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Abstract
We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This
recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil
on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We
find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this
specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good
performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation
and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to
laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade
images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and
fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

Keywords Normalized cross-correlation · Similarity metric · Cross-domain image matching

1 Introduction

We investigate the problem of automatically determining
what type (brand/model/size) of shoe left an impression
found at a crime scene. In the forensic footwear examination
literature (Bodziak 1999), this fine-grained category-level
recognition problem is known as determining the class char-
acteristics of a tread impression. This is distinct from the
instance-level recognition problem of matching acquired
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characteristics such as cuts or scratches which can provide
stronger evidence that a specific shoe left a specific mark.

Analysis of shoe tread impressions is made difficult by the
variability in types of crime scene evidence (ranging from
traces of dust or oil on hard surfaces to impressions made
in soil) and the lack of comprehensive datasets of shoe out-
sole tread patterns (see Fig. 1). Solving this problem requires
developing models that can handle cross-domain matching
of tread features between photos of clean test impressions (or
images of shoe outsoles) and photos of crime scene evidence.
We face the additional challenge that we would like to use
extracted image features for matching a given crime scene
impression to a large, open-ended database of exemplar tread
patterns.

Cross-domain image matching arises in a variety of other
application domains beyond our specific scenario of foren-
sic shoeprint matching. For example, matching aerial photos
to GIS map data for location discovery (Senlet et al. 2014;
Costea and Leordeanu 2016; Divecha and Newsam 2016),
image retrieval from hand drawn sketches and paintings
(Chen et al. 2009; Shrivastava et al. 2011), and match-
ing images to 3D models (Russell et al. 2011). As with
shoeprint matching, many of these applications often lack
large datasets of ground-truth examples of cross-domain
matches. This lack of training data makes it difficult to learn
cross-domain matching metrics directly from raw pixel data.
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Fig. 1 We would like to match crime scene prints to a database of
test impressions despite significant cross-domain differences in appear-
ance. We utilize a Siamese network to perform matching using a
multi-channel normalized cross-correlation. We find that per-exemplar,
per-channel normalization of CNN feature maps significantly improves

matching performance. Here U and V are the linear projection param-
eters for laboratory test impression and crime scene photo domains
respectively.W is the per-channel importance weights. And x and y are
the projected features of each domain used for matching

Instead traditional approaches have focused on designing
feature extractors for eachdomainwhichyield domain invari-
ant descriptions (e.g., locations of edges) which can then be
directly compared.

Deep convolutional neural net (CNN) features hierarchies
have proven incredibly effective at a wide range of recog-
nition tasks. Generic feature extractors trained for general-
purpose image categorization often perform surprising well
for novel categorization tasks without performing any fine-
tuning beyond training a linear classifier (Sharif Razavian
et al. 2014). This is often explained by appealing to the notion
that these learned representations extract image features with
invariances that are, in some sense, generic. We might hope
that these same invariances would prove useful in our setting
(e.g., encoding the shape of a tread element in a way that
is insensitive to shading, contrast reversals, etc.). However,
our problem differs in that we need to formulate a cross-
domain similarity metric rather than simply training a k-way
classifier.

Building on our previous work (Kong et al. 2017), we
tackle this problem using similaritymeasures that are derived
fromnormalized cross-correlation (NCC), a classic approach
for matching gray-scale templates. For CNN feature maps,
it is necessary to extend this to handle multiple channels.
Our contribution is to propose a multi-channel variant of
NCC which performs normalization on a per-channel basis
(rather than, e.g., per-feature volume). We find this performs
substantially better than related similarity measures such as
the widely used cosine distance. We explain this finding in
terms of the statistics of CNN feature maps. Finally, we use
this multi-channel NCC as a building block for a Siamese
network model which can be trained end-to-end to optimize
matching performance.

2 RelatedWork

Shoeprint Recognition The widespread success of auto-
matic fingerprint identification systems (AFIS) (Lee et al.
2001) has inspired many attempts to similarly automate
shoeprint recognition. Much initial work in this area focused
on developing feature sets that are rotation and translation
invariant. Examples include, phase only correlation (Gue-
ham et al. 2008), edge histogram DFT magnitudes (Zhang
andAllinson 2005), power spectral densities (DeChazal et al.
2005; Dardi et al. 2009), and the Fourier–Mellin transform
(Gueham et al. 2008). Some other approaches pre-align the
query and database image using the Radon transform (Patil
and Kulkarni 2009) while still others sidestep global align-
ment entirely by computing only relative features between
keypoints pairs (Tang et al. 2010; Pavlou andAllinson 2006).
Finally, alignment can be implicitly computed by matching
rotationally invariant keypoint descriptors between the query
and database images (Pavlou and Allinson 2006; Wei and
Gwo2014). The recent studyofRichetelli et al. (2017) carries
out a comprehensive evaluation of many of these approaches
in a variety of scenarios using a carefully constructed dataset
of crime scene-like impressions. In contrast to these previous
works, we handle global invariance by explicitly matching
templates using dense search over translations and rotations.

