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Principle: Connectivity ⇒ more structure

Examples:

I 2-edge-connected and 3-regular ⇒
perfect matching [Petersen 1891]

I 3-vertex-connected and planar ⇒
realization as convex polyhedron
[Steinitz 1922]

I 4-vertex-connected and planar ⇒
K5-minor-free [Wagner 1937]

I 4-vertex-connected and planar ⇒
Hamiltonian [Tutte 1977]



Algorithmic version of connectivity principle

Solve problems by dividing into more-connected pieces,
using structure, and gluing solutions together

[Swallow 2013]



Canonical partition by 1-vertex cuts

Block (biconnected component): equivalence class of edges under
relation of belonging to a simple cycle

Articulation point: vertex in ≥ 2 components

Block-cut tree: bipartite incidence graph of blocks and
articulation points

[Zyqqh 2010]



Canonical partition by 2-vertex cuts

SPQR tree: Tree with vertices labeled by
cycles (S), dipoles (P), and 3-vertex-connected graphs (R)

Tree edges ⇒ glue graphs on shared edge and delete the edge

[Mac Lane 1937; Hopcroft and Tarjan 1973; Bienstock and Monma 1988;

Di Battista and Tamassia 1990]
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But partition by 3-vertex cuts is not canonical!

Main theorem: Given a 3-vertex-connected planar graph we can
find a maximal, laminar set of 3-cuts in linear time



Why?

Faster separator construction for minor-closed graph families
[Kawarabayashi, Li, and Reed, announced]

uses as subroutine

Finding pairs of vertex-disjoint paths between given terminals in
arbitrary graphs [Kawarabayashi et al. 2015]

uses as subroutine

Finding maximal laminar family of 3-separators in planar graphs
[this paper!]

[Goldberg 1931]



Certifying the results for two disjoint paths

Add 4-wheel on path
terminals to input
graph. Then either:

I Find two paths
⇒ ∃ K5 minor

I Reduce graph on
3-vertex cuts to
planar component
containing wheel
⇒ @ paths



Recursive algorithm for two paths (sketch)

1. Find a large set of contractable edges and contract them

2. Recurse!

3(a). If found two paths, expand them back out

3(b). If found planar component, solve the problem
using laminar 3-vertex cuts within the component

to decompose it into subproblems

[danipaul 2018]



Naive algorithm for laminar cuts

1. Find all cuts, and all non-laminar pairs of cuts

2. Build a graph, vertices = cuts, edges = non-laminar pairs

3. Find a maximal independent set (linear time in size of graph)

But: How to find everything? And how big is the graph?



Finding cuts and non-laminar pairs

Replace input graph by its vertex-edge-face incidence graph

Turns 3-vertex cuts into certain 6-cycles,
non-laminar pairs into 12-edge subgraphs

Planar subgraph isomorphism can find them all in
O(1) time per subgraph [Eppstein 1999]



. . . but the cut–crossing graph is too big!

Wheels have Θ(n2) 3-vertex cuts,
and Θ(n4) non-laminar pairs



Our solution (sketch)

Wheels are the only bad case! So. . .

1. Find wheel-like subgraphs in vertex-edge-face incidence graph

2. Find cuts within each subgraph (easy)

3. Cut H into pieces along the edges of the subgraphs;
each piece has only O(n) cuts and crossings

4. Construct each piece’s cut–crossing graph and
find a maximal independent set in each piece

[Lombroso 2015]



Conclusions

Linear-time decomposition of planar graphs by 3-vertex cuts

[Pandian 2018]

Allows extra constraints on the cuts (needed in application)

Application to disjoint paths and separators; more applications?

Is there a nice linear-space description of all 3-vertex cuts,
like the SPQR tree for the 2-vertex cuts?

What about nonplanar graphs?
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