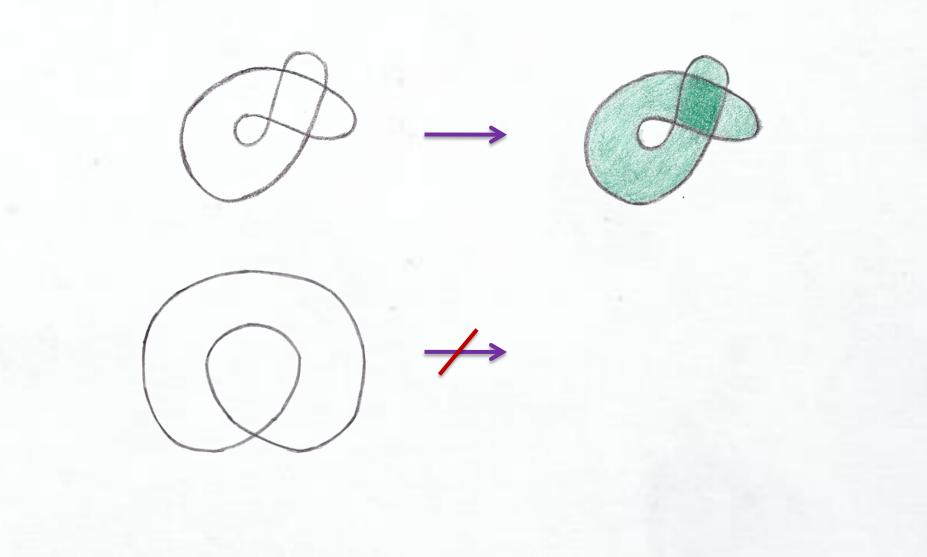
Self-Overlapping Curves Revisited

David Eppstein Elena Mumford

CURVES AS SURFACE BOUNDARIES



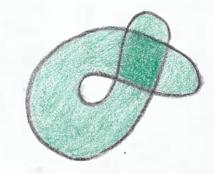
IMMERSION

An immersion of a disk *D* in the plane is a continuous mapping

i: $D \rightarrow R^2$

disk in the plane

immersed disk in the plane

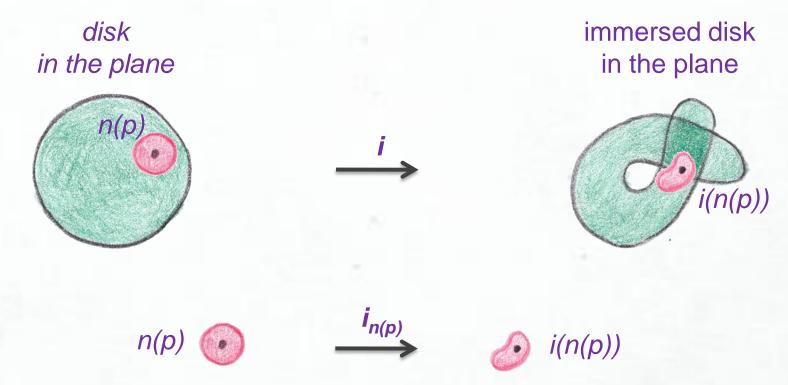


 $i_{n(p)}: n(p) \rightarrow i(n(p))$ is a homeomorphism.

IMMERSION

An immersion of a disk *D* in the plane is a continuous mapping

i: $D \rightarrow R^2$

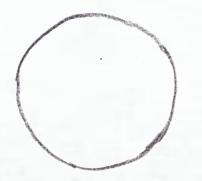


 $i_{n(p)}: n(p) \rightarrow i(n(p))$ is a homeomorphism.

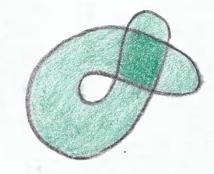
IMMERSION

The image of the boundary of the disk is a (self-intersecting) closed curve.

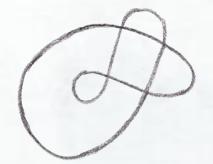
disk boundary in the plane



immersed disk in the plane



self-intersecting curve in the plane



An embedding of a disk $e: D \rightarrow R^3$ $e: D \rightarrow e(D)$ is a homeomorphism.

disk embedded in space as a generalized terrain

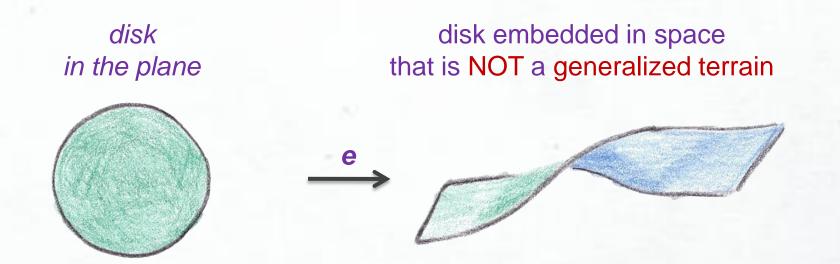
We consider a special type of embeddings: one side of e(D) consistently points up.