One-Shot Learning While we must match our crime scene
evidence against a large database of candidate shoes, our
database contains very few examples per-class. As such, we
must learn to recognize each shoe category with as little
as one training example. This can be framed as a one-shot
learning problem (Li et al. 2006). Prior work has explored
one-shot object recognition with only a single training exam-
ple, or “exemplar” (Malisiewicz et al. 2011). Specifically in
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the domain of shoeprints, Kortylewski and Vetter (2016) fit
a compositional active basis model to an exemplar which
could then be evaluated against other images. Alternatively,
standardized or whitened off-the-shelf HOG features have
proven very effective for exemplar recognition (Hariharan
et al. 2012). Our approach is similar in that we examine the
performance of one-shot recognition using generic deep fea-
tures which have proven surprisingly robust for a huge range
of recognition tasks (Sharif Razavian et al. 2014).

SimilarityMetric Learning While off-the-shelf deep features
work well (Sharif Razavian et al. 2014), they can be often be
fine-tuned to improve performance on specific tasks. In par-
ticular, for a paired comparison tasks, so-called “Siamese”
architectures integrate feature extraction and comparison in
a single differentiable model that can be optimized end-to-
end. Past work has demonstrated that Siamese networks learn
good features for person re-identification, face recognition,
and stereo matching (Zbontar and LeCun 2015; Parkhi et al.
2015; Xiao et al. 2016); deep pseudo-Siamese architectures
can even learn to embed two dissimilar domains into a com-
mon co-domain (Zagoruyko and Komodakis 2015). For shoe
class recognition, we similarly learn to embed two types of
images: (1) crime scenephotos and (2) laboratory test impres-
sions.

3 Multivariate Cross-Correlation

In order to compare two corresponding image patches,
we extend the approach of normalized cross-correlation
(often used for matching gray-scale images) to work with
multi-channel CNN features. Interestingly, there is not an
immediately obvious extension ofNCC tomultiple channels,
as evidenced by multiple approaches proposed in the litera-
ture (Fisher and Oliver 1995; Martin and Maes 1979; Geiss
et al. 1991; Popper Shaffer and Gillo 1974). To motivate our
approach, we appeal to a statistical perspective.

Normalized Correlation Let x, y be two scalar random
variables. A standard measure of correlation between two
variables is given by their Pearson’s correlation coefficient
(Martin and Maes 1979):

ρ(x, y) = E[x̃ ỹ] = σxy√
σxx

√
σyy

(1)

where

x̃ = x − μx√
σxx

is the standardized version of x (similarly for y) and

μx = E[x]
σxx = E[(x − μx )

2]
σxy = E[(x − μx )(y − μy)]

Intuitively, the above corresponds to the correlation between
two transformed random variables that are “whitened” to
have zero-mean and unit variance. The normalization ensures
that correlation coefficient will lie between − 1 and + 1.

Normalized Cross-Correlation Let us model pixels x from
an image patch X as corrupted by some i.i.d. noise process
and similarly pixels another patch Y (of identical size) as y.
The sample estimate of the Pearson’s coefficient for variables
x, y is equivalent to the normalized cross-correlation (NCC)
between patches X ,Y :

NCC(X ,Y ) = 1

|P|
∑

i∈P

(x[i] − μx )√
σxx

(y[i] − μy)√
σyy

(2)

where P refers to the set of pixel positions in a patch and
means and standard deviations are replaced by their sample
estimates.

From the perspective of detection theory, normalization
is motivated by the need to compare correlation coefficients
across different pairs of sampleswith non-stationary statistics
(e.g., determining which patches {Y 1,Y 2, . . .} are the same
as a given template patch X where statistics vary from one Y
to the next). Estimating first and second-order statistics per-
patch provides a convenient way to handle sources of “noise”
that are approximately i.i.d. conditioned on the choice of
patch P but not independent of patch location.

Multivariate Extension Let us extend the above formulation
for random vectors x, y ∈ RN where N corresponds to the
multiple channels of values at each pixel (e.g., N = 3 for
a RGB image). The scalar correlation is now replaced by a
N ×N correlationmatrix. To produce a final score capturing
the overall correlation, we propose to use the trace of this
matrix, which is equivalent to the sum of its eigenvalues.
As before, we add invariance by computing correlations on
transformed variables x̃, ỹ that are “whitened” to have a zero-
mean and identity covariance matrix:

ρmulti(x, y) = 1

N
Tr(E[x̃ ỹT ])

= 1

N
Tr

(
Σ

− 1
2

xx ΣxyΣ
− 1

2
yy

)
(3)
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where:

x̃ = Σ
− 1

2
xx (x − μx),

Σxx = E[(x − μx)(x − μx)
T ],

Σxy = E[(x − μx)(y − μy)
T ].

The above multivariate generalization of the Pearson’s coef-
ficient is arguably rather natural, and indeed, is similar to
previous formulations that also make use of a trace operator
on a correlationmatrix (Martin andMaes 1979; Popper Shaf-
fer and Gillo 1974). However, one crucial distinction from
such past work is that our generalization (3) reduces to (1)
for N = 1. In particular, Martin and Maes (1979) and Pop-
per Shaffer and Gillo (1974) propose multivariate extensions
that are restricted to return a nonnegative coefficient. It is
straightforward to show that our multivariate coefficient will
lie between −1 and +1.

