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Definition by example, I
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Draw a graph
(here, K7,8) with:

I Each vertex ⇒
O(1) points (here,
2 points/vertex)

I Each edge ⇒
curve between
representatives of
its endpoints

I No crossings



Definition by example, II
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Split thickness:
max points/vertex
(here, 2)

G is k-splittable:
it has a drawing with
split thickness ≤ k

E.g. this drawing
shows that K6,10 is
2-splittable



Motivation: Maps of clustered social networks

Network itself drawn conventionally (no split vertices)

Clusters drawn as regions with ≤ k connected components

To construct drawing, need to show cluster graph is k-splittable



Related research

Rephrased into our terminology:

Heawood 1890:
K12 is 2-splittable

Ringel and Jackson 1984:
Optimal k-splittability for Kn (n > 6) is k = dn/6e

Hartsfield et al 1985 and later researchers:
Split to planar minimizing total # splits rather than splits/vertex

Knauer and Ueckerdt 2012:
Split vertices to transform graph into several types of trees



Complete bipartite graphs

Theorem: Ka,b is 2-splittable if and only if ab ≤ 4(a + b)− 4
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Proof:
ab ≤ 4(a + b)− 4 ⇒ G ⊂ K4,b, K5,16 (above), K6,10, or K7,8

ab > 4(a + b)− 4 ⇒ too many edges for bipartite planar drawing



Splittability by maximum degree

Let max degree = ∆(G )

Then every graph G is d∆(G )/2e-splittable

Regular graphs with odd ∆, high girth are not b∆/2c-splittable:
high-girth planar graphs have edges/vertices ≤ 1 + o(1)

but any b∆/2c-split would have edges/vertices = 1 + 1
∆−1 .



Splittability by genus

Theorem: Toroidal and projective-planar graphs are 2-splittable



Computational complexity

Theorem: 2-splittability is NP-complete

v1 v2 v3
v4

v4v3v2v1

c3c2c1

c'3c'2c'1

Reduction from planar 3-SAT with a cycle through clause vertices
(shown NPC by Kratochv́ıl, Lubiw, & Nešeťril 1991)



Approximation

Part of a family of graph parameters (arboricity, thickness,
degeneracy, etc) all within constant factors of each other

Arboricity a(G ): minimum # trees whose union is the given graph

Every graph is a(G )-splittable: draw the trees disjointly

Every n-vertex k-splittable graph has ≤ (3k + 1)(n − 1) edges ⇒
(Nash-Williams 1964) a(G ) ≤ 3k + 1

So arboricity is a (3 + 1
k )-approximation to splittability

(can improve to 3-approximation using pseudoarboricity)



Fixed-parameter tractability

Theorem: can test k-splittability of graphs of
treewidth ≤ w in time O(f (k ,w) · n)

Main ideas:

I Use monadic second-order logic (MSO) to represent graph
properties as quantified formulae over vertex and edge sets

∀S ⊂ E (G ) : ∃T ⊂ G (V ) : . . .

I A standard DFS-tree trick distinguishes endpoints of each edge
I Use edge-set variables to partition the edges according to the

vertex-copies that each endpoint connects to
I Simulate any MSO formula on the split graph by a more

complex formula on the original graph
I Planarity = absence of K5 and K3,3 minors

I Use Courcelle’s theorem to construct an automaton that tests
whether tree-decompositions obey the formula



Conclusions

Defined a new concept of k-splittability, used it
to draw nonplanar graphs in a planar way

Tight bounds for complete graphs, complete bipartite graphs, and
graphs of bounded maximum degree

NP-complete but O(1)-approximable, FPT for bounded treewidth

Future work: splitting vertices to produce near-planar graphs
(e.g. low genus or bounded local crossing number)