An embedding of a disk $e: D \rightarrow R^3$ $e: D \rightarrow e(D)$ is a homeomorphism.

disk embedded in space that is NOT a generalized terrain

We consider a special type of embeddings: one side of e(D) consistently points up.

An embedding of a disk $e: D \rightarrow R^3$ $e: D \rightarrow e(D)$ is a homeomorphism.



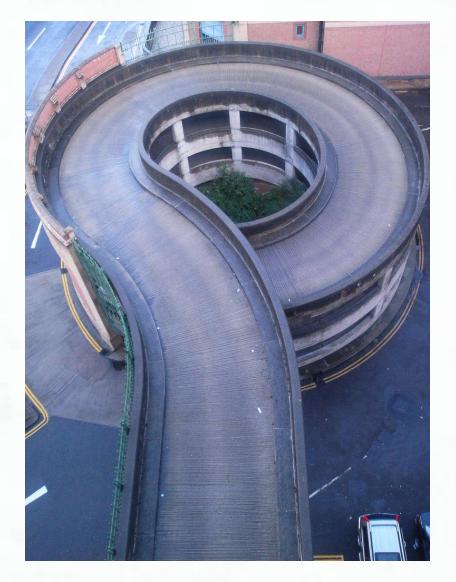
We consider a special type of embeddings: one side of e(D) consistently points up.

EXAMPLES

By Flickr user Mark Wheeler

from http://www.flickr.com/photos/markwheeler/246569058/

EXAMPLES

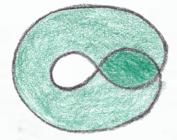


By Flickr user Mark McLaughlin

 pr_z

disk embedded in space as a generalized terrain

immersed disk in the plane



the boundary of a disk embedded in space

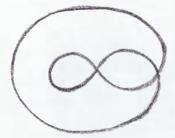
self-intersecting curve in the plane

 pr_z

disk embedded in space as a generalized terrain

disk immersed in the plane

> (self-intersecting) curve in the plane



disk embedded in space as a generalized terrain

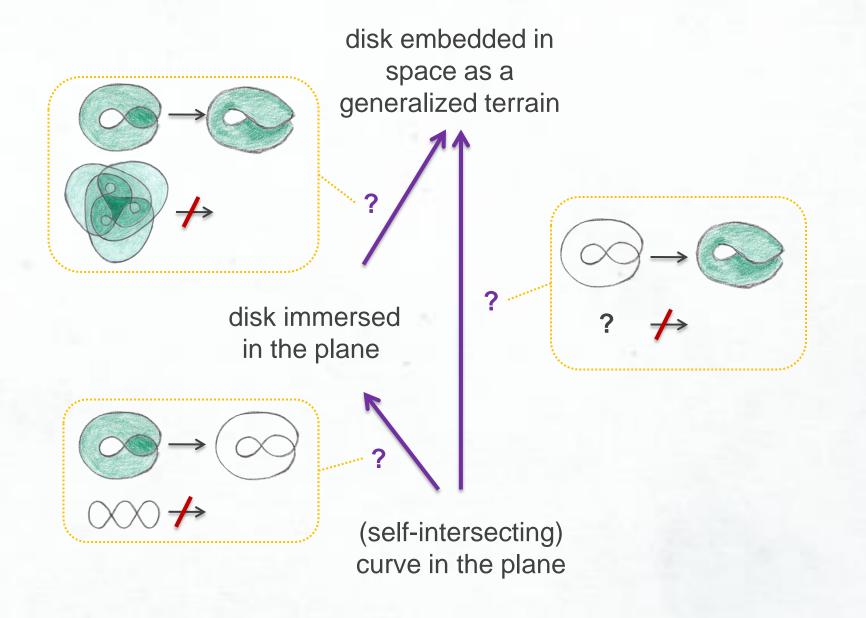
disk immersed in the plane

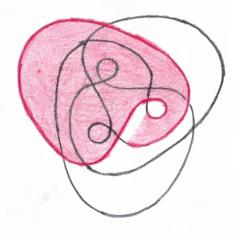
?

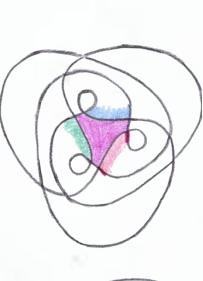
?