Decorrelated Channel Statistics The above formulation can
be computationally cumbersome for large N , since it requires
obtaining sample estimates of matrices of size N 2. Suppose
wemake the strong assumption that all N channels are uncor-
related with each other. This greatly simplifies the above
expression, since the covariance matrices are then diagonal
matrices:

Σxy = diag({σxc yc })
Σxx = diag({σxcxc })
Σyy = diag({σyc yc })

Plugging this assumption into (3) yields the simplified
expression for multivariate correlation

ρmulti(x, y) = 1

N

N∑

c=1

σxc yc√
σxcxc

√
σyc yc

(4)

where the diagonalmultivariate statistic is simply the average
of N per-channel correlation coefficients. It is easy to see that
this sum must lie between −1 and +1.

Multi-channel NCC The sample estimate of (4) yields a
multi-channel extension of NCC which is adapted to the
patch:

MCNCC(X ,Y ) = 1

N |P|
N∑

c=1

∑

i∈P

(xc[i]−μxc )√
σxcxc

(yc[i]−μyc )√
σyc yc

The above multi-channel extension is similar to the final for-
mulation in Fisher and Oliver (1995), but is derived from a
statistical assumption on the channel correlation.

Cross-Domain Covariates and Whitening Assuming a
diagonal covariance makes strong assumptions about cross-
channel correlations. When strong cross-correlations exist,
an alternative approach to reducing computational complex-
ity is to assume that cross-channel correlations lie within a
K dimensional subspace, where K ≤ N . We can learn a
projection matrix for reducing the dimensionality of features
from both patch X and Y which decorrelates and scales the
channels to have unit variance:

x̂ = U (x − μx ), U ∈ RK×N , E[x̂ x̂T ] = I

ŷ = V (y − μy), V ∈ RK×N , E[ ŷ ŷT ] = I

In general, the projection matrix could be different for dif-
ferent domains (in our case, crime scene versus test prints).
One strategy for learning the projection matrices is apply-
ing principle component analysis (PCA) on samples from
each domain separately. Alternatively, when paired training
examples are available, one could use canonical correlation
analysis (CCA) (Mardia et al. 1980), which jointly learn the
projections that maximize correlation across domains. An
added benefit of using orthogonalizing transformations such
as PCA/CCA is that transformed data satisfies the diagonal
assumptions (globally) allowing us to estimate patch multi-
variate correlations in this projected space with diagonalized
covariance matrices of size K × K .

Global Versus Local Whitening There are two distinct
aspects to whitening (or normalizing) variables in our prob-
lem setup to be determined: (1) assumptions on the structure
of the sample mean and covariance matrix, and (2) the data
over which the sample mean and covariance are estimated.
In choosing the structure, one could enforce an unrestricted
covariancematrix, a low-rank covariance matrix (e.g., PCA),
or a diagonal covariancematrix (e.g., estimating scalarmeans
and variances). In choosing the data, one could estimate these
parameters over individual patches (local whitening) or over
the entire dataset (global whitening). In Sect. 5, we empiri-
cally explore various combinations of these design choices
which are computationally feasible (e.g., estimating a full-
rank covariance matrix locally for each patch would be too
expensive).Wefind a good tradeoff to be globalwhitening (to
decorrelate features globally), followed by local whitening
with a diagonal covariance assumption (e.g., MCNCC).

To understand the value of global and per-patch normal-
ization, we examine the statistics of CNN feature channels
across samples of our dataset. Figures 2 and 3 illustrate how
the per-channel normalizing statistics (μc, σc) vary across
patches and across channels. Notably, for some channels,
the normalizing statistics change substantially from patch to
patch. This makes the results of performing local, per-patch
normalization significantly different from global, per-dataset
normalization.
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Fig. 2 Distribution of patch channel means For each query image
(patch) we match against the database, our proposed MCNCC simi-
larity measure normalizes ResNet-50 ‘res2x’ feature channels by their
individualmean and standard deviation. For uniformly sampled patches,
we denote the normalizing mean for channel c using the random vari-
able μc. For each channel, we plot the standard deviation of μc above
with channels sorted by increasing standard deviation. When the mean
response for a channel varies little from one patch to the next (small
std, left), we can expect that a global, per-dataset transformation (e.g.,
PCA or CCAwhitening) is sufficient to normalize the channel response.
However, for channels where individual patches in the dataset have very
different channel means (large std, right), normalizing by the local (per-
patch) statistics provides additional invariance

Fig. 3 Normalizing channel statistics As shown in the histograms of
Fig. 2, for some feature channels, patches have wildly different means
and standard deviations. For channel 14 (left), the statistics (and hence
normalization) are similar from one patch to the next while for channel
256 (right), means and standard deviations vary substantially across
patches. CNN channel activations are positive so means and standard
deviations are strongly correlated

One common effect of both global and local whitening
is to prevent feature channels that tend to have large means
and variances from dominating the correlation score. How-
ever, by the same merit this can have the undesirable effect
of amplifying the influence of low-variance channels which
may not be discriminative for matching. In the next section
we generalize both PCA and CCA using a learning frame-
work which can learn channel decorrelation and per-channel
importance weighting by optimizing a discriminative perfor-
mance objective.

