

Cased drawing

 Let D be a non-planar drawing of a graph G.

A cased drawing D^{\prime} of G is a drawing where
■ the edges of each crossing are ordered

- the lower edge is interrupted in an appropriate neighborhood of the crossing

Examples

Examples

Examples

Given a drawing, turn it into the "best" cased drawing.

Definitions

A crossing is called
bridge for the edge on top
tunnel for the edge at the bottom

Switch

pair of consecutive crossings along edge e, one a tunnel and the other a bridge for e.

Optimization criteria

Optimization criteria

Optimization criteria

An edge is hard to follow if
\square it is covered by other edges

Optimization criteria

 |.1

An edge is hard to follow if

■ it is covered by other edges
■ it switches often

Optimization criteria

An edge is hard to follow if

■ it is covered by other edges
■ it switches often

Optimization criteria

An edge is hard to follow if

■ it is covered by other edges MinMaxTunnels

■ it switches often

MinMaxTunnels

minimize the number of tunnels per edge.

Optimization criteria

An edge is hard to follow if

■ it is covered by other edges MinMaxTunnels

■ it switches often

MinMaxTunnels

minimize the number of tunnels per edge.

Optimization criteria

書 An edge is hard to follow if

■ it is covered by other edges MinMaxTunnels
MinMaxTunnelLength

■ it switches often

MinMaxTunnelLength

minimize the length of tunnels per edge.

Optimization criteria

書 An edge is hard to follow if

■ it is covered by other edges MinMaxTunnels
MinMaxTunnelLength

■ it switches often

MinMaxTunnelLength

minimize the length of tunnels per edge.

Optimization criteria

An edge is hard to follow if

■ it is covered by other edges MinMaxTunnels MinMaxTunnelLength MaxMinTunneIDistance

■ it switches often

MaxMinTunnels

maximize the distance between two consecutive tunnels.

Optimization criteria

An edge is hard to follow if

■ it is covered by other edges MinMaxTunnels MinMaxTunnelLength MaxMinTunneIDistance

■ it switches often

MaxMinTunnels

maximize the distance between two consecutive tunnels.

Optimization criteria

An edge is hard to follow if

■ it is covered by other edges MinMaxTunnels MinMaxTunnelLength MaxMinTunnelDistance

\square it switches often

Optimization criteria

An edge is hard to follow if

■ it is covered by other edges MinMaxTunnels MinMaxTunnelLength MaxMinTunneIDistance

\square it switches often
MinTotalSwitches

MinTotalSwitches

minimize the total number of switches

Optimization criteria

An edge is hard to follow if

■ it is covered by other edges MinMaxTunnels MinMaxTunnelLength MaxMinTunneIDistance

\square it switches often MinTotalSwitches MinMaxSwitches

MinTotalSwitches

minimize the total number of switches

Optimization criteria

An edge is hard to follow if
■ it is covered by other edges MinMaxTunnels MinMaxTunnelLength MaxMinTunnelDistance

■ it switches often MinTotalSwitches MinMaxSwitches

MinMaxSwitches

minimize the number of switches per edge

How to define the drawing order?

weaving

- realizable
- stacking

Models

How to define the drawing order?

Define drawing order for every crossing separately.

■ weaving

- realizable

■ stacking

Models: Realizable

How to define the drawing order?

Allow only drawings which are plane projections of line segments in 3 dimensions.

■ weaving

- realizable

■ stacking

Models: Realizable

How to define the drawing order?

- weaving
- realizable
- stacking

Models: Stacking

How to define the drawing order?

Global top-to-bottom order on edges.

- weaving
- realizable
- stacking

Models: Stacking

 How to define the drawing order?

Results

For a drawing D of a graph G with n vertices, m edges, $k=O\left(m^{2}\right)$ crossings, $q=O(k)$ odd face polygons and $K=O\left(m^{3}\right)$ total number of pairs of crossings on the same edge		
Model	Stacking	Weaving
MinTotalSwitches	open	$O\left(q k+q^{5 / 2} \log ^{3 / 2} k\right)$
MinMaxSwitches	open	open
MinmaxTunnels	$O(m \log m+k)$ exp.	$O\left(m^{4}\right)$
MinMaxTunnelLength	$O(m \log m+k)$ exp.	NP-hard
MaxMinTunnelDistance	$O((m+k) \log m)$ exp.	$O((m+K) \log m)$ exp.

Assumptions

■ No three edges cross at one point

Assumptions

■ No three edges cross at one point

■ No vertices on (or very close to) edges

Assumptions

■ No three edges cross at one point

■ No vertices on (or very close to) edges

Assumptions

■ No three edges cross at one point

■ No vertices on (or very close to) edges

■ Edge crossings are well separated

Assumptions

■ No three edges cross at one point

■ No vertices on (or very close to) edges

■ Edge crossings are well separated

Results

For a drawing D of a graph G with n vertices, m edges, $k=O\left(m^{2}\right)$ crossings, $q=O(k)$ odd face polygons and $K=O\left(m^{3}\right)$ total number of pairs of crossings on the same edge		
Model	Stacking	Weaving
MinTotalSwitches	open	$00\left(q k+q^{5 / 2} l o g^{3 / 2} k\right)$
MinMaxSwitches	open	open
MinmaxTunnels	$O(m \log m+k) \exp$.	$O\left(m^{4}\right)$
MinMaxTunnelLength	$O(m \log m+k)$ exp	NP-hard
MaxMinTunnelDistance	$O((m+k) \log m)$ exp.	$O((m+K) \log m)$ exp.