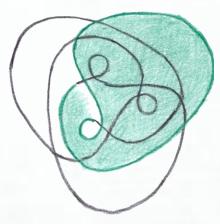
(self-intersecting) curve in the plane

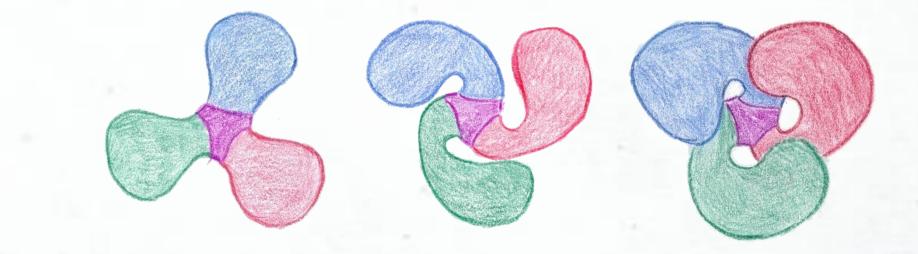
?

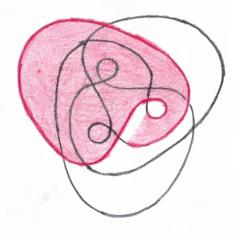


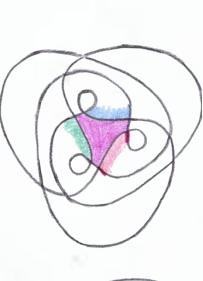


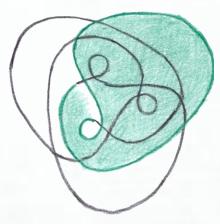


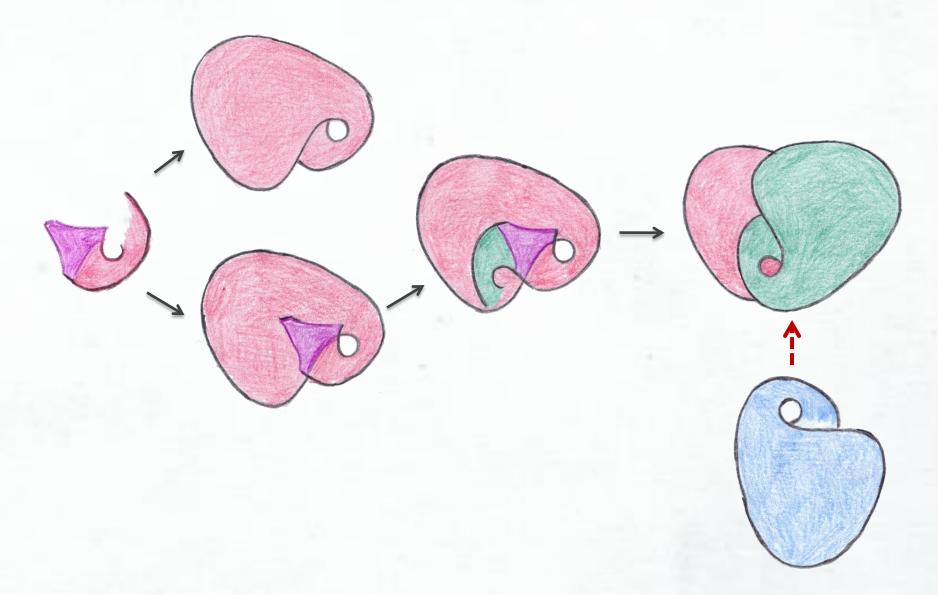


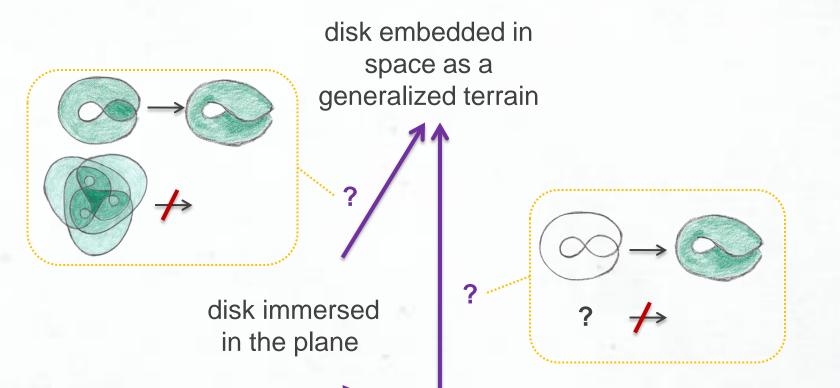












Whitney(1937) Shor and van Wyk(1992)

