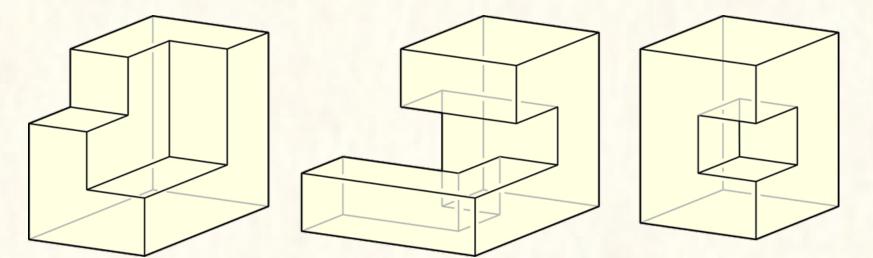
Steinitz Theorems for Orthogonal Polyhedra

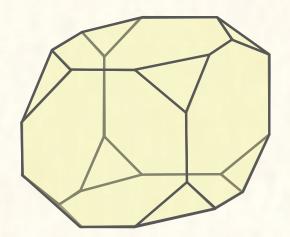
David Eppstein and Elena Mumford

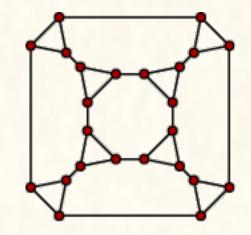


Steinitz Theorem for Convex Polyhedra

Steinitz:

