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Cased drawing

Let D be a non-planar drawing of a graph G.

A cased drawing D’ of G is a drawing where

the edges of each crossing are ordered 
the lower edge is interrupted in an appropriate neighborhood 
of the crossing
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Cased drawing

Given a drawing, turn it into the “best” cased drawing.



Definitions

A crossing is called

bridge for the edge on top

tunnel for the edge at the 
bottom

Switch 
pair of consecutive crossings 
along edge e, one a tunnel and 
the other a bridge for e.

e
e’

e
e’
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Optimization criteria

An edge is hard to follow if

it is covered by other edges

MinMaxTunnels
MinMaxTunnelLength
MaxMinTunnelDistance

it switches often

MinTotalSwitches
MinMaxSwitches

MinMaxSwitches

minimize the number 
of switches per edge
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Models

weaving
realizable
stacking

Define drawing order for 
every crossing separately.

How to define the drawing order?



Models: Realizable

weaving
realizable
stacking

Allow only drawings which 
are plane projections of line 
segments in 3 dimensions.

How to define the drawing order?
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Models: Stacking

weaving
realizable
stacking

How to define the drawing order?

Global top-to-bottom order 
on edges.



Models: Stacking

weaving
realizable
stacking

How to define the drawing order?



Results

Model Stacking Weaving

MinTotalSwitches open O(qk + q5/2 log3/2 k)

MinMaxSwitches open open

MinmaxTunnels O(m log m + k) exp. O(m4)

MinMaxTunnelLength O(m log m + k) exp. NP-hard

MaxMinTunnelDistance O((m+k) log m) exp. O((m+K) log m) exp.

For a drawing D of  a graph G with n vertices, m edges, 
k = O(m2) crossings, q = O(k) odd face polygons and
K = O(m3) total number of pairs of crossings on the same edge



Assumptions

No three edges cross at one point

Theorem
If triple crossings of edges are allowed, then 
MinTotalSwitches is NP-hard in both the weaving and 
the stacking model.
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Assumptions

No three edges cross at one point

No vertices on (or very close to) edges

Edge crossings are well separated



Results

Model Stacking Weaving

MinTotalSwitches open O(qk + q5/2 log3/2 k)

MinMaxSwitches open open

MinmaxTunnels O(m log m + k) exp. O(m4)

MinMaxTunnelLength O(m log m + k) exp. NP-hard

MaxMinTunnelDistance O((m+k) log m) exp. O((m+K) log m) exp.

For a drawing D of  a graph G with n vertices, m edges, 
k = O(m2) crossings, q = O(k) odd face polygons and
K = O(m3) total number of pairs of crossings on the same edge



Simplifying the input graph

Lemma
For every graph drawing D of graph G there exist a 
degree-one graph G’ and its drawing D’ such that 
there is one-to one correspondence between
edges of G and G’
casings of D and D’
switches of D and D’
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Degree-one graphs

Lemma
A drawing D of a graph G 
has a casing with no 
switches iff the crossing 
graph of D is bipartite.
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Degree-one graphs
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A drawing D of a graph G 
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graph of D is bipartite.
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graph G’ is bipartite iff D’ 
has no odd face polygons.
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has a casing with no 
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graph of D is bipartite.

Lemma
The crossing graph of a 
drawing D’ of a one-degree 
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has no odd face polygons.

f1

A polygon that forms 
the border of the 
closure of a face.
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The complexity of f1 is



Degree-one graphs

Lemma
A drawing D of a graph G 
has a casing with no 
switches iff the crossing 
graph of D is bipartite.

Lemma
The crossing graph of a 
drawing D’ of a one-degree 
graph G’ is bipartite iff D’ 
has no odd face polygons.
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# graph vertices inside
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4 + 1 = 5

The complexity of f2 is



Degree-one graphs

Lemma
A drawing D of a graph G 
has a casing with no 
switches iff the crossing 
graph of D is bipartite.

Lemma
The crossing graph of a 
drawing D’ of a one-degree 
graph G’ is bipartite iff D’ 
has no odd face polygons.
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Degree-one graphs

1. Connect pairs of odd faces 
by cutting edges between 
them 

graph G* with bipartite 
crossing graph

2. Case G*

3. Merge the cut edges

casing for G’ Find the optimal number of cuts



Degree-one graphs
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Degree-one graphs

1. Connect pairs of odd faces 
by cutting edges between 
them 

graph G* with bipartite 
crossing graph

2. Case G*

3. Merge the cut edges

casing for G’ The optimal casing for G’



MinTotalSwitches

1. Connect pairs of odd faces 
by cutting edges between 
them 

graph G* with bipartite 
crossing graph

2. Case G*

3. Merge the cut edges

casing for G’ 4. Optimal casing for G



Results

Model Stacking Weaving

MinTotalSwitches open O(qk + q5/2 log3/2 k)

MinMaxSwitches open open

MinmaxTunnels O(m log m + k) exp. O(m4)

MinMaxTunnelLength O(m log m + k) exp. NP-hard

MaxMinTunnelDistance O((m+k) log m) exp. O((m+K) log m) exp.

For a drawing D of  a graph G with n vertices, m edges, 
k = O(m2) crossings, q = O(k) odd face polygons and
K = O(m3) total number of pairs of crossings on the same edge
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Comparing models

The realizable model is stronger than the stacking model.



Comparing models

The realizable model is stronger than the stacking model.
The weaving model is stronger than the realizable model.
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