(self-intersecting) curve in the plane

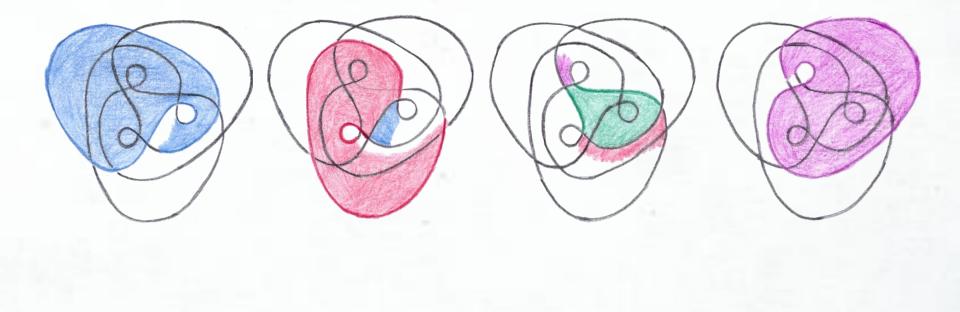
disk embedded in space as a generalized terrain

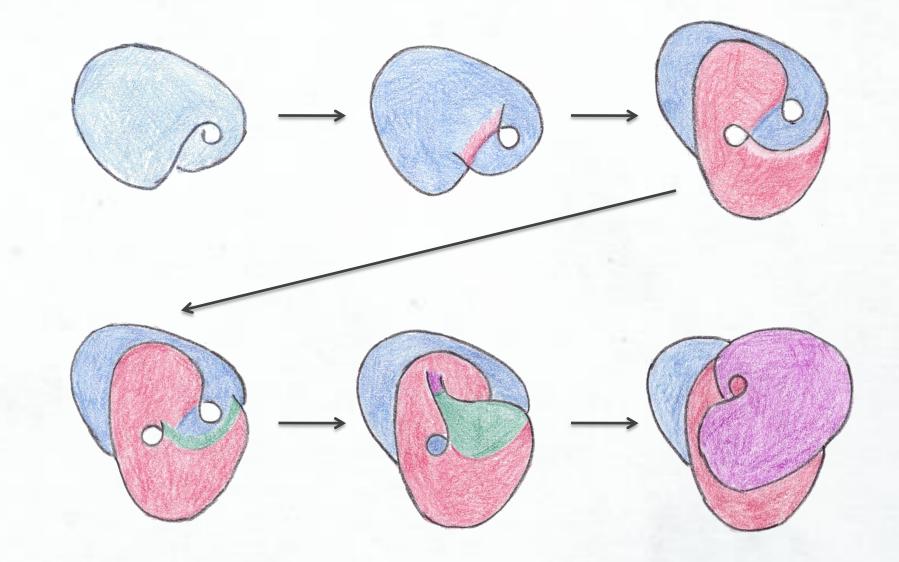
NP-complete

disk immersed in the plane

Whitney(1937) Shor and van Wyk(1992)

(self-intersecting) curve in the plane





disk embedded in space as a generalized terrain

NP-complete

disk immersed in the plane

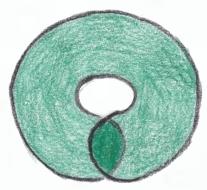
Whitney(1937) Shor and van Wyk(1992)

(self-intersecting) curve in the plane

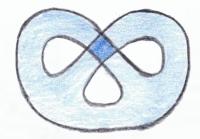
open

GENERALIZE THE PROBLEM

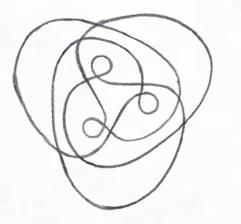
disk with a boundary



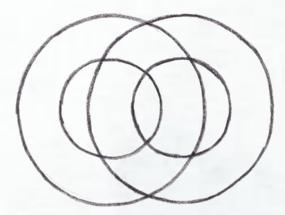
surface (two-dimensional manifold) with a boundary



