Steinitz Theorems for Orthogonal Polyhedra

David Eppstein and Elena Mumford

Steinitz Theorem for Convex Polyhedra

Steinitz:

skeletons of convex polyhedra in R³ planar 3-vertex-connected graphs

Simple Orthogonal Polyhedra

Topology of a sphere

Simply connected faces

Three mutually perpendicular edges at every vertex

simple orthogonal polyhedra

Simple Orthogonal Polyhedra

Topology of a sphere

Simply connected faces

Three mutually perpendicular edges at every vertex

Orthogonal polyhedra that are NOT simple

Corner polyhedra

All but 3 faces are oriented towards vector (1,1,1)

= Only three faces are "hidden"

Corner polyhedra

Hexagonal grid drawings with two bends in total

XYZ polyhedra

Any axis parallel line contains at most two vertices of the polyhedron

Skeletons of Simple Orthogonal Polyhedra

are exactly

Cubic bipartite planar 2-connected graphs such that the removal of any two vertices leaves at most 2 connected components

Skeletons of Simple Orthogonal Polyhedra

a graph that is NOT a skeleton of a simple orthogonal polyhedron

are exactly

Cubic bipartite planar 2-connected graphs such that the removal of any two vertices leaves at most 2 connected components

Skeletons of XYZ polyhedra

are exactly cubic bipartite planar 3-connected graphs

Skeletons of XYZ polyhedra

are exactly

cubic bipartite planar 3-connected graphs

Eppstein GD'08

A planar graph G is an xyz graph if and only if G is bipartite, cubic, and 3-connected.

Skeletons of Corner Polyhedra

are exactly

cubic bipartite planar 3-connected graphs s.t. every separating triangle of the planar dual graph has the same parity.

Skeletons of Corner Polyhedra

are exactly

cubic bipartite planar 3-connected graphs s.t. every separating triangle of the planar dual graph has the same parity.

Skeletons of Corner Polyhedra

are exactly

cubic bipartite planar 3-connected graphs s.t. every separating triangle of the planar dual graph has the same parity.

Skeletons of ...

...simple orthogonal polyhedra

are cubic bipartite planar 2-connected graphs s.t. the removal of any two vertices leaves at most 2 connected components

.XYZ polyhedra

cubic bipartite planar 3-connected graphs

...corner polyhedra

cubic bipartite planar 3-connected graphs s.t. every separating triangle of the planar dual graph has the same parity.

Rough outline for a 3-connected graph

- 2. Construct polyhedra for 4-connected triangulations
- 3. Glue them together:

Rooted cycle covers

Rooted cycle covers

Every 4-connected Eulerian triangulation has a rooted cycle cover

Rough outline for a 3-connected graph

- 2. Construct polyhedra for 4-connected triangulations
- 3. Glue them together:

Results

- Combinatorial characterizations of skeletons of simple orthogonal polyhedra, corner polyhedra and XYZ polyhedra.
- Algorithms to test a cubic 2-connected graph for being such a skeleton in O(n) randomized expected time or in $O(n (\log \log n)^2/\log \log \log n)$ deterministically with O(n) space.
- Four simple rules to reduce 4-connected Eulerian triangulation to a simpler one while preserving 4-connectivity.

Questions?

