The Skip Quadtree: A Simple Dynamic Data Structure For Multidimensional Data

David Eppstein, Michael T. Goodrich, and Jonathan Z. Sun

Univ. of California, Irvine
Donald Bren School of Information and Computer Sciences

The Problem:

Organize a set of many low-dimensional input points

Handle (approximate) range listing queries, nearest neighbor queries, etc

Typical solutions:

Recursively subdivide space into a hierarchy of nested convex cells at each level, split cells by lines into smaller cells until all leaf cells have at most one point each

> Handle queries by top-down search:
> if current cell is out of range, backtrack else recursively search its children

But how to choose splits?

Quadtree

All cells are squares
To subdivide:
split into four equal squares

Problems:

Superlogarithmic depth
Superlinear size
No guaranteed query time (recursion too deep)

Compressed Quadtree

Keep only interesting squares from quadtree

Square is interesting if root or has >1 nonempty child

Problems:
Superlogarithmic depth
No guaranteed query time (recursion too deep)

Unclear how to dynamize

kD-tree

All cells are rectangles
To subdivide:
split at median coordinate alternating horizontal and vertical

Problems:

High aspect ratio cells
No guaranteed query time (too many cells in range)

Dynamization is amortized (with approx median splits)

BAR-tree

All cells have ≤ 6 sides
horizontal, vertical, slope 1
Bounded aspect ratio guaranteed
To subdivide:
split at median point
choose best of 3 split slopes
Problems:
Complex implementation
Dynamization is amortized (with approx median splits)

Skip Quadtree

Key idea:
Impose extra sampling hierarchy (analogous to skiplist) on top of compressed quadtree

Keeps the advantages as compressed quadtree...
Simple structure
Well shaped cells
...but allows logarithmic-time searches and updates

Basic version is randomized
Time bounds are high probability and expected)
But deterministic also possible (with same time bounds)

New Results

O(logn) time:
Insert or delete a point from input set
Locate query point in compressed quadtree
$\mathrm{O}\left(\mathrm{eps}^{1-d}+\log \mathrm{n}\right)$ time:
(1+epsilon)-approximate fat range query
Approximation to range is decomposed into O(eps ${ }^{1-\mathrm{d}}$) compressed quadtree cells
$O\left(\right.$ eps $\left.^{1-d}(\log n+\log 1 / e p s)\right)$ time
(1+epsilon)-approximate nearest neighbor query
(like spherical range query with unknown radius)

The skip quadtree

Assign a non-negative integer level to each input point probability 2^{1-i} of being assigned level i

For each i, build a compressed quadtree Q_{i} of points with levels $\leq i$

Each interesting square stores seven pointers:

$$
\begin{aligned}
& \text { next larger interesting square in } Q_{i} \text { (if not root) } \\
& \text { four children (smaller squares or solitary points) } \\
& \text { same square in } Q_{i-1} \text { (always exists unless } i=0 \text {) } \\
& \text { same square in } Q_{i+1} \text { (if it exists) }
\end{aligned}
$$

The skip quadtree, visually

To locate a query point in a skip quadtree:

Start at the last nonempty level
Repeat:
if current square has a child containing query, move to it else move to same square in next lower level
until finding smallest square containing query point in Q_{0}
In expectation, $\mathrm{O}(1)$ steps within each level so $0(\log n)$ steps overall

To insert a new point into a skip quadtree:

Assign a level to the point
Locate the point (finds smallest interesting square containing it in all levels)

Perform O(1) local changes in each modified level
To delete a point from a skip quadtree:
Same as insertion in reverse

To perform range queries:

Simulate standard subdivision-data-structure search in Q_{0} : repeatedly replace squares by children intersecting range until remaining squares approximately cover the range

Problem:
long chain of replacements of square by one child
Instead, use skip structure to find descendant at end of chain like point location, $\mathrm{O}(\log \mathrm{n})$ time using skip structure

To perform nearest neighbor queries:
Similar to range query
Use priority queue to keep track of which square to expand

Conclusions

New data structure combines quadtree and skiplist
All advantages of similar subdivision-based structures:

easy to implement fast updates and queries well shaped cells generalizes to arbitrary dimension

Future work

Distributed version (to appear at PODC)