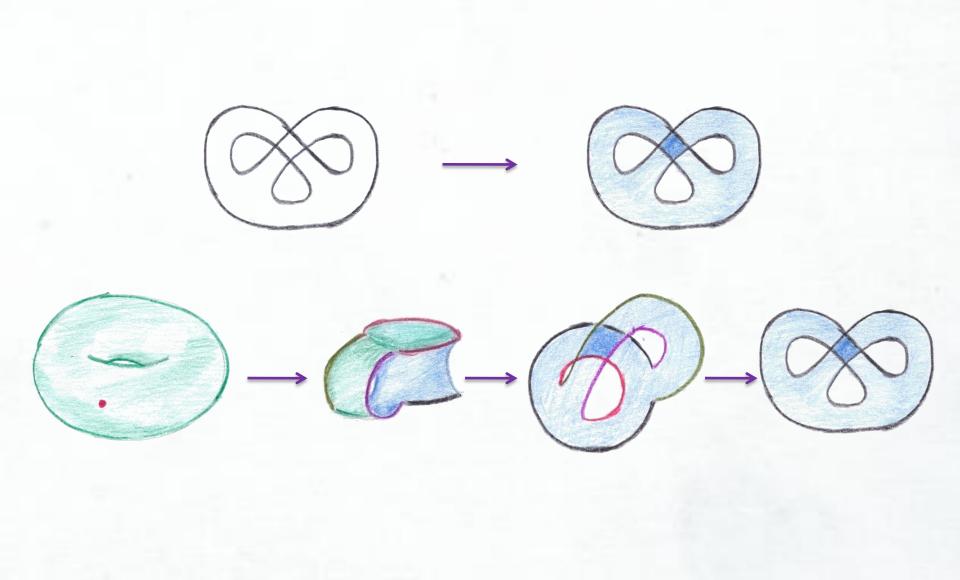
closed curve



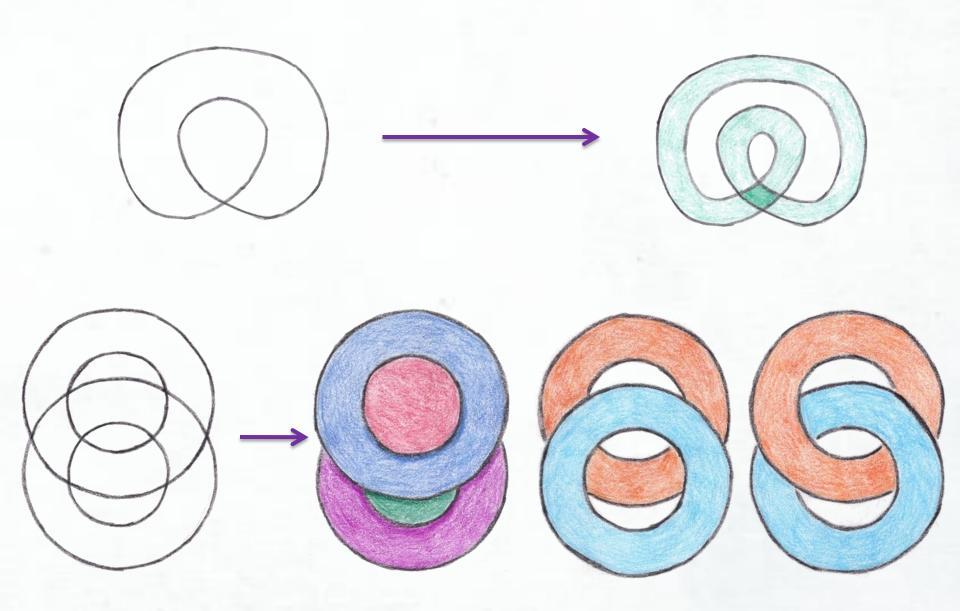
multiple closed curves



$DISK \rightarrow MANIFOLD$



MULTIPLE CURVES



GENERALIZE THE PROBLEM

surface embedded in space as a generalized terrain

surface immersed in the plane

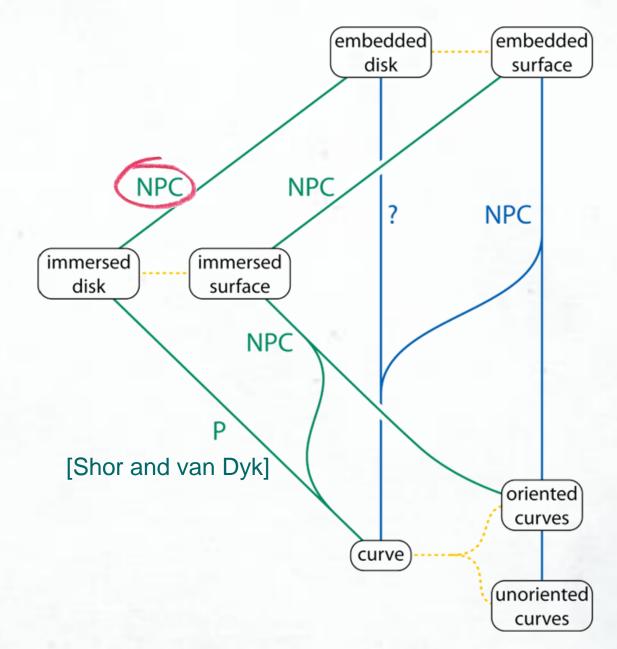
?