4 Learning Correlation Similarity Measures

In order to allow for additional flexibility of weighting the
relevance of each channel we consider a channel-weighted
variant of MCNCC parameterized by vector W :

MCNCCW (X ,Y )

=
N∑

c=1

Wc

[
1

|P|
∑

i∈P

(xc[i] − μxc )√
σxcxc

(yc[i] − μyc )√
σyc yc

]

(5)

This per-channel weighting can undo the effect of scaling
by the standard deviation in order to re-weight channels
by their informativeness. Furthermore, since the features
x, y are themselves produced by a CNN model, we can
consider the parameters of that model as additional can-
didates for optimization. In this view, PCA/CCA can be
seen as adding an extra linear network layer prior to the
correlation calculation. The parameters of such a layer can
be initialized using PCA/CCA and then discriminatively
tuned. The resulting “Siamese” architecture is illustrated in
Fig. 1.

Siamese Loss To train the model, we minimize a hinge-loss:

argmin
W ,U ,V ,b

α

2
‖W‖22 + β

2

(
‖U‖2F + ‖V ‖2F

)

+
∑

s,t

max
(
0, 1 − zs,tMCNCCW (φU (Xs), φV (Y t )) + b

)

(6)

where we have made explicit the function φ which com-
putes the deep features of two shoeprints Xs and Y t , withW ,
U , and V representing the parameters for the per-channel
importance weighting and the linear projections for the two
domains respectively. b is the bias and zs,t is a binary
same-source label (i.e., +1 when Xs and Y t come from
the same source and −1 otherwise). Finally, α is the reg-
ularization hyperparameter for W and β is the same for U
and V .

We implement φ using a deep architecture, which is
trainable using standard backpropagation. Each channel con-
tributes a term to the MCNCC which itself is just a single
channel (NCC) term. The operation is symmetric in X and
Y , and the gradient can be computed efficiently by reusing
the NCC computation from the forward pass:

dNCC(xc, yc)

d xc[ j] = 1

|P|√σxcxc
(ỹc[ j] + x̃c[ j]NCC(xc, yc))

(7)

Derivation of NCC Gradient To derive the NCC gradient, we
first expand it as a sum over individual pixels indexed by i
and consider the total derivative with respect to input feature
x[ j]
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dNCC(x, y)

d x[ j]
= 1

|P|
∑

i∈P

ỹ[i]
(

∂ x̃[i]
∂x[ j] + ∂ x̃[i]

∂μx

∂μx

∂x[ j] + ∂ x̃[i]
∂σxx

∂σxx

∂x[ j]
)

(8)

wherewe have have dropped the channel subscript for clarity.
The partial derivative ∂ x̃[i]

∂x[ j] = 1√
σxx

, if and only if i = j and
is zero otherwise. The remaining partials derive as follows:

∂ x̃[i]
∂μx

= − 1√
σxx

∂μx

∂x[ j] = 1

|P|
∂ x̃[i]
∂σxx

= 1

2σ 3/2
xx

(x[i] − μx )
∂σxx

∂x[ j] = 2 (x[ j] − μx )

|P|

Substituting them into Eq. 8, we arrive at a final expression:

dNCC(x, y)

d x[ j]
= ỹ[ j]

|P|√σxx
+ 1

|P|
∑

i∈P

ỹ[i]

×
(

−1

|P|√σxx
+ 2 (x[i] − μx ) (x[ j] − μx )

2|P|σ 3/2
xx

)

= 1

|P|√σxx

×
(
ỹ[ j]+ 1

|P|
∑

i∈P

ỹ[i]
(

−1+ (x[i]−μx ) (x[ j]−μx )

σxx

))

= 1

|P|√σxx

(
ỹ[ j]− 1

|P|
∑

i∈P

ỹ[i]+ 1

|P|
∑

i∈P

ỹ[i]x̃[i]x̃[ j]
)

= 1

|P|√σxx
(ỹ[ j] + x̃[ j]NCC(x, y)) (9)

where we have made use of the fact that ỹ is zero-mean.

5 Diagnostic Experiments

To understand the effects of feature channel normalization on
retrieval performance, we compare the proposed MCNCC
measure to two baseline approaches: simple unnormalized
cross-correlation and cross-correlation normalized by a sin-
gleμ and σ estimated over the whole 3D feature volume.We
note that the latter is closely related to the “cosine similarity”
which is popular in many retrieval applications (cosine simi-
larity scales by σ but does not subtract μ). We also consider
variants which only perform partial standardization and/or
whitening of the input features.

Partial PrintMatching We evaluate these methods in a setup
that mimics the occurrence of partial occlusions in shoeprint

matching, but focus on a single modality of test impressions.
We extract 512 query patches (random selected 97×97 pixel
sub-windows) from test impressions that have two or more
matching tread patterns in the database. The task is then
to retrieve from the database the set of relevant prints. As
the query patches are smaller than the test impressions, we
search over spatial translations (with a stride of 1), using the
maximizing correlation value to score the match to the test
impression.We do not need to search over rotations as all test
impressions were aligned to a canonical orientation. When
querying the database, the original shoeprint the query was
extracted from is removed (i.e., the results do not include the
self-match).

We carry out these experiments using a dataset that con-
tains 387 test impression of shoes and 137 crime scene
prints collected by the Israel National Police (Yekutieli et al.
2012). As this dataset is not publicly available, we used this
dataset primarily for the diagnostic analysis and for training
and validating learned models. In these diagnostic experi-
ments, exceptwhere noted otherwise,we use the 256-channel
‘res2bx’ activations from a pre-trained ResNet-50 model.1

We evaluated feature maps at other locations along the net-
work, but found those to performed the best.