Simplifying the input graph

Lemma

For every graph drawing D of graph G there exist a degree-one graph G^{\prime} and its drawing D^{\prime} such that there is one-to one correspondence between
edges of G and G^{\prime} casings of D and D^{\prime} switches of D and D'

\square

Simplifying the input graph

Degree-one graphs

Lemma

A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

$(\mathrm{a}, \mathrm{e}) \bullet$	$\bullet(\mathrm{b}, \mathrm{f})$
$(\mathrm{a}, \mathrm{b}) \bullet$	$\bullet(\mathrm{e}, \mathrm{f})$
$(\mathrm{b}, \mathrm{c}) \bullet$	$\bullet(\mathrm{f}, \mathrm{g})$
$(\mathrm{c}, \mathrm{d}) \bullet$	$\bullet(\mathrm{g}, \mathrm{h})$
$(\mathrm{a}, \mathrm{d}) \bullet$	$\bullet(\mathrm{h}, \mathrm{e})$
$(\mathrm{d}, \mathrm{h}) \bullet$	$\bullet(\mathrm{c}, \mathrm{g})$

Degree-one graphs

Lemma

A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

$$
\begin{array}{cc}
(\mathrm{a}, \mathrm{e}) \bullet & \bullet(\mathrm{b}, \mathrm{f}) \\
(\mathrm{a}, \mathrm{~b}) \bullet & \bullet(\mathrm{e}, \mathrm{f}) \\
(\mathrm{b}, \mathrm{c}) \bullet & \bullet(\mathrm{f}, \mathrm{~g}) \\
(\mathrm{c}, \mathrm{~d}) \bullet & \bullet(\mathrm{g}, \mathrm{~h}) \\
(\mathrm{a}, \mathrm{~d}) \bullet & \bullet(\mathrm{h}, \mathrm{e}) \\
(\mathrm{d}, \mathrm{~h}) \bullet & \bullet(\mathrm{c}, \mathrm{~g})
\end{array}
$$

Degree-one graphs

Lemma

A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

Degree-one graphs

Lemma
A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

Lemma
The crossing graph of a drawing D' of a one-degree graph G^{\prime} is bipartite iff D^{\prime} has no odd face polygons.

Degree-one graphs

Lemma

A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

Lemma
The crossing graph of a drawing D' of a one-degree
 graph G^{\prime} is bipartite iff D^{\prime} has no odd face polygons.

Degree-one graphs

Lemma
A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

Lemma
The crossing graph of a drawing D' of a one-degree graph G^{\prime} is bipartite iff D^{\prime} has no odd face polygons.

A polygon that forms the border of the closure of a face.

Degree-one graphs

Lemma
A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

Lemma

The crossing graph of a drawing D' of a one-degree graph G^{\prime} is bipartite iff D^{\prime} has no odd face polygons.

The complexity of f_{1} is

$$
6+2=8
$$

Degree-one graphs

Lemma
A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

Lemma

The crossing graph of a drawing D' of a one-degree graph G^{\prime} is bipartite iff D^{\prime} has no odd face polygons.

The complexity of f_{2} is

$$
4+1=5
$$

\# graph vertices inside

Degree-one graphs

Lemma
A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

Lemma
The crossing graph of a drawing D' of a one-degree graph G^{\prime} is bipartite iff D^{\prime} has no odd face polygons.

Degree-one graphs

1. Connect pairs of odd faces by cutting edges between them
graph G^{*} with bipartite crossing graph

Degree-one graphs

1. Connect pairs of odd faces by cutting edges between them

graph G* with bipartite crossing graph

Degree-one graphs

1. Connect pairs of odd faces by cutting edges between them

$$
\sqrt{3}
$$

graph G* with bipartite crossing graph

Degree-one graphs

1. Connect pairs of odd faces by cutting edges between them

graph G* with bipartite crossing graph
2. Case G^{*}

Degree-one graphs

1. Connect pairs of odd faces by cutting edges between them

graph G* with bipartite crossing graph
2. Case G^{*}

Degree-one graphs

1. Connect pairs of odd faces by cutting edges between them

graph G* with bipartite crossing graph
2. Case G^{*}
3. Merge the cut edges

casing for G^{\prime}

Find the optimal number of cuts

Degree-one graphs

Find the optimal number of cuts

Degree－one graphs

The optimal number of cuts

Degree-one graphs

1. Connect pairs of odd faces by cutting edges between them

graph G* with bipartite crossing graph
2. Case G^{*}
3. Merge the cut edges

casing for G^{\prime}

The optimal casing for G'

MinTotalSwitches

1. Connect pairs of odd faces by cutting edges between them

graph G* with bipartite crossing graph
2. Case G^{*}
3. Merge the cut edges

$$
\sqrt{\Omega}
$$

casing for G^{\prime}

4. Optimal casing for G

Results

For a drawing D of a graph G with n vertices, m edges, $k=O\left(m^{2}\right)$ crossings, $q=O(k)$ odd face polygons and $K=O\left(m^{3}\right)$ total number of pairs of crossings on the same edge		
Model	Stacking	Weaving
MinTotalSwitches	open	$O\left(q k+q^{5 / 2} \log ^{3 / 2} k\right)$
MinMaxSwitches	open	open
MinmaxTunnels	$O(m \log m+k)$ exp.	$O\left(m^{4}\right)$
MinMaxTunnelLength	$O(m \log m+k)$ exp.	NP-hard
MaxMinTunnelDistance	$O((m+k) \log m)$ exp.	$O((m+K) \log m)$ exp.

Comparing models

■ The realizable model is stronger than the stacking model.

Comparing models

 あり1

- The realizable model is stronger than the stacking model.
\square The weaving model is stronger than the realizable model.