skeletons of convex polyhedra in R³ planar 3-vertex-connected graphs



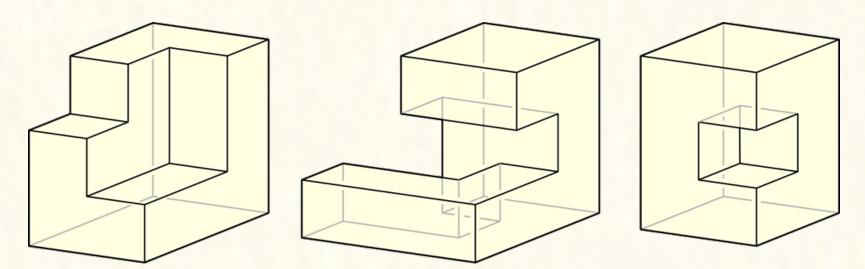


Simple Orthogonal Polyhedra

Topology of a sphere

Simply connected faces

Three mutually perpendicular edges at every vertex



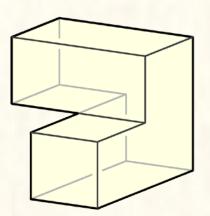
simple orthogonal polyhedra

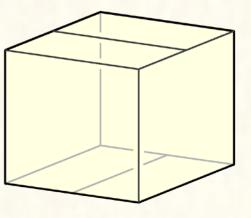
Simple Orthogonal Polyhedra

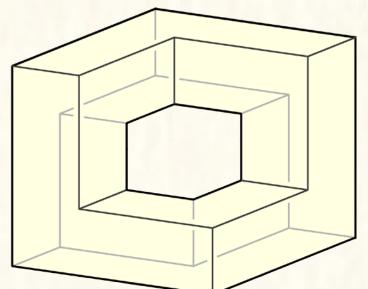
Topology of a sphere

Simply connected faces

Three mutually perpendicular edges at every vertex



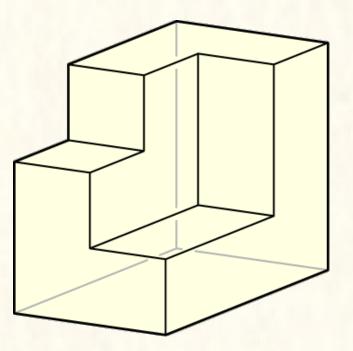




Orthogonal polyhedra that are NOT simple

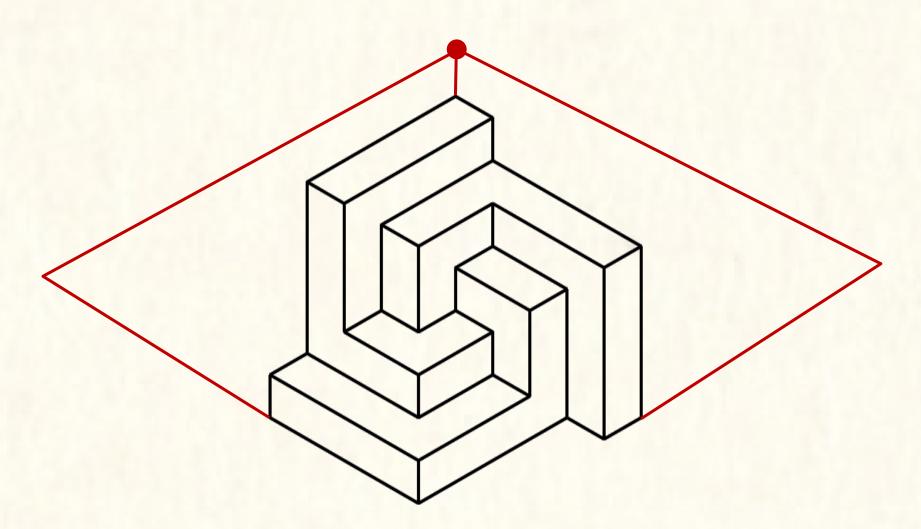
Corner polyhedra

All but 3 faces are oriented towards vector (1,1,1)



= Only three faces are "hidden"

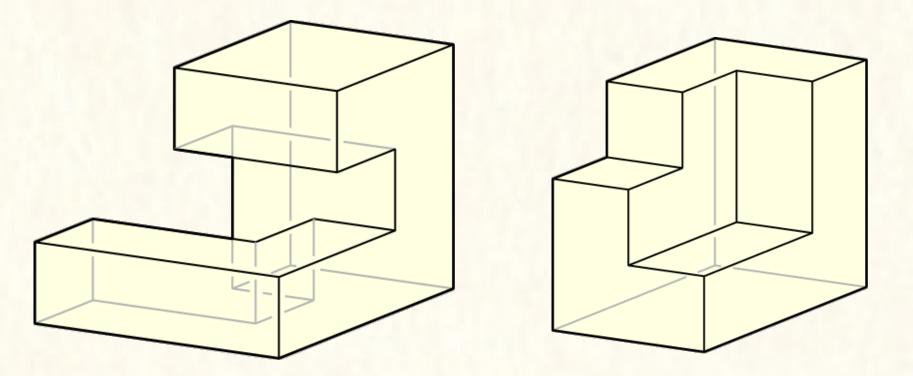
Corner polyhedra



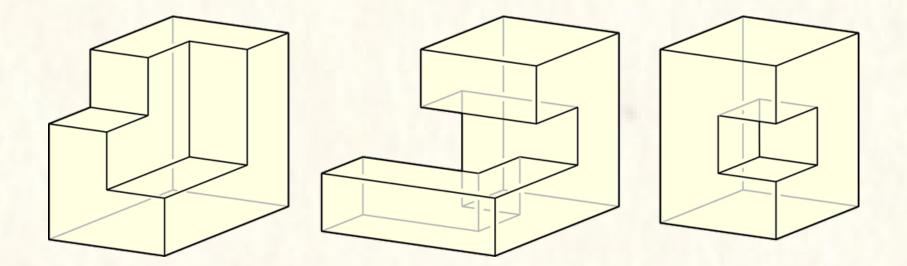
Hexagonal grid drawings with two bends in total

XYZ polyhedra

Any axis parallel line contains at most two vertices of the polyhedron



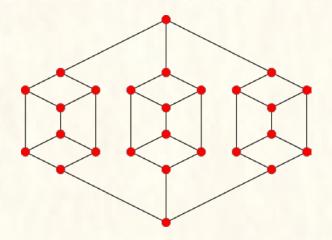
Skeletons of Simple Orthogonal Polyhedra



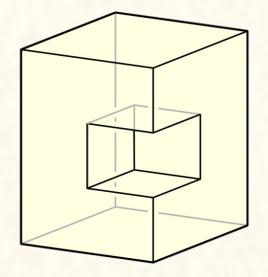
are exactly

Cubic bipartite planar 2-connected graphs such that the removal of any two vertices leaves at most 2 connected components

Skeletons of Simple Orthogonal Polyhedra



a graph that is NOT a skeleton of a simple orthogonal polyhedron

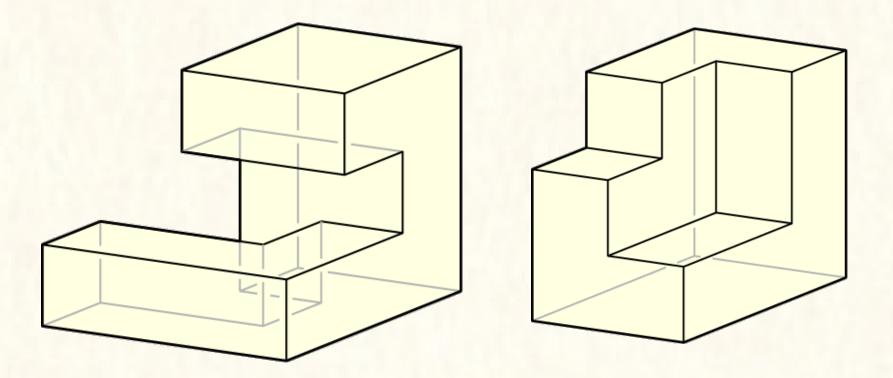


are exactly

Cubic bipartite planar 2-connected graphs such that the removal of any two vertices leaves at most 2 connected components