Global Versus Local Normalization Figure 4 shows retrieval
performance in terms of the tradeoff of precision and recall at
different match thresholds. In the legend we denote different
schemes in square brackets, where the first term indicates
the centering operation and the second term indicates the
normalization operation. A · indicates the absence of the
operation. μ and σ indicate that standardization was per-
formed using local (i.e., per-exemplar) statistics of features
over the entire (3D) feature map. μc and σc indicate local
per-channel centering and normalization. μ̄c and σ̄c indicate
global per-channel centering and normalization (i.e., statis-
tics are estimated over the whole dataset). Therefore, simple
unnormalized cross-correlation is indicated as [·, ·], cosine
distance is indicated as [μ, σ ], and our proposed MCNCC
measure is indicated as [μc, σc].

We can clearly see from the left panel of Fig. 4 that using
per-channel statistics estimated independently for each com-
parison gives substantial gains over the baseline methods.
Centering using 3D (across-channel) statistics is better than
either centering using global statistics or just straight correla-
tion. But cosine distance (which adds the scaling operation)
decreases performance substantially for the low recall region.
In general, removing the mean response is far more impor-
tant than scaling by the standard deviation. Interestingly, in
the case of cosine distance and global channel normalization,
scaling by the standard deviation actually hurts performance

1 Pretrained model was obtained from http://www.vlfeat.org/matconv
net/models/imagenet-resnet-50-dag.mat.
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Fig. 4 Comparing MCNCC to baselines for image retrieval within the
same domain. The methods are denoted by two operations in square
brackets: centering and normalization, respectively. μ and σ denote
computing the statistics across all channels,μc andσc denote computing
per-channel statistics, and · denotes the absence of the operation (e.g.,
MCNCC is denoted as [μc, σc], whereas cross-correlation is denoted

as [·, ·]). Finally, μ̄c and σ̄c denote computing the average per-channel
statistics across the dataset. The left panel shows the performance on the
raw features, whereas the right panel compares globally whitened fea-
tures using PCA (solid lines) against their corresponding raw features
(dotted lines) (Best viewed in color) (Color figure online)

(i.e., [μ, σ ] versus [μ, ·] and [μ̄c, σ̄c] versus [μ̄c, ·] respec-
tively). As normalization re-weights channels, we posit that
thismaybe negatively effecting the scores by down-weighing
important signals or boosting noisy signals.

Channel Decorrelation Recall that, for efficiency reasons,
our multivariate estimate of correlation assumes that chan-
nels are largely decorrelated. We also explored decorrelating
the channels globally using a full-dimension PCA (which
also subtracts out the global mean μ̄c). The right panel of
Fig. 4 shows a comparison of these decorrelated feature
channels (solid curves) relative to baseline ResNet channels
(dotted curves). While the decorrelated features outperform
baseline correlation (due to the mean subtraction) we found
that full MCNCC on the raw features performed better than
on globally decorrelated features. This may be explained in
part due to the fact that decorrelated features show an even
wider range of variation across different channels whichmay
exacerbate some of the negative effects of scaling by σc.

Other Feature Extractors To see if this behavior was spe-
cific to the ResNet-50 model, we evaluate on three additional
features: raw pixels, GoogLeNet, and DeepVGG-16. From
the GoogLeNet model2 we used the 192-channel ‘conv2x’
activations, and from the DeepVGG-16 model3 we used
the 256-channel ‘x12’ activations. We chose these partic-
ular CNN feature maps because they had the same or similar
spatial resolution as ‘res2bx’ and were the immediate output
of a rectified linear unit layer.

2 Pretrained model was obtained from http://www.vlfeat.org/matconv
net/models/imagenet-googlenet-dag.mat.
3 Pretrained model was obtained from http://www.vlfeat.org/matconv
net/models/imagenet-vgg-verydeep-16.mat.

As shown in Table 1, we see a similar pattern to what we
observed with ResNet-50’s ‘res2bx’ features. Namely, that
straight cross-correlation (denoted as [·, ·]) performs poorly,
while MCNCC (denoted as [μc, σc]) performs the best. One
significant departure from the previous results for ‘res2bx’
features is how models using entire feature volume statistics
perform. Centering using 3D statistics (denoted as [μ, ·])
yields performance that is closer to straight correlation, on
the other hand, standardizing using 3D statistics (denoted as
[μ, σ ]) yields performance that is closer to MCNCC when
using GoogLeNet’s ‘conv2x’ and DeepVGG-16’s ‘x12’ fea-
tures.

When we look at the difference between the per-channel
and the across-channel (3D) statistics for query patches, we
observe significant difference in sparsity of μc compared
to μ: ‘conv2x’ is about 2x more sparse than ‘x12,’ which
itself is about 2x more sparse than ‘res2bx.’ The level of
sparsity correlateswith the performance of [μ, ·] compared to
straight correlation across the different features. The features
where μc is more sparse, using μ overshifts across more
channels leading to less performance gain relative to straight
correlation. When we look at the difference between σ and
σc, we observe that σ is on average larger than σc. Thismeans

Table 1 Ablation study on the two normalized cross-correlation
schemes across different features

Features [·, ·] [μ, ·] [μ, σ ] [μc, ·] [μc, σc]
Raw Pixels 0.04 0.20 0.45 – –

ResNet-50 (res2bx) 0.15 0.44 0.32 0.55 0.77

GoogLeNet (conv2x) 0.07 0.09 0.68 0.61 0.81

DeepVGG-16 (x20) 0.09 0.31 0.73 0.51 0.76

Wemeasure performance usingmean average precision, higher is better.
As the images are gray-scale single-channel images, for rawpixels [μ, ·]
and [μ, σ ] are identical to [μc, ·] and [μc, σc], respectively
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that compared to σc, using σ dampens the effect of noisy
channels rather than boosting them. Looking at the change
of performance from [μ, ·] to [μ, σ ] for different features, we
similarly see improvement roughly correlates to how much
larger σ is than σc.

