#### **Rooted Cycle Bases**

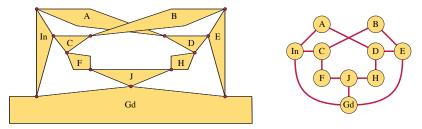
David Eppstein, J. Michael McCarthy, and Brian E. Parrish

14th Algorithms and Data Structures Symp. (WADS 2015) Victoria, BC, August 2015

### Linkages

Systems of rigid bodies connected by hinges

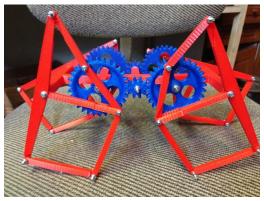
Often with designated ground body (fixed in place) and input body (where force input causes system to move)



Connectivity may be described by a graph with vertices = bodies and edges = hinges

Simplifying assumptions: system lies in  $\mathbb{R}^2$  (crossings allowed); input is attached to ground (so its motion is purely rotational)

### Complex linkages can have complex motions



CC-BY-SA image of Amanda Ghassaei Walker by diehart, http://www.thingiverse.com/thing:264726

Applications include walking robots, fold-away sofabeds, vehicle suspensions, low-clearance doors, therapeutic exoskeletons, ...

## Our piece of a larger puzzle

Goal:

design linkage that achieves some desired motion

Sub-goal: Analyze motion of a linkage

Sub-sub-goal:

Set up independent equations for the motion of a linkage

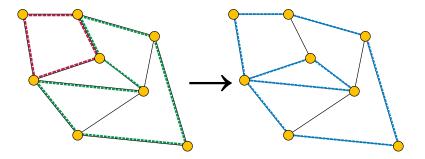
Combinatorial abstraction: Find independent input-ground paths in the graph of a linkage



CC-BY image "Close up of Hand Cut Jigsaw Puzzle" by Charles Hamm on Wikimedia commons

#### Independence of cycles in graphs

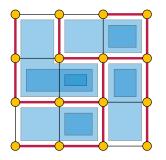
 $\begin{array}{l} \mbox{Cycle space: a vector space over $\mathbb{Z}_2$} \\ \mbox{Elements} = \mbox{sets of edges with even degree at all vertices} \\ \mbox{Vector sum} = \mbox{symmetric difference of edge sets} \\ \mbox{Scalar product} = \mbox{trivial} \end{array}$ 

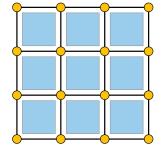


Based on CC-BY-SA image "Cycle space addition" by Kilom691 on Wikimedia commons

### **Cycle bases**

Cycle basis = basis of the cycle space = maximal independent set of cycles





Fundamental cycle basis: cycles are spanning tree paths + one edge In planar graphs, bounded faces form a cycle basis

# Greed is good



Avarice, from The Dunois Hours, France, ca. 14401450. Public domain image "The Dunois Hours Avarice" on Wikimedia commons. Independence in a vector space forms a matroid  $\Rightarrow$  minimum weight cycle bases can be found by a greedy algorithm

For each candidate cycle, sorted by weight, test if independent and, if it is, include in basis

The difficult part: finding a small set of candidate cycles

When all weights positive, possible in polynomial time

#### What kind of cycle basis do we need?

Paths from linkage input to ground ⇔ cycles that all pass through a "root edge" incident to input and ground

Rooted graph: undirected graph + one chosen root edge

Rooted cycle basis: all cycles in the basis include the root edge

Higher cycle length gives more complex equations to solve, so we want a minimum weight rooted cycle basis



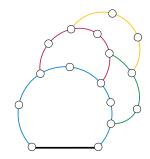
Plate to: H. J. Ruprecht, wand-atlas, ed. 3, Dresden, c. 1850, no. 15. Public domain image "A plant root cut to show growth rings, wood cells in longitu Wellcome V0044550" on Wikimedia commons.

## Warm-up result

Rooted cycle basis exists if and only if graph has one non-trivial 2-vertex-connected component and it contains the root edge

Proof uses ear decomposition:

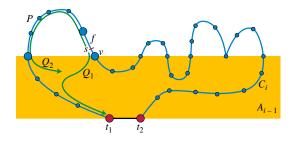
- Sequence of simple paths
- First path = root edge
- Endpoints of remaining paths lie on earlier paths
- Interior vertices of each path are disjoint from earlier paths



Proof idea: Extend each ear to rooted cycle through previous ears

## The main result

Polynomial-time construction of min-weight rooted cycle basis Main idea: new edges of each greedy basis cycle form one path; these paths form an ear decomposition



Part of case analysis showing that a cycle with > 1 new-edge paths cannot be the greedy choice

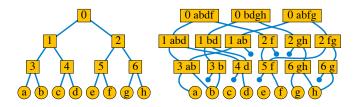
Corollary: shortest rooted cycles through each edge form a valid candidate set

Use Suurballe's algorithm to find these cycles

## **Breaking ties**

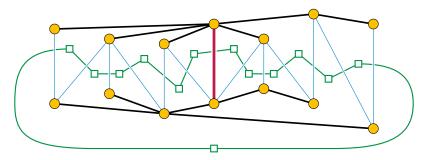
Correctness proof is only valid when all cycle lengths are distinct Small random perturbation works but requires randomness Perturbation by small powers of two works but requires too many bits of numerical precision

Data structure for simulating power-of-two perturbation incurs only logarithmic slowdown



#### **Additional results**

Finding a fundamental rooted cycle basis is NP-complete (planar dual of finding a rooted Hamiltonian cycle)



But can be solved in fixed-parameter time for (nonplanar) graphs of small treewidth or clique-width using Courcelle's theorem

#### Conclusions

New type of cycle basis Motivated by applications in linkage analysis With a polynomial time optimization algorithm Also useful for other applications?