Steinitz Theorems for Orthogonal Polyhedra

David Eppstein and

Elena Mumford

Steinitz Theorem for Convex Polyhedra

Steinitz:

skeletons of convex polyhedra in R^{3}

planar
3-vertex-connected graphs

Simple Orthogonal Polyhedra

Topology of a sphere

Simply connected faces

Three mutually perpendicular edges at every vertex

simple orthogonal polyhedra

Simple Orthogonal Polyhedra

Topology of a sphere

Simply connected faces

Three mutually perpendicular
edges at every vertex

Orthogonal polyhedra that are NOT simple

Corner polyhedra

All but 3 faces are oriented towards vector (1,1,1)

= Only three faces are "hidden"

Corner polyhedra

Hexagonal grid drawings with two bends in total

XYZ polyhedra

Any axis parallel line contains at most two vertices of the polyhedron

Skeletons of Simple Orthogonal Polyhedra

are exactly
Cubic bipartite planar 2 -connected graphs such that the removal of any two vertices leaves at most 2 connected components

Skeletons of Simple Orthogonal Polyhedra

a graph that is NOT a skeleton of a simple
 orthogonal polyhedron
are exactly
Cubic bipartite planar 2-connected graphs such that the removal of any two vertices leaves at most 2 connected components

Skeletons of XYZ polyhedra

are exactly cubic bipartite planar 3-connected graphs

Skeletons of XYZ polyhedra

are exactly cubic bipartite planar 3-connected graphs

Eppstein GD'08
A planar graph G is an $x y z$ graph if and only if G is bipartite, cubic, and 3-connected.

Skeletons of Corner Polyhedra

are exactly cubic bipartite planar 3-connected graphs s.t. every separating triangle of the planar dual graph has the same parity.

Skeletons of Corner Polyhedra

are exactly cubic bipartite planar 3-connected graphs s.t. every separating triangle of the planar dual graph has the same parity.

Skeletons of Corner Polyhedra

are exactly cubic bipartite planar 3-connected graphs s.t. every separating triangle of the planar dual graph has the same parity.

Skeletons of...

...simple orthogonal polyhedra are cubic bipartite planar 2-connected graphs s.t. the removal of any two vertices leaves at most 2 connected components

XYZ polyhedra cubic bipartite planar 3-connected graphs
...corner polyhedra
cubic bipartite planar 3-connected graphs s.t. every separating triangle of the planar dual graph has the same parity.

Rough outline for a 3-connected graph

1. Split the dual along separating triangles

2. Construct polyhedra for 4-connected triangulations
3. Glue them together:

Rooted cycle covers

1. Collection of cycles
2. Every inner vertex is covered exactly once
3. Every white triangle contains exactly one edge of the cycle

Rooted cycle covers

Rooted cycle cover
$=$
embedding
as a corner polyhedron

Every 4-connected Eulerian triangulation has a rooted cycle cover

Rough outline for a 3-connected graph

1. Split the dual along separating triangles

2. Construct polyhedra for 4-connected triangulations
3. Glue them together:

Results

- Combinatorial characterizations of skeletons of simple orthogonal polyhedra, corner polyhedra and XYZ polyhedra.
- Algorithms to test a cubic 2 -connected graph for being such a skeleton in $O(n)$ randomized expected time or in $0\left(n(\log \log n)^{2} / \log \log \log n\right)$ deterministically with $O(n)$ space.
- Four simple rules to reduce 4-connected Eulerian triangulation to a simpler one while preserving 4-connectivity.

Questions?