6 Cross-DomainMatching Experiments

In this section, we evaluate our proposed system in settings
that closely resembles various real-world scenarios where
query images are matched to a database containing images
from a different domain than that of the query. We focus
primarily on matching crime scene prints to a collection of
test impressions, but also demonstrate the effectiveness of
MCNCC on two other cross-domain applications: semantic
segmentation label retrieval from building facade images,
and map retrieval from aerial photos.4 As in our diagnostic
experiments, we use the same pre-trained ResNet-50 model.
We use the 256-channel ‘res2bx’ activations for the shoeprint
and building facade data, but found that the 1024-channel
‘res4cx’ activations performed better for the map retrieval
task.

6.1 Shoeprint Retrieval

In addition to the internal dataset described in Sect. 5, we also
evaluated our approach on a publicly available benchmark,
the footwear identification dataset (FID-300) (Kortylewski
et al. 2014). FID-300 contains 1175 test impressions and 300
crime scene prints. The task here is similar to the diagnos-
tic experiments on patches, but now matching whole prints
across domains. As the crime scene prints are not aligned to a
canonical orientation, we search over both translations (with
a stride of 2) and rotations (from− 20◦ to+ 20◦ with a stride
of 4◦). For a given alignment, we compute the valid support
region P where the two images overlap. The local statistics
and correlation is only computed within this region.

As mentioned in Sect. 4, we can learn both the linear
projections of the features and the importance of each chan-
nel for the retrieval task. We demonstrate that such learning
is feasible and can significantly improve performance. We
use a 50/50 split of the crime scene prints of the Israeli
dataset for training and testing, and determine hyperparam-
eters settings using tenfold cross-validation. In the left panel
of Fig. 5 we compare the performance of three different
models with varying degrees of learning. The model with
no learning is denoted as [μc, σc], with learned per-channel
weights is denoted as [μc, σc ·Wc], with learned projections
is denoted as CCA [μc, σc], and with piece-wise learned
linear projections and per-channel weights is denoted as

4 Our code is available at http://github.com/bkong/MCNCC.

CCA [μc, σc · Wc]. Our final model, CCA [μc, σc · Wc] ft,
jointly fine-tunes the linear projections and the per-channel
weights together. Themodelwith learned per-channel impor-
tance weights has 257 parameters (a scalar for each channel
and a single bias term), andwas learnedusing a support vector
machine solver with a regularization value of α = 100. The
linear projections (CCA) were learned using canoncorr,
MATLAB’s canonical correlation analysis function. Our
final model, CCA [μc, σc · Wc] ft, was fine-tuned using gra-
dient descent with an L2 regularization value of α = 100 on
the per-channel importance weights and β = 1 on the linear
projections. This full model has 131K parameters (2× 2562

projections, 256 channel importance, and 1 bias).
As seen in the left panel of Fig. 5, learning per-channel

importanceweights, [μc, σc·Wc], yields substantial improve-
ments, outperforming [μc, σc] and CCA [μc, σc]when recall
is less than 0.34.When learning both importanceweights and
linear projections, we see gains across all recall values as our
Siamese network significantly outperforms all other models.
However, we observe only marginal gains when fine-tuning
the whole model. We expect this is due in part to the small
amount of training data which makes it difficult to optimize
parameters without overfitting.

We subsequently tested these same models (without any
retraining) on the FID-300 benchmark (shown in the right
panel of Fig. 5). In this, and in later experiments, we use
cumulative match characteristic (CMC) which plots the per-
centage of correct matches (recall) as a function of the
number of database items reviewed. This is more suitable
for performance evaluation than other information retrieval
metrics such as precision-recall or precision-at-k since there
is only a single correctmatchingdatabase item for eachquery.
CMC is easily interpreted in terms of the actually use-case
scenario (i.e., how much effort a forensic investigator must
expend in verifying putative matches to achieve a given level
of recall).

