs of unit circles

planar graphs
bridgeless 3-regular graphs

Much more likely remains to be discovered


