Streaming Algorithms for Straggler Detection

David Eppstein and Michael T. Goodrich
Univ. of California, Irvine
Computer Science Department

Streaming Algorithms

Compute some function of a large data set

View each data item once in sequential order
Use very small auxiliary storage (much less than data size)

Why?

Scale efficiently to huge data sets too large for main memory
Handle network data streams without random access
Allow computation on machines with very small capacity due to size, cost, or power consumption constraints

Standard toy problem: Find the missing element

Input: stream of 99 different numbers in the range 1-100
Output: the missing number
Problem: solve this using only storage for a single number

Standard toy problem: Find the missing element

Input: stream of 99 different numbers in the range 1-100
Output: the missing number

Solution:
Store $S=\Sigma x_{i}$
Missing number is $5050-\mathrm{S}$

Standard toy problem: Find the missing element

Input: stream of 99 different numbers in the range 1-100
Output: the missing number
Solution:
Store $S=\Sigma x_{i}$
Missing number is $5050-\mathrm{S}$
Work modulo 128: need only 7 bits of storage

Straggler detection

Intuitive definition:
You are manning the security desk of a large building
Everyone who walks into or out of the building checks in or checks out with their id

At the end of the day, there should be nobody left inside

Your task:
Verify that nobody is left, and, if not, identify the few stragglers left in the building

Straggler detection

Formal definition:
Input: sequence of events
insert x
delete x

Guaranteed to be the case that:

- each id x is inserted and deleted at most once
- each deleted x has previously been inserted
- at most K insertions have no matching deletion

Output:
A list of the insertions without matching deletion

Straggler detection

Two potential applications:
High bandwidth multicasting
when packet x is multicast, insert (x , receiver) pairs
when receiver acknowledges the packet, delete pair straggler $=$ dropped packet to be retransmitted

Distributed grid computations
when sending subtask to processor, insert task id when processor completes subtask, delete task id straggler $=$ missing subtask to be recomputed

Known results

Ganguly and Majumder, PODS 2006

Introduce the problem
Solve space-optimally: $\mathrm{O}(\mathrm{K} \log \mathrm{n})$ bits, $\mathrm{n}=$ range of possible ids
Slow decoding time (cubic or quartic in K, ignoring logarithmic factors)

Cormode and Muthukrishnan, ACM Trans. DB 2005

Solve more general problem: high frequency items in data stream
Randomized, higher space bounds: $O\left(K \log ^{2} n \log (1 / p)\right), p=$ mistake probability

New results

I. Deterministic space-optimal algorithm with fast decoding
$\mathrm{O}(\mathrm{K} \log \mathrm{n})$ bits, better constant than Ganguly and Majumder Insert, delete linear in K
Decoding time quadratic in K

Algebraic approach: Store sums of powers of inserted items
Use Newton's identities to solve system of symmetric polynomials
Careful choice of Galois field allows inversion of Newton's identities while allowing the application of fast root-finding algorithms

New results

II. Generalization of problem allowing spurious deletions

What if an adversary can try to trick the algorithm
by including a small number of deletions not matching previous insertions?
Algorithm must find all stragglers and all spurious deletions

Lower bound:
No deterministic algorithm can solve the problem
in space sublinear in the range of ids
Proof idea:
Show that any streaming algorithm has a group structure
Use pigeonhole principle to find two inputs mapped to same group element Subtract them to find a single input that confuses the algorithm

New results

III. Randomized solution of generalized problem

New data structure: "invertible Bloom filter"
hashing technique related to Bloom filter [Bloom, CACM 1970] and counting Bloom filter
[Bonomi et al., ESA 2006; Fan et al., ACM/IEEE Trans. Networking 2000]

Space: $O(K \log n \log (1 / p))$, nearly optimal
Time per insert or delete: $\mathrm{O}(\log (1 / \mathrm{p}))$
Time per decode: linear in K

Bloom filter

Hashed representation of a set of n items
Store array of 2 nq bits, initially all zero
Map each item x to q bits hash($x, 1$), hash($x, 2$), ..., hash(x, k) For each item in the set, store a one in all of its mapped bits

If an item belongs to the set, all of its bits will be one If an item does not belong to the set, $w /$ prob $\geq 1-2-q$, some bit will be zero

Invertible Bloom filter

hash $_{1}(\mathrm{x}, \mathrm{i})$ mapping each item to $\mathrm{q} \sim \log (1 / \mathrm{p})$ hash table locations as before hash $_{2}(\mathrm{x})$ providing a "signature" for each item

Each hash table location stores counter, sum(x), and sum(hash ${ }_{2}(\mathrm{x})$) where both sums are over the identities of the inserted items that hash ${ }_{1}$ maps to that location

Use modular arithmetic to save bits in each sum

Invertible Bloom filter: how to update

hash $_{1}(\mathrm{x}, \mathrm{i})$ mapping each item to $\mathrm{q} \sim \log (1 / \mathrm{p})$ hash table locations as before hash $_{2}(x)$ providing a "signature" for each item

Each hash table location stores counter, sum(x), and sum(hash ${ }_{2}(\mathrm{x})$) where both sums are over the identities of the inserted items that hash ${ }_{1}$ maps to that location

To insert x :

$$
\begin{aligned}
& \text { for } \mathrm{i} \text { in } 1,2, \ldots, \mathrm{q}: \\
& \quad \text { table[hash }(x, i)] \text {.count }+=1 \\
& \text { table[hash }(x, i)] . \text { sumx }+=x \\
& \text { table[hash }(x, i)] . \text { sumhash }+=\operatorname{hash}_{2}(x)
\end{aligned}
$$

Deletion similar (subtract instead of add)

Invertible Bloom filter: how to decode

hash $_{1}(\mathrm{x}, \mathrm{i})$ mapping each item to $\mathrm{q} \sim \log (1 / \mathrm{p})$ hash table locations as before hash $_{2}(\mathrm{x})$ providing a "signature" for each item

Each hash table location stores counter, sum(x), and sum(hash ${ }_{2}(\mathrm{x})$) where both sums are over the identities of the inserted items that hash ${ }_{1}$ maps to that location

Hash location is "pure" if only one straggler maps to it
If location j is pure, hash $_{2}(\operatorname{sum}(\mathrm{x}) /$ count $)$) $=\operatorname{sum}_{\left(\operatorname{hash}_{2}(\mathrm{x})\right) / \text { count }}$
With high probability:
All but a small fraction of stragglers are mapped to a pure location No seemingly-pure location is actually impure

Invertible Bloom filter: cleanup

What to do about the small number of stragglers that are not mapped to a pure cell?

Could remove the pure stragglers, continue decoding the remaining array
Probably works, hard to analyze

Instead, use a separate table with $q=2$
Repeatedly remove pure stragglers
Forms very sparse random graph with vertex=hashed location, edge=straggler Repeated removal works if graph has no cycle, true with high probability

Conclusions

Two new algorithms for straggler detection
Deterministic, optimal space, fast operations
Randomized, near-optimal space, faster, allows spurious deletions
Likely applications

Impossibility result for spurious deletions
Interesting example of provable difference between randomized and deterministic streaming algorithms