?

multiple (self-intersecting) curve in the plane

?

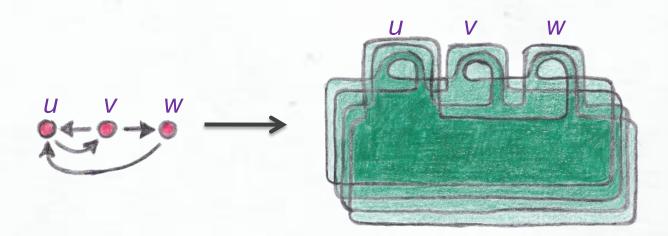
RESULTS



LIFT A DISK

Theorem Lifting an immersed disk is NP-complete.

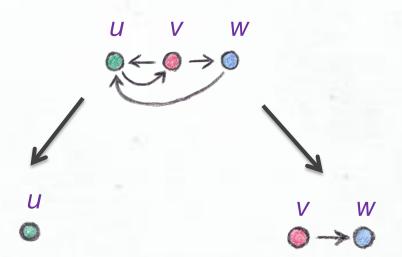
Proof: By reduction from ACYCLIC PARTITION.



ACYCLIC PARTITION

Given: a digraph G = (V, E)

Find: partition of V into sets V_1 and V_2 : $G(V_1)$ and $G(V_2)$ in G are acyclic.

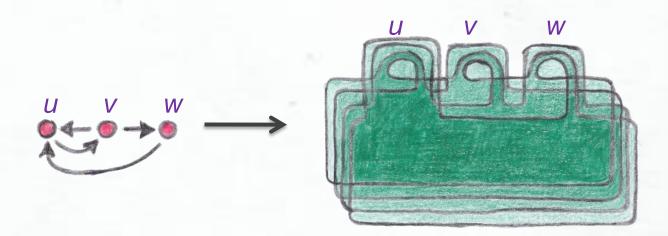


Theorem ACYCLIC PARTITION is NP-complete. **Proof**: By reduction from PLANAR 3-SAT.

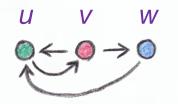
LIFT A DISK

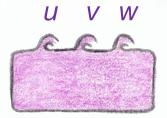
Theorem Lifting an immersed disk is NP-complete.

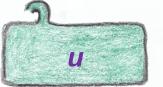
Proof: By reduction from ACYCLIC PARTITION.

