

Cased drawing

Let D be a non-planar drawing of a graph G.

A cased drawing D' of G is a drawing where

- the edges of each crossing are ordered
- the lower edge is interrupted in an appropriate neighborhood of the crossing

Examples

SECOND EDITION

Handbook of Discrete and Computational Geometry

edited by Jacob E. Goodman • Joseph O'Rourke

CHAPMAN & HALL/CRC

Examples

<u>J</u>

≣

通 M

Examples

Given a drawing, turn it into the "best" cased drawing.

Definitions

A crossing is called

bridge for the edge on top

tunnel for the edge at the bottom

Switch

pair of consecutive crossings along edge e, one a tunnel and the other a bridge for e.

A

Ð

A

Ð

An edge is hard to follow if

An edge is hard to follow if

■ it is covered by other edges

it switches often

tunnels per edge.

An edge is hard to follow if

it is covered by other edges

MinMaxTunnels MinMaxTunnelLength MaxMinTunnelDistance

it switches often

MaxMinTunnels

maximize the distance between two consecutive tunnels.

An edge is hard to follow if

it is covered by other edges

MinMaxTunnels MinMaxTunnelLength MaxMinTunnelDistance

it switches often

MaxMinTunnels

maximize the distance between two consecutive tunnels.

An edge is hard to follow if

■ it is covered by other edges

MinMaxTunnels MinMaxTunnelLength MaxMinTunnelDistance

it switches often

An edge is hard to follow if

■ it is covered by other edges

MinMaxTunnels MinMaxTunnelLength MaxMinTunnelDistance

it switches often

MinTotalSwitches

MinTotalSwitches

minimize the total number of switches

An edge is hard to follow if

■ it is covered by other edges

MinMaxTunnels MinMaxTunnelLength MaxMinTunnelDistance

it switches often

MinTotalSwitches MinMaxSwitches **MinTotalSwitches**

minimize the total number of switches

An edge is hard to follow if

■ it is covered by other edges

MinMaxTunnels MinMaxTunnelLength MaxMinTunnelDistance

it switches often

MinTotalSwitches MinMaxSwitches

MinMaxSwitches

minimize the number of switches per edge

How to define the drawing order?

weaving

- realizable
- stacking

How to define the drawing order?

Define drawing order for every crossing separately.

- realizable
- stacking

Models: Realizable

 \mathcal{A}

How to define the drawing order?

Allow only drawings which are plane projections of line segments in 3 dimensions.

stacking

How to define the drawing order?

Global top-to-bottom order on edges.

- realizable
- stacking

Results

$\overline{\mathbf{A}}$

For a drawing D of a graph G with *n* vertices, *m* edges, $k = O(m^2)$ crossings, q = O(k) odd face polygons and $K = O(m^3)$ total number of pairs of crossings on the same edge

Model	Stacking	Weaving
MinTotalSwitches	open	$O(qk + q^{5/2} \log^{3/2} k)$
MinMaxSwitches	open	open
MinmaxTunnels	O(m log m + k) exp.	O(m ⁴)
MinMaxTunnelLength	$O(m \log m + k) exp.$	NP-hard
MaxMinTunnelDistance	O((m+k) log m) exp.	O((m+K) log m) exp.

Assumptions

No three edges cross at one point

Theorem

If triple crossings of edges are allowed, then MinTotalSwitches is NP-hard in both the weaving and the stacking model.

Results

$\overline{\mathbf{A}}$

For a drawing D of a graph G with *n* vertices, *m* edges, $k = O(m^2)$ crossings, q = O(k) odd face polygons and $K = O(m^3)$ total number of pairs of crossings on the same edge

Model	Stacking	Weaving
MinTotalSwitches	open	$O(qk + q^{5/2} \log^{3/2} k)$
MinMaxSwitches	open	open
MinmaxTunnels	O(m log m + k) exp.	O(m⁴)
MinMaxTunnelLength	$O(m \log m + k) exp.$	NP-hard
MaxMinTunnelDistance	O((m+k) log m) exp.	O((m+K) log m) exp.

Simplifying the input graph

 $\mathbf{A}_{\mathbf{B}}$

Lemma

For every graph drawing D of graph G there exist a degree-one graph G' and its drawing D' such that there is one-to one correspondence between

edges of G and G' casings of D and D' switches of D and D'

∄

≣

∄

Ħ

 \cap

Lemma

A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

 \cap

Lemma

A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

 \square

Lemma

A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

 \square

Lemma

A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

Lemma

The crossing graph of a drawing D' of a one-degree graph G' is bipartite iff D' has no odd face polygons.

 \square

Lemma

A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

Lemma

The crossing graph of a drawing D' of a one-degree graph G' is bipartite iff D' has no odd face polygons.

 \cap

Lemma

A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

Lemma

The crossing graph of a drawing D' of a one-degree graph G' is bipartite iff D' has no odd face polygons.

> A polygon that forms the border of the closure of a face.

 \square

Lemma

A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

Lemma

The crossing graph of a drawing D' of a one-degree graph G' is bipartite iff D' has no odd face polygons.

boundary segments+# graph vertices inside

The complexity of f_1 is

6 + 2 = 8

 \square

Lemma

A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

Lemma

The crossing graph of a drawing D' of a one-degree graph G' is bipartite iff D' has no odd face polygons.

boundary segments
 +
graph vertices inside

The complexity of f_2 is

4 + 1 = 5

 \square

Lemma

A drawing D of a graph G has a casing with no switches iff the crossing graph of D is bipartite.

Lemma

The crossing graph of a drawing D' of a one-degree graph G' is bipartite iff D' has no odd face polygons.

 Connect pairs of odd faces by cutting edges between them

graph G* with bipartite crossing graph

 Connect pairs of odd faces by cutting edges between them

graph G* with bipartite crossing graph

2. Case G*

 Connect pairs of odd faces by cutting edges between them

graph G* with bipartite crossing graph

2. Case G*

MinTotalSwitches

 Connect pairs of odd faces by cutting edges between them

graph G* with bipartite crossing graph

2. Case G*

3. Merge the cut edges casing for G'

4. Optimal casing for G

Results

$\overline{\mathbf{A}}$

For a drawing D of a graph G with *n* vertices, *m* edges, $k = O(m^2)$ crossings, q = O(k) odd face polygons and $K = O(m^3)$ total number of pairs of crossings on the same edge

Model	Stacking	Weaving
MinTotalSwitches	open	$O(qk + q^{5/2} \log^{3/2} k)$
MinMaxSwitches	open	open
MinmaxTunnels	O(m log m + k) exp.	O(m⁴)
MinMaxTunnelLength	$O(m \log m + k) exp.$	NP-hard
MaxMinTunnelDistance	O((m+k) log m) exp.	O((m+K) log m) exp.

