On the Planar Split Thickness of Graphs

David Eppstein, Philipp Kindermann, Stephen Kobourov, Giuseppe Liotta, Anna Lubiw, Aude Maignan, Debajyoti Mondal, Hamideh Vosoughpour, Sue Whitesides, and Stephen Wismath

12th Latin American Theoretical Informatics Symposium (LATIN 2016)
Ensenada, Mexico, April 2016

Definition by example, I

Draw a graph (here, $K_{7,8}$) with:

- Each vertex \Rightarrow $\mathrm{O}(1)$ points (here, 2 points/vertex)
- Each edge \Rightarrow curve between representatives of its endpoints
- No crossings

Definition by example, II

Split thickness: max points/vertex (here, 2)
G is k-splittable:
it has a drawing with split thickness $\leq k$
E.g. this drawing shows that $K_{6,10}$ is 2-splittable

Motivation: Maps of clustered social networks

Network itself drawn conventionally (no split vertices)
Clusters drawn as regions with $\leq k$ connected components
To construct drawing, need to show cluster graph is k-splittable

Related research

Rephrased into our terminology:
Heawood 1890:
K_{12} is 2-splittable
Ringel and Jackson 1984:
Optimal k-splittability for $K_{n}(n>6)$ is $k=\lceil n / 6\rceil$
Hartsfield et al 1985 and later researchers:
Split to planar minimizing total \# splits rather than splits/vertex
Knauer and Ueckerdt 2012:
Split vertices to transform graph into several types of trees

Complete bipartite graphs

Theorem: $K_{a, b}$ is 2-splittable if and only if $a b \leq 4(a+b)-4$

Proof:
$a b \leq 4(a+b)-4 \Rightarrow G \subset K_{4, b}, K_{5,16}$ (above), $K_{6,10}$, or $K_{7,8}$ $a b>4(a+b)-4 \Rightarrow$ too many edges for bipartite planar drawing

Splittability by maximum degree

Let \max degree $=\Delta(G)$
Then every graph G is $\lceil\Delta(G) / 2\rceil$-splittable

Regular graphs with odd Δ, high girth are not $\lfloor\Delta / 2\rfloor$-splittable:
high-girth planar graphs have edges/vertices $\leq 1+o(1)$ but any $\lfloor\Delta / 2\rfloor$-split would have edges $/$ vertices $=1+\frac{1}{\Delta-1}$.

Splittability by genus

Theorem: Toroidal and projective-planar graphs are 2-splittable

Computational complexity

Theorem: 2-splittability is NP-complete

Reduction from planar 3-SAT with a cycle through clause vertices (shown NPC by Kratochvíl, Lubiw, \& Nešetřil 1991)

Approximation

Part of a family of graph parameters (arboricity, thickness, degeneracy, etc) all within constant factors of each other

Arboricity $a(G)$: minimum \# trees whose union is the given graph
Every graph is $a(G)$-splittable: draw the trees disjointly

Every n-vertex k-splittable graph has $\leq(3 k+1)(n-1)$ edges \Rightarrow (Nash-Williams 1964) a(G) $\leq 3 k+1$
So arboricity is a $\left(3+\frac{1}{k}\right)$-approximation to splittability (can improve to 3-approximation using pseudoarboricity)

Fixed-parameter tractability

Theorem: can test k-splittability of graphs of treewidth $\leq w$ in time $O(f(k, w) \cdot n)$

Main ideas:

- Use monadic second-order logic (MSO) to represent graph properties as quantified formulae over vertex and edge sets

$$
\forall S \subset E(G): \exists T \subset G(V): \ldots
$$

- A standard DFS-tree trick distinguishes endpoints of each edge
- Use edge-set variables to partition the edges according to the vertex-copies that each endpoint connects to
- Simulate any MSO formula on the split graph by a more complex formula on the original graph
- Planarity $=$ absence of K_{5} and $K_{3,3}$ minors
- Use Courcelle's theorem to construct an automaton that tests whether tree-decompositions obey the formula

Conclusions

Defined a new concept of k-splittability, used it to draw nonplanar graphs in a planar way

Tight bounds for complete graphs, complete bipartite graphs, and graphs of bounded maximum degree

NP-complete but $O(1)$-approximable, FPT for bounded treewidth
Future work: splitting vertices to produce near-planar graphs (e.g. low genus or bounded local crossing number)