Skeletons of XYZ polyhedra

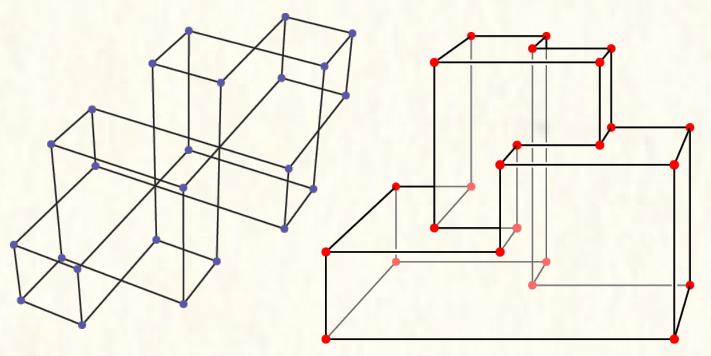
are exactly cubic bipartite planar 3-connected graphs



Skeletons of XYZ polyhedra

are exactly

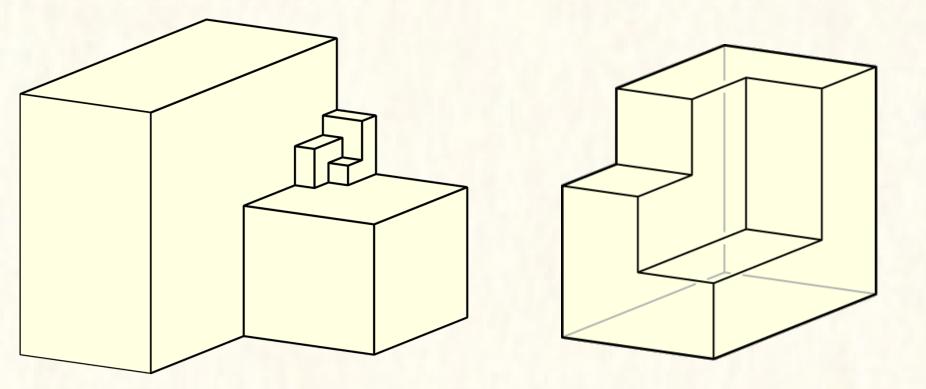
cubic bipartite planar 3-connected graphs



Eppstein GD'08

A planar graph G is an xyz graph if and only if G is bipartite, cubic, and 3-connected.

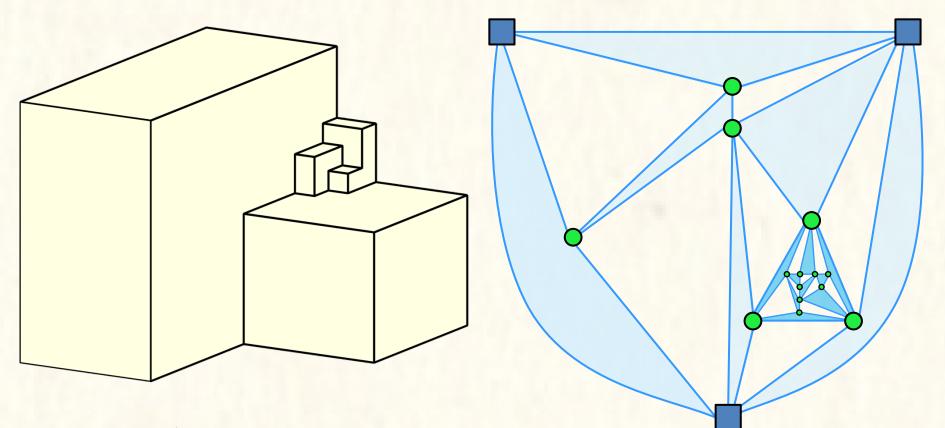
Skeletons of Corner Polyhedra



are exactly

cubic bipartite planar 3-connected graphs s.t. every separating triangle of the planar dual graph has the same parity.