On FID-300, we observe the same trend as on the
Israeli dataset—models with more learned parameters per-
form better. However, even without learning (i.e., [μc, σc])
MCNCC significantly outperforms using off-the-shelf CNN
features the previously published state-of-the-art approaches
(Kortylewski et al. 2014; Kortylewski and Vetter 2016;
Kortylewski 2017). The percentage of correctmatches at top-
1% and top-5% of the database image reviewed for ACCV
are 14.67 and 30.67, for BMVC16 are 21.67 and 47.00, for
LoG16 are 59.67 and 73.33, for [μc, σc] are 72.67 and 82.33,
and for CCA [μc, σc] ft are 79.67 and 86.33. In Fig. 6, we
visualize the top-10 retrieved test impressions for a subset of
crime scene query prints from FID-300. These results corre-
spond to the CMC curves for [μc, σc] and CCA [μc, σc ·Wc]
of the right panel of Fig. 5.
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Fig. 5 Comparing MCNCC with uniform weights (denoted as
[μc, σc]), learned per-channel weights (denoted as [μc, σc · Wc]),
learned linear projections (denoted as CCA [μc, σc]), piece-wise
learned projection and per-channel weights (denoted as CCA [μc, σc ·
Wc]), and jointly learned projection and per-channel weights (denoted
as CCA [μc, σc · Wc] ft) for retrieving relevant shoeprint test impres-

sions for crime scene prints. The left panel shows our five methods on
the Israeli dataset. The right panel compares variants of our proposed
system against the current state-of-the-art, as published in: ACCV14
(Kortylewski et al. 2014), BMVC16 (Kortylewski and Vetter 2016)
and LoG16 (Kortylewski 2017) using cumulative match characteristic
(CMC) (Color figure online)

Fig. 6 FID-300 retrieval results. The left column shows the query crime scene prints, the middle column shows the top-8 results for [μc, σc], and
the right column shows the top-8 results for CCA [μc, σc · Wc]. Green boxes indicate the corresponding ground truth test impression (Color figure
online)

Partial Occlusion To analyze the effect of partial occlusion
on matching accuracy, we split the set of crime scene query
prints into subsets with varying amounts of occlusion. For
this we use the proxy of pixel area of the cropped crime
scene print compared to its corresponding test impression.
The prints were then grouped into 4 categories with roughly
equal numbers of examples: “Full size” prints are those
whose pixel-area ratios fall between [0.875, 1], “3/4 size”
between [0.625, 0.875), “half size” between [0.375, 0.625),
and “1/4 size” between [0, 0.375). In Table 2 we compare
the performance of models [μc, σc], CCA [μc, σc], and CCA
[μc, σc · Wc]. As expected, the correct match rate gener-
ally increases for all models as the pixel area ratio increases
and more discriminative tread features are available, with

the exception of “full size” prints. While “full size” query
printsmight be expected to includemore relevant features for
matching, we have observed that in the benchmark dataset
they are often corrupted by additional “noise” in the form of
smearing or distortion of the print and marks left by overlap-
ping impressions.

Background Clutter We also examined how performance
was affected by the amount of irrelevant background clutter
in the crime scene print. We use the ratio of the pixel area
of the cropped crime scene print over the pixel area of the
original crime scene print as a proxy for the amount of rele-
vant information in a print. Prints with a ratio closer to zero
contain a lot of background, while prints with a ratio closer
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Table 2 Occlusion study on
FID-300

Print size All prints Full size 3/4 size Half size 1/4 size
(# prints) (300) (88) (78) (71) (63)

Top-1% [μc, σc] 72.7 78.4 82.1 71.8 53.0

CCA [μc, σc] 76.8 83.0 85.9 73.2 60.3

CCA [μc, σc · Wc] 79.0 84.1 85.9 78.9 63.5

Top-10% [μc, σc] 87.7 87.5 92.3 85.9 84.1

CCA [μc, σc] 88.7 93.2 91.0 87.3 81.0

CCA [μc, σc · Wc] 89.3 93.2 91.0 91.6 79.4

The crime scene query prints are binned by looking at the ratio of query pixel area to the pixel area of the
corresponding ground-truth test impression. Performance is measured as the percentage of correct matches
retrieved (higher is better)

[·, ·] [μc, σc] [·, ·] [μc, σc]

Fig. 7 Visualizing image regions that have the greatest influence on
positive correlation between image pairs. Each group of images shows,
from left to right, the original crime scene print and test impression being
compared, the image regions of the pair that have the greatest influ-
ence on positive correlation score when using raw cross-correlation,

and the image regions of the pair that have greatest influence on pos-
itive MCNCC. Each row shows the same crime scene query aligned
with a true matching impression (left) and with a non-matching test
impression (right)

to one contain little irrelevant information. We selected 257
query prints with a large amount of background (ratio≤ 0.5).

When performing matching over these whole images we
found that the percentage of correct top-1%matches dropped
from 72.4 to 15.2% and top-10% dropped from 88.3 to
33.5%. This drop in performance is not surprising given that
our matching approach aims to answer the question of what
print is present, rather than detectingwhere a print appears in
an image and was not trained to reject background matches.
We note that in practical investigative applications, the quan-
tity of footwear evidence is limited and a forensic examiner

would likely be willing to mark valid regions of query image,
limiting the effect of background clutter.

Visualizing Image Characteristics Relevant to Positive Cor-
relations To get an intuitive understanding of what image
features are utilized by MCNCC, we visualize what image
regions have a large influence the positive correlation
between paired crime scene prints and test impressions. For
a pair of images, we backpropagate gradients to the image
from each spatial bin in the feature map which has a posi-
tive normalized correlation. We then produce a mask in the
image domain marking pixels whose gradient magnitudes
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Fig. 8 Segmentation retrieval for building facades. The left panel
compares MCNCC with learned linear projections and per-channel
importance weights (denoted as CCA [μc, σc ·Wc]) and MCNCC with
no learning (denoted as [μc, σc]) to other baselinemetrics: Cosine simi-
larity, Euclidean distance, andNCCusing across-channel local statistics

(denoted as [μ, σ ]). The right panel shows example retrieval results for
CCA [μc, σc · Wc]. The left column shows the query facade image.
Green boxes indicate the corresponding ground truth segmentation label
(Color figure online)

are in the top 20th percentile. Figure 7 compares this posi-
tive relevance map for regular correlation (inner product of
the raw features) and normalized correlation (inner product
of the standardized features). We can see that with normal-
ized correlation, the image regions selected are similar for
both images despite the domain shift between the query and
match. In contrast, the visualization for regular correlation
shows much less coherence across the pair of images and
often attends to uninformative background edges and blank
regions.

