

Faster Construction of
Planar 2-Centers

David Eppstein
Dept. Information and Computer Science

Univ. of California, Irvine

http://www.ics.uci.edu/∼eppstein/

1

The problem

Cover n points w/two minimum-radius circles

2

It’s safe to assume:

• Both circles are the same size

• One circle has three tangent points,
or is diameter circle of two points

• (Other circle is less constrained)

3

History

Agarwal and Sharir, SODA 1991:
O(n2 log3 n)

Eppstein, FOCS 1991:
O(n2 log2 n log log n) randomized

Katz and Sharir, SCG 1993:
O(n2 log3 n)

Jaromczyk and Kowaluk, SCG 1994:
O(n2 log n)

Sharir, SCG 1996:
O(n log9 n)

New result: O(n log2 n) randomized

4

Two Cases (based on circle separation)

d < (2-ε)r

d > εr

5

Overlapping Case→ Matrix

Find point in intersection of disks
(by testing O(1) candidates)

Look for partition by two rays

Form matrix representing possible partitions:
Row index = position of upper ray
Column index = position of lower ray

6

Overlapping Case: Quadtree Search
(based on matrix selection of Frederickson and Johnson)

Represent potential partitions as set of n
k×

n
k squares

(initially, one square for whole matrix)

For O(log n) stages:
Subdivide each square into four
Prune back down to O(k) squares

7

Overlapping Case: Pruning

Too many squares→many interior corners

Pick a corner x randomly
and evaluate corresponding circumradii

Compare x against all other interior corners

If x better than y, eliminate one of y’s squares
(above and to right of y, left circle only gets larger;
below and to left, right circle only gets larger.)

Expect 50% of interior corners to become exterior

Repeat O(1) times until few interior corners left

8

Overlapping Case: Analysis

O(log n) stages.

Only slow part: compare corners to random choice
(= test circumradii from corresponding partitions)

Connect into path, use Hershberger-Suri offline
circumradius decision algorithm:

O(n log n) per stage

Use exact circumradius data structure:
O(k logc n) per stage

Combine both methods:
Exact circumradius when k = O(n/logcn)
Offline alg for remaining O(log log n) stages
Total: O(n log n log log n)

9

Separated Case: Cut Line

Find halfspace containing only points of constrained
disk, including at least one tangent point

(by testing O(1) candidates)

10

Separated Case: Main Idea

Parametric search

Let A1 be decision algorithm
(compare given radius against optimum)

Let A2 be any algorithm that is discontinuous at the
optimal value (e.g. the decision algorithm again)

Simulate A2(r∗) by replacing each comparison in
A2 with a call to A1.

Because of discontinuity, calls must include A1(r∗)

11

Separated Case: Efficiency Considerations

To make parametric search efficient:

• Simulate a parallel algorithm

• Batch calls to decision alg using binary search

• Remove as much as possible from simulation

– preproc. not depending on parameter

– postproc. after already discontinuous

12

Separated Case: Decision Algorithm

Swing circle around circular hull of pts in half-
plane, testing circumradius of remaining points

Total: O(n log n)

13

Separated Case: Simulated Algorithm

• Compute circular hull of points

• Sweep circle around hull

• Find sequence of point sets swept by circle

Already discontinuous – don’t have to apply offline
decision algorithm to sequence

(Proof: 4 cases. Is optimal circle supported by two or three

tangent points, and are one or two of them on circular hull?)

14

Separated Case: Fast Circular Hull

Circular hull arcs correspond to certain edges of
the farthest point Voronoi diagram

Compute Voronoi diagram (preproc.)

Test which Voronoi edges give hull arcs
(O(n) processors, O(1) time)

Connect the dots (independent of param.)

15

Separated Case: Swinging the Circle

For each point p not in the hull
find hull vertex v the circle is pivoting on
when it crosses p (binary search)

For each hull pivot v
sort the associated points by sweep time

O(n) processors, O(log n) time
but suitable for Cole’s speed-up

16

Separated Case: Analysis

Preprocessing:
Voronoi diagram O(n log n)

Simulate:
Finding hull arcs
O(n) binary searches
One sorting algorithm

Total:
O(n log2 n)

17

Open Problems

Derandomize
(only uses O(log n log log n) random bits!)

Improve time bound
(only slow case: nearly tangent circles)

Make simple enough to be practical
(most complicated part: parametric sort)

18

	Faster construction of planar 2-centers
	The problem
	It's safe to assume
	History
	Two cases
	Overlapping case
	Matrix
	Quadtree search
	Pruning
	Analysis

	Separated case
	Cut line
	Main idea
	Efficiency considerations
	Decision algorithm
	Simulated algorithms
	Fast circular hull
	Swinging the circle
	Analysis

	Open problems