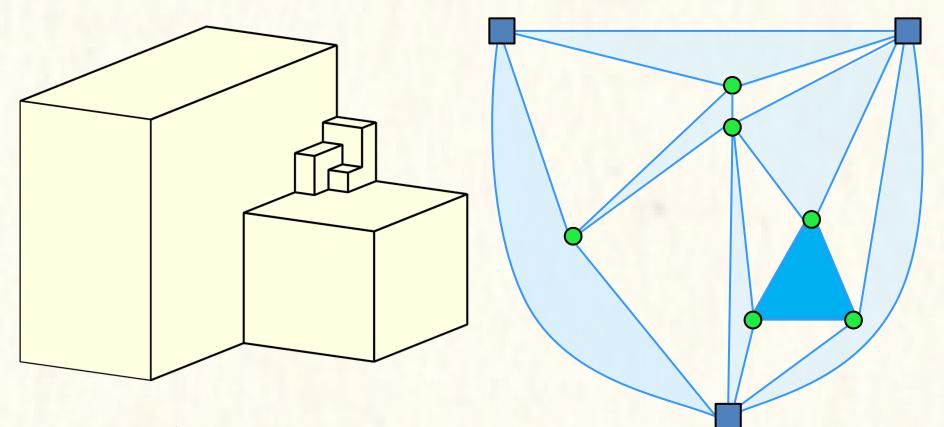
Skeletons of Corner Polyhedra



are exactly

cubic bipartite planar 3-connected graphs s.t. every separating triangle of the planar dual graph has the same parity.

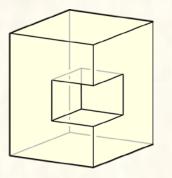
Skeletons of Corner Polyhedra



are exactly

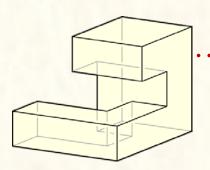
cubic bipartite planar 3-connected graphs s.t. every separating triangle of the planar dual graph has the same parity.

Skeletons of ...



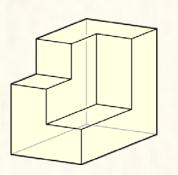
...simple orthogonal polyhedra

are cubic bipartite planar 2-connected graphs s.t. the removal of any two vertices leaves at most 2 connected components



.XYZ polyhedra

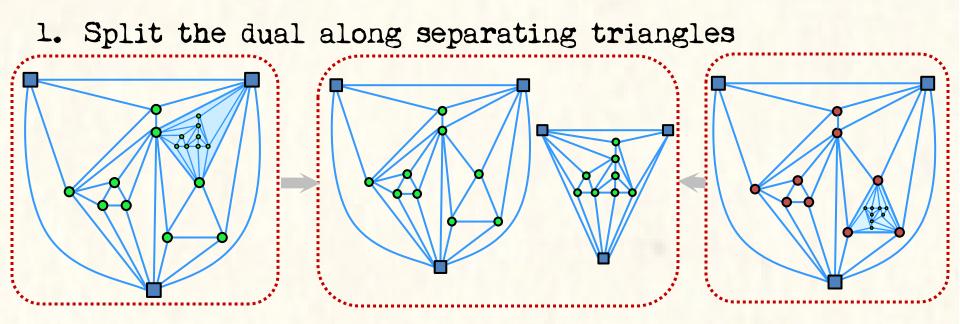
cubic bipartite planar 3-connected graphs



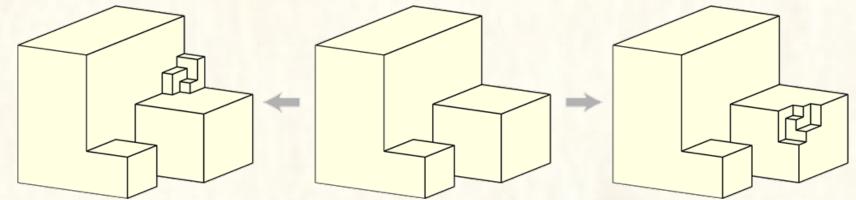
...corner polyhedra

cubic bipartite planar 3-connected graphs s.t. every separating triangle of the planar dual graph has the same parity.