6.2 Segmentation Retrieval for Building Facades

To further demonstrate the robustness of MCNCC for cross
domain matching, we consider the task of retrieving seg-
mentation label maps which match for a given building
facade query image. We use the CMP Facade Database
(Radim Tyleček 2013) which contains 606 images of facades
from different cities around the world and their correspond-
ing semantic segmentation labels. These labels can be viewed
as a simplified “cartoon image” of the building facade by
mapping each label to a distinct gray level.

In our experiments, we generate 1657 matching pair by
resizing the original 606 images (base + extended dataset) to
either 512 × 1536 or 1536 × 512 depending on their aspect
ratio and crop out non-overlapping 512 × 512 patches. We
prune this set by removing 161 patches which contain more
than 50% background pixels to get our final dataset. Exam-
ples from this dataset can be seen in the right panel of Fig. 8.
In order treat the segmentation labelmap as an image suitable
for the pre-trained feature extractor, we scale the segmenta-
tion labels to span the whole range of gray values (i.e., from
[1 − 12] to [0 − 255]).

We compare MCNCC (denoted in the legend as [μc, σc])
to three baseline similarity metrics: Cosine, Euclidean dis-

tance, and normalized cross-correlation using across-channel
local statistics (denoted as [μ, σ ]).Wecan see in the left panel
of Fig. 8 that MCNCC performs significantly better than the
baselines. MCNCC returns the true matching label map as
the top scoring match in 39.2% of queries. In corresponding
top match accuracy for normalized cross-correlation using
across-channel local statistics is 25.2%, for Cosine similarity
is 18.3%, and for Euclidean distance is 6.0%.When learning
parameters with MCNCC (denoted as CCA [μc, σc · Wc]),
using a 50/50 training-test split, we see significantly bet-
ter retrieval performance (96.4% for reviewing one database
item). The right panel of Fig. 8 shows some example retrieval
results for this model.

6.3 Retrieval of Maps from Aerial Imagery

Finally, we evaluate matching performance on the problem
of retrieving map data corresponding to query aerial photos.
We use a dataset released by Isola et al. (2017) that contains
2194 pairs of images scraped from Google Maps. For sim-
plicity in treating this as a retrieval task, we excluded map
tiles which consisted entirely of water. Both aerial photos
and map images were converted from RGB to gray-scale
prior to feature extraction (see the right panel of Fig. 9 for
examples).We compareMCNCC to three baseline similarity
metrics: Cosine, Euclidean distance, and normalized cross-
correlation using across-channel local statistics (denoted as
[μ, σ ]).

The results are shown in the left panel of Fig. 9.
MCNCC outperforms the baseline Cosine and Euclidean
distance measures, but this time performance of normalized
cross-correlation using local per-exemplar statistics averaged
over all channels and Cosine similarity are nearly iden-
tical. For top-1 retrieval performance, MCNCC is correct
98.7%of the time, normalized cross-correlation using across-
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Fig. 9 Retrieval of maps from aerial imagery. The left panel com-
pares MCNCC with no learning (denoted as [μc, σc]) to other baseline
metrics: Cosine similarity, Euclidean distance, and NCC using across-
channel per-exemplar statistics (denoted as [μ, σ ]). The right panel

shows retrieval results for [μc, σc]. The left column shows the query
aerial photo. Green boxes indicate the corresponding ground-truth map
image (Color figure online)

channel local statistics and Cosine similarity are correct
95.8%, and Euclidean distance is correct 28.6% of the time
when retrieving only one item. We show example retrieval
results for MCNCC in the right panel of Fig. 9. We did
not evaluate any learned models in this experiment since
the performance of baseline MCNCC left little room for
improvement.

7 Conclusion

In this work, we proposed an extension to normalized
cross-correlation suitable for CNN feature maps that per-
forms normalization of feature responses on a per-channel
and per-exemplar basis. The benefits of performing per-
exemplar normalization can be explained in terms of spatially
local whitening which adapts to non-stationary statistics of
the input. Relative to other standard feature normalization
schemes (e.g., cosine similarity), per-channel normaliza-
tion accommodates variation in statistics of different feature
channels.

Utilizing MCNCC in combination with CCA provides
a highly effective building block for constructing Siamese
network models that can be trained in an end-to-end discrim-
inative learning framework. Our experiments demonstrate
that even with very limited amounts of data, this framework
achieves robust cross-domainmatching using generic feature
extractors combinedwith piece-wise training of simple linear
feature-transform layers. This approach yields state-of-the-
art performance for retrieval of shoe tread patterns match-
ing crime scene evidence. We expect our findings here will
be applicable to a wide variety of single-shot and exemplar
matching tasks using CNN features.
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