Finding Maximal Sets of Laminar 3-Separators in Planar Graphs in Linear Time

David Eppstein
University of California, Irvine
Bruce Reed
McGill University

30th ACM-SIAM Symp. on Discrete Algorithms (SODA 2019) San Diego, California, January 2019

Principle: Connectivity \Rightarrow more structure

Examples:

- 2-edge-connected and 3-regular \Rightarrow perfect matching [Petersen 1891]
- 3-vertex-connected and planar \Rightarrow realization as convex polyhedron [Steinitz 1922]
- 4-vertex-connected and planar \Rightarrow K_{5}-minor-free [Wagner 1937]
- 4-vertex-connected and planar \Rightarrow
 Hamiltonian [Tutte 1977]

Algorithmic version of connectivity principle

Solve problems by dividing into more-connected pieces, using structure, and gluing solutions together

[Swallow 2013]

Canonical partition by 1 -vertex cuts

Block (biconnected component): equivalence class of edges under relation of belonging to a simple cycle
Articulation point: vertex in ≥ 2 components Block-cut tree: bipartite incidence graph of blocks and articulation points

[Zyqqh 2010]

Canonical partition by 2-vertex cuts

SPQR tree: Tree with vertices labeled by cycles (S), dipoles (P), and 3-vertex-connected graphs (R)
Tree edges \Rightarrow glue graphs on shared edge and delete the edge [Mac Lane 1937; Hopcroft and Tarjan 1973; Bienstock and Monma 1988;

Di Battista and Tamassia 1990]

But partition by 3-vertex cuts is not canonical!

Main theorem: Given a 3-vertex-connected planar graph we can find a maximal, laminar set of 3 -cuts in linear time

Why?

Faster separator construction for minor-closed graph families [Kawarabayashi, Li, and Reed, announced]

uses as subroutine

Finding pairs of vertex-disjoint paths between given terminals in arbitrary graphs [Kawarabayashi et al. 2015]

uses as subroutine

Finding maximal laminar family of 3-separators in planar graphs [this paper!]

Certifying the results for two disjoint paths

Add 4-wheel on path terminals to input graph. Then either:

- Find two paths $\Rightarrow \exists K_{5}$ minor
- Reduce graph on 3-vertex cuts to planar component containing wheel $\Rightarrow \nexists$ paths

Recursive algorithm for two paths (sketch)

1. Find a large set of contractable edges and contract them
2. Recurse!

3(a). If found two paths, expand them back out 3(b). If found planar component, solve the problem using laminar 3 -vertex cuts within the component to decompose it into subproblems

[danipaul 2018]

Naive algorithm for laminar cuts

1. Find all cuts, and all non-laminar pairs of cuts
2. Build a graph, vertices $=$ cuts, edges $=$ non-laminar pairs
3. Find a maximal independent set (linear time in size of graph)

But: How to find everything? And how big is the graph?

Finding cuts and non-laminar pairs

Replace input graph by its vertex-edge-face incidence graph

Turns 3-vertex cuts into certain 6-cycles, non-laminar pairs into 12-edge subgraphs
Planar subgraph isomorphism can find them all in $O(1)$ time per subgraph [Eppstein 1999]

... but the cut-crossing graph is too big!

Wheels have $\Theta\left(n^{2}\right) 3$-vertex cuts, and $\Theta\left(n^{4}\right)$ non-laminar pairs

Our solution (sketch)

Wheels are the only bad case! So...

1. Find wheel-like subgraphs in vertex-edge-face incidence graph
2. Find cuts within each subgraph (easy)
3. Cut H into pieces along the edges of the subgraphs; each piece has only $O(n)$ cuts and crossings
4. Construct each piece's cut-crossing graph and find a maximal independent set in each piece

Conclusions

Linear-time decomposition of planar graphs by 3-vertex cuts

Allows extra constraints on the cuts (needed in application)
Application to disjoint paths and separators; more applications?
Is there a nice linear-space description of all 3-vertex cuts, like the SPQR tree for the 2-vertex cuts?

What about nonplanar graphs?

References and image credits, I

Daniel Bienstock and Clyde L. Monma. On the complexity of covering vertices by faces in a planar graph. SIAM Journal on Computing, 17 (1):53-76, 1988. doi: 10.1137/0217004.
danipaul. Droste Effect. Reddit GIMP group, 2018. URL https: //www.reddit.com/r/GIMP/comments/8pmgv4/droste_effect/.
G. Di Battista and R. Tamassia. On-line graph algorithms with SPQR-trees. In Proc. 17th Internat. Colloq. Automata, Languages and Programming (ICALP 1990), volume 443 of Lect. Notes in Comput. Sci., pages 598-611. Springer, 1990. doi: 10.1007/BFb0032061.
D. Eppstein. Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl., 3(3):1-27, 1999. doi: 10.7155/jgaa.00014.

Rube Goldberg. Self-operating napkin. Collier's, September 261931. URL
https://commons.wikimedia.org/wiki/File:Self-operating_ napkin_(Rube_Goldberg_cartoon_with_caption).jpg.

References and image credits, II

John Hopcroft and Robert Tarjan. Dividing a graph into triconnected components. SIAM Journal on Computing, 2(3):135-158, 1973. doi: 10.1137/0202012.
K. Kawarabayashi, Z. Li, and B. Reed. Connectivity preserving iterative compaction and finding 2 disjoint rooted paths in linear time. Electronic preprint arxiv:1509.07680, 2015.
Lombroso. Pizza wheel. Public domain (CC0) image, 2015. URL https://commons.wikimedia.org/wiki/File: Pizza_wheel_(2015-06-20).jpg.
S. Mac Lane. A structural characterization of planar combinatorial graphs. Duke Math. J., 3(3):460-472, 1937. doi: 10.1215/S0012-7094-37-00336-3.

Vijai Pandian. Helpful tips for pruning landscape trees for maximum stability. Green Bay Press Gazette, March 30 2018. URL https: //www.greenbaypressgazette.com/story/life/2018/03/30/ helpful-tips-pruning-landscape-trees-maximum-stability/ 471025002/. Image credited to University of Wisconsin Extension.

References and image credits, III

Julius Petersen. Die Theorie der regulären graphs. Acta Math., 15: 193-220, 1891. doi: 10.1007/BF02392606.
Ernst Steinitz. Polyeder und Raumeinteilungen. In Encyclopädie der mathematischen Wissenschafte, Band 3 (Geometries), volume IIIAB12, pages 1-139. 1922.
Erica Swallow. U.S. Senate More Divided Than Ever Data Shows. Forbes, November 17 2013. URL https://www.forbes.com/sites/ericaswallow/2013/11/17/ senate-voting-relationships-data/\#60f4c8344031.
W. T. Tutte. Bridges and Hamiltonian circuits in planar graphs. Aequationes Math., 15(1):1-33, 1977. doi: 10.1007/BF01837870.
K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Math. Ann., 114:570-590, 1937. doi: 10.1007/BF01594196.
Zyqqh. Biconnected components of an undirected graph. CC-BY-3.0 licensed image, June 17 2010. URL https://commons.wikimedia.org/wiki/File: Graph-Biconnected-Components.svg.