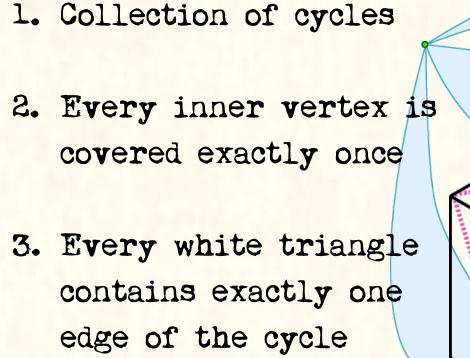
Rough outline for a 3-connected graph

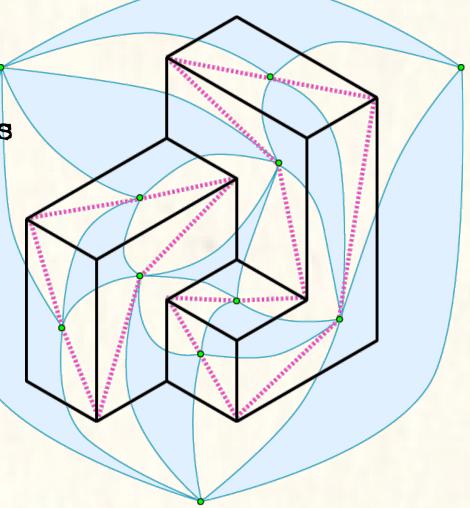


- 2. Construct polyhedra for 4-connected triangulations
- 3. Glue them together:

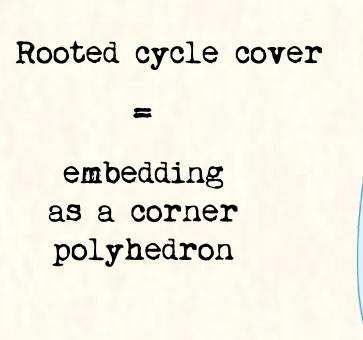


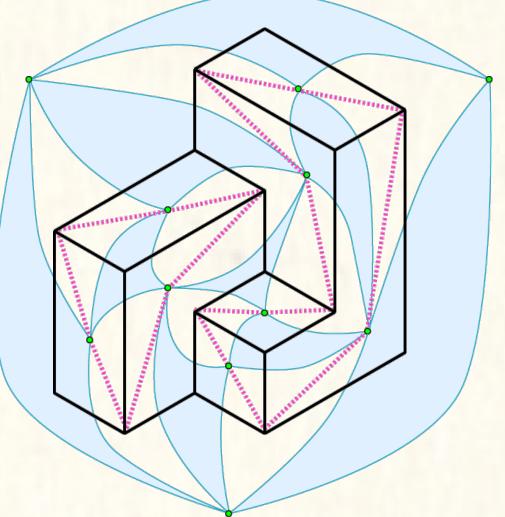
Rooted cycle covers





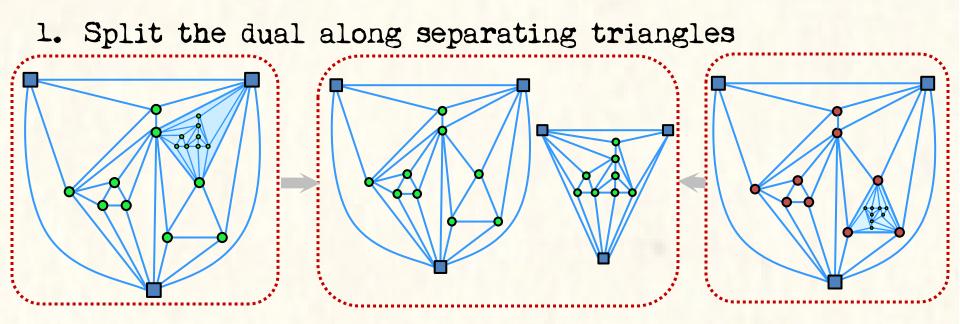
Rooted cycle covers



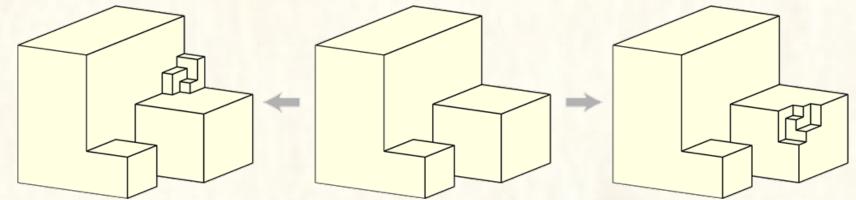


Every 4-connected Eulerian triangulation has a rooted cycle cover

Rough outline for a 3-connected graph



- 2. Construct polyhedra for 4-connected triangulations
- 3. Glue them together:



Results

- Combinatorial characterizations of skeletons of simple orthogonal polyhedra, corner polyhedra and XYZ polyhedra.
- Algorithms to test a cubic 2-connected graph for being such a skeleton in O(n) randomized expected time or in $O(n (\log \log n)^2/\log \log \log n)$ deterministically with O(n) space.
- Four simple rules to reduce 4-connected Eulerian triangulation to a simpler one while preserving 4-connectivity.

Questions?