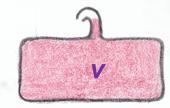


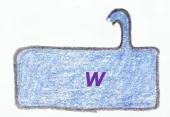
Lift a Disk

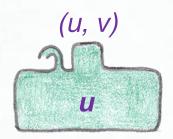


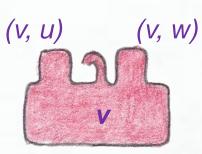


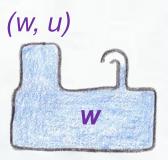




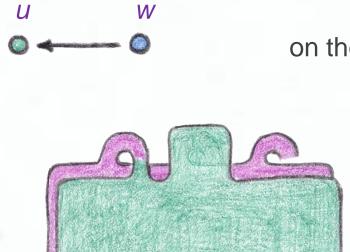


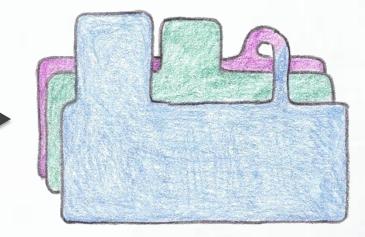


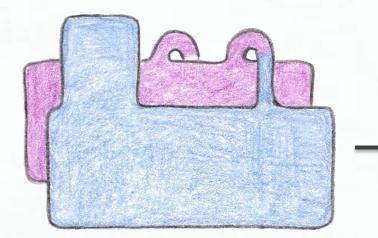


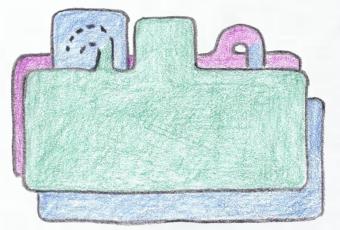


Lift a Disk



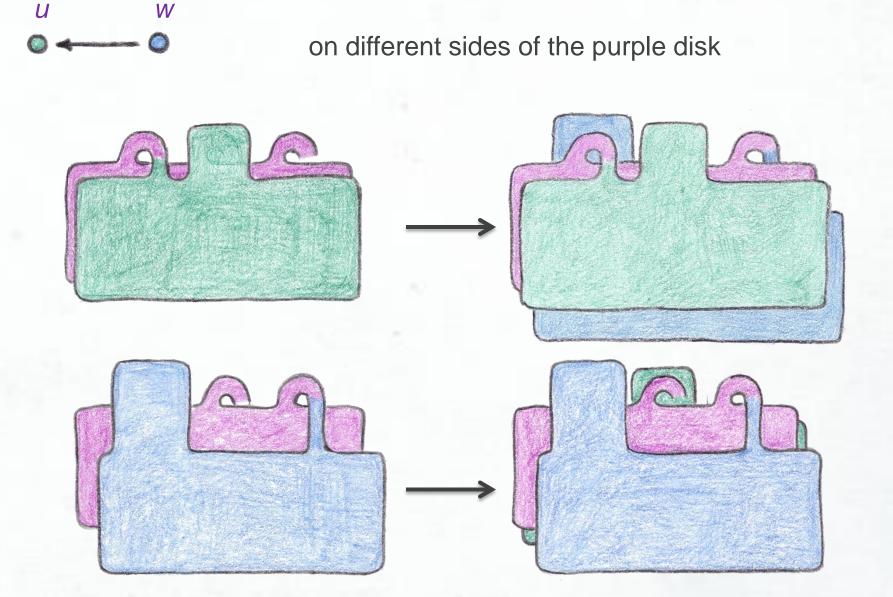




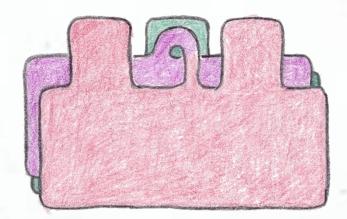


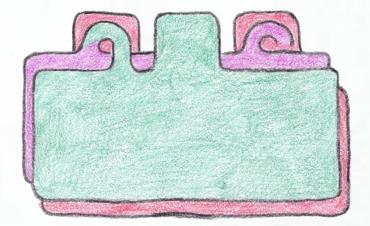
LIFT A DISK

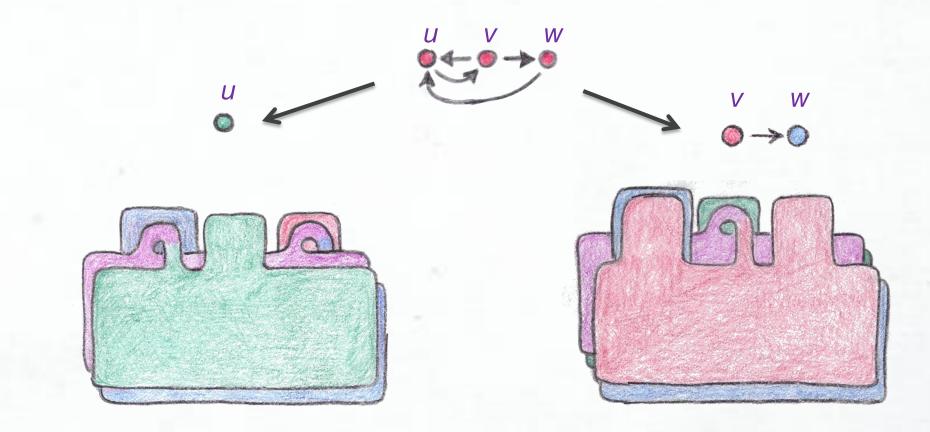
U



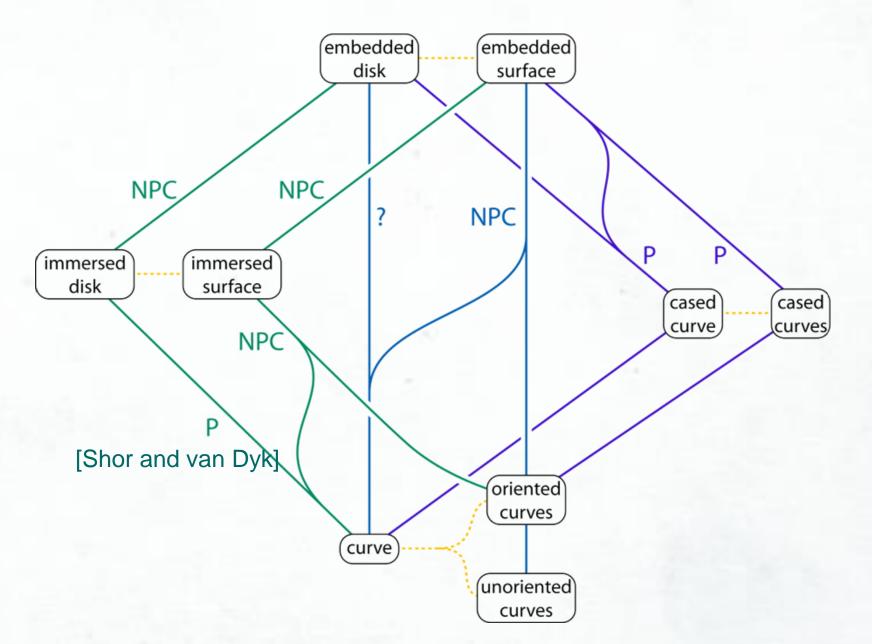
Lift a Disk



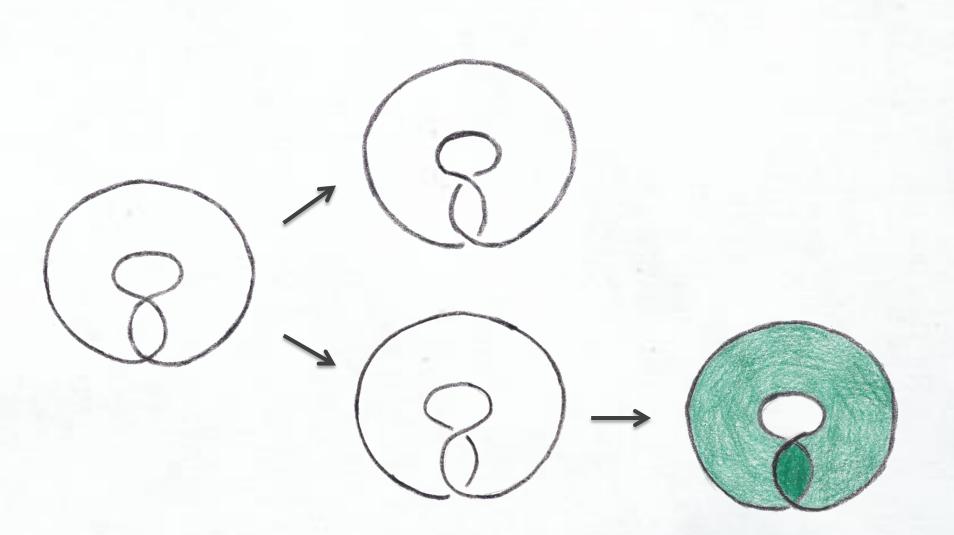




SUMMARY

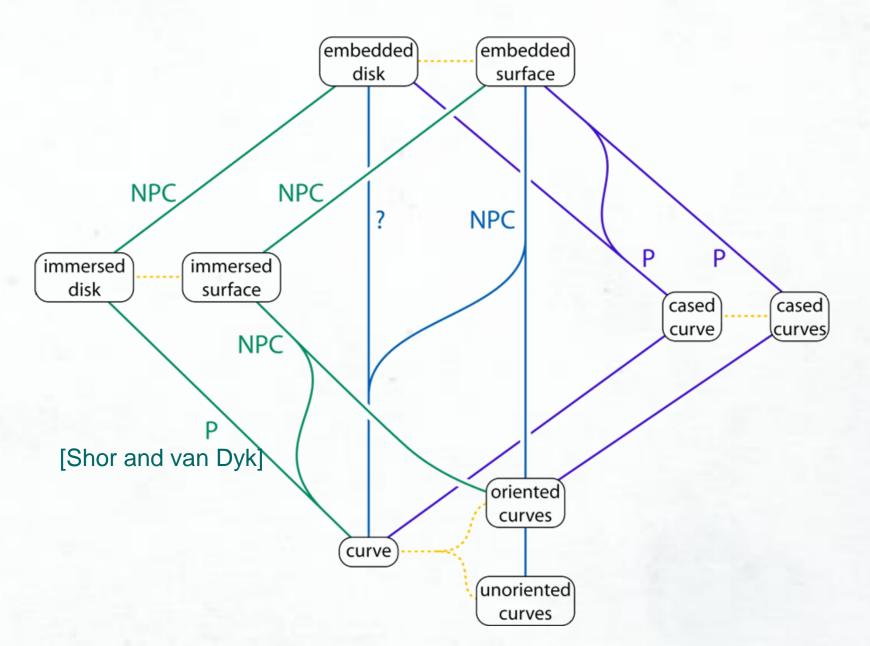


CASED CURVES



A cased curve can be decided in $O(min(nk,n+k^3))$.

SUMMARY



The